Ultimate Extensible Distributed System

Jim Fawcett CSE681 - Software Modeling & Analysis Fall 2010

Your Assignment

- Your supervisor just handed you a spec for implementation of:
 - Distributed system with universal connectability using sockets
 - Can process an open-ended variety of documents
 - Expandable by 5 orders of magnitude in ten years
 - Can add new tools easily
 - Supports 50 million users a day without gridlock.
- You say NO WAY!
- Well, maybe.

Introduction to Internet and Web

- This presentation addresses two questions:
 - Is that possible?
 - Well yes look over there the web!
 - How was it accomplished?
 - Processing structure and protocols
 - Programming tools
 - Web servers and browsers that host:
 - Script languages, e.g., Javascript, VBScript, Perl, Ruby, ...
 - Programming languages: Visual Basic, Java, C++, C#, ...
 - And, of course, some very smart people

Goals:

- Build distributed system to share documents.
- Support expansion by 5 orders of magnitude in ten years - 200 hosts to 500 million hosts.
- Manage communication between hundreds of millions of machines every day without collapsing from congestion.
- Provide for arbitrary extensions:
 - From static text documents to graphics, dynamic content, streaming video, programmable interfaces, voice, ...

Original Goals of the Web

- Universal readership
 - When content is available it should be accessible from any type of computer, anywhere.
- Interconnecting all things
 - Hypertext links everywhere.
 - Simple authoring

Internet Design Principles

- Goal is connectivity
- Achieved with Internet Protocol (IP)
 - Stateless so survives failures no need to backup
- Made scalable with end-to-end intelligence
 - Transport Control Protocol (TCP)
 - Sender does not send until receipt is acknowledged
 - Amount sent is based on receiver's current available buffer size - so receiver won't be flooded.
 - Be strict when sending and tolerant when receiving
- Protocol Specific Packet Headers
- Internet Design
- Robustness and the Internet

Web Design Principles

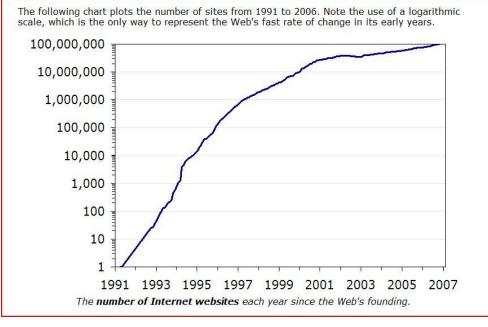
- Universal
- Decentralized
- Modular
- Extensible
- Scalable
- Accessible
- Forward/backwards compatibility
- Architecture of World Wide Web

Basic Concepts

- Client/Server Model
- Universal Addressing
 - TCP/IP, DNS
- Search Engines
- Universal Protocols
 - HTTP, URLS, HTML, FTP
- Format Negotiation through HTTP
- Hypertext \rightarrow Hypermedia via HTML \rightarrow XHTML
 - Support for text, images, sound, and scripting

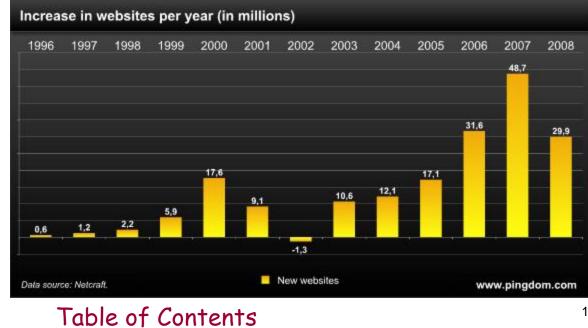
Internet and Web History

Internet History


- 1961 First paper on packet-switching theory, Kleinrock, MIT
- 1969 ARPANet goes on line
 - Four hosts, each connected to at least two others
- 1974 TCP/IP, Berkley Sockets invented
- 1983 TCP/IP becomes only official protocol
- 1983 Name server developed at University of Wisconsin.
- 1984 Work begins on NSFNET
- 1990 ARPANET shutdown and dismantled
- 1990 ANSNET takes over NSFNET
 - Non-profit organization MERIT, MCI, IBM
 - Starts commercialization of the internet
- 1995 NSFNET backbone retired
- 1998 DNS transferred from Dept of Commerce to ICANN
- 2000 Web size estimates surpass 1 billion indexable pages

Web History

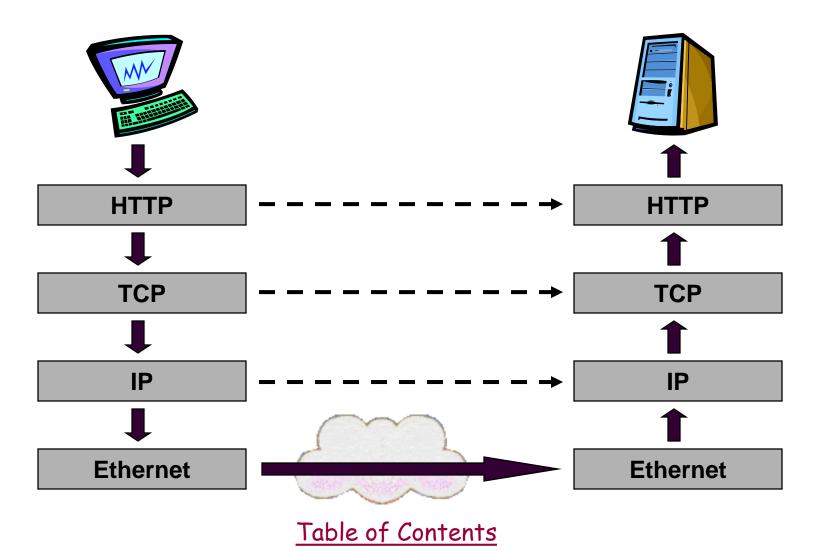
- 1990 World Wide Web project
 - Tim Berners-Lee starts project at CERN
 - Demonstrates browser/editor accessing hypertext files
 - HTTP 0.9 defined, supports only hypertext, linked to port 80
- 1991 first web server outside Europe
 - CERN releases WWW, installed at SLAC
- 1992 HTTP 1.0, supports images, scripts as well
- 1993 Growth phase
- 1994 CERN and MIT agree to set up WWW Consortium
- 1999 HTTP 1.1, supports open ended extensions


Web Growth Phase - 1993

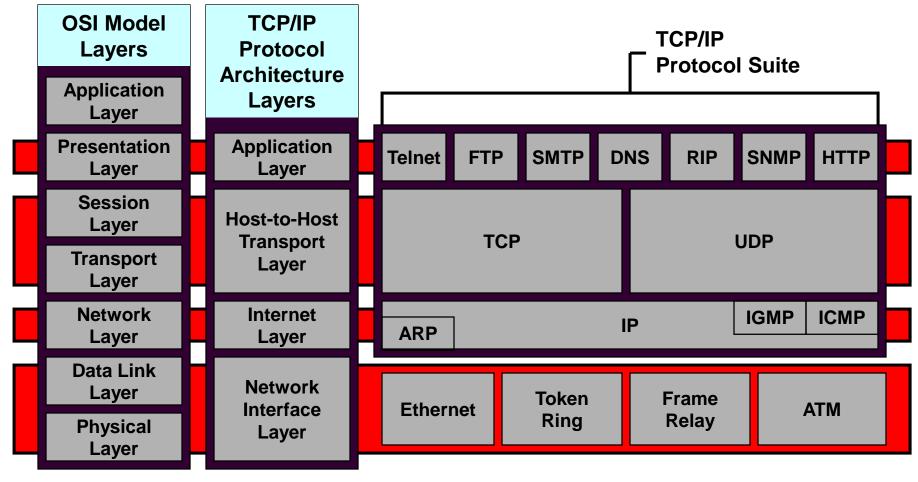
- InterNIC created to provide registration services
- WWW (port 80 HTTP) traffic is 1% of NSFNET traffic
- 200 Known HTTP servers
- Article on WWW in New York Times
- Mosaic first release

Web Growth

http://www.useit.com/alertbox /web-growth.html


http://www.techcrunch .com/2009/05/08/isthe-growth-of-theweb-slowing-down-orjust-taking-a-breather/

Web Technologies


Tools: Servers on the Internet

- HTTP HyperText Transport Protocol
 - JSP and ASP add dynamic content
 - Web Services add RPC program interface
- FTP File Transport Protocol
- Gopher Text and Menus
- NNTP Network News Transfer Protocol
- DNS Distributed Name Service
- telnet log into a remote computer
- New tools if they use TCP/IP just add them

Network Protocol Stack

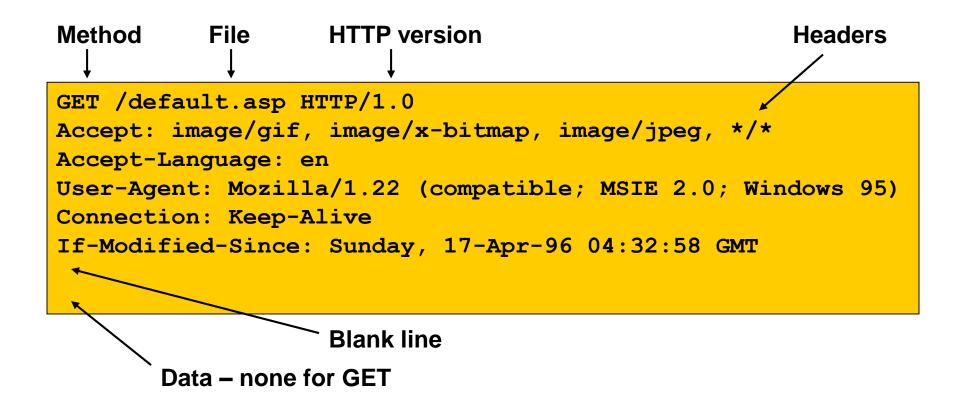
Network Protocols

Communication Between Networks

- Internet Protocol (IP)
 - Routable, connectionless datagram delivery
 - Specifies source and destination
 - Does not guarantee reliable delivery
 - Large message may be broken into many datagrams, not guaranteed to arrive in the order sent
 - Transport Control Protocol (TCP)
 - Reliable stream transport service
 - Datagrams are delivered to the receiving application in the order sent
 - Error control is provided to improve reliability

Pinging Various URLs

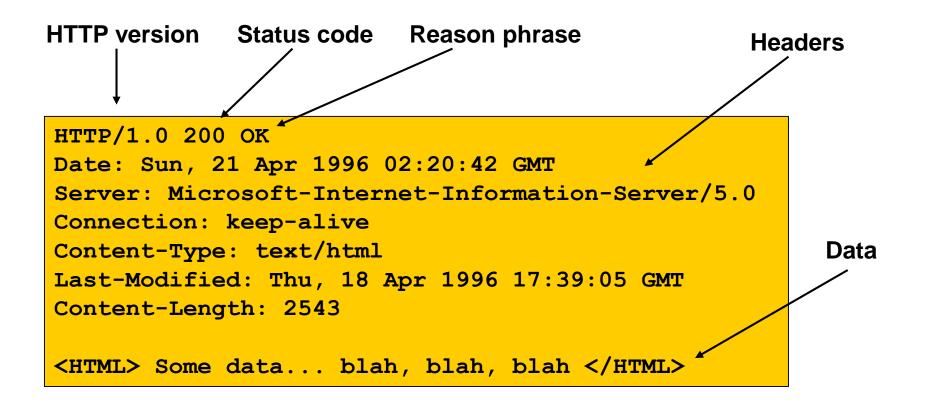
CMD.EXE - 🗆 × Pinging bismark [192.168.0.103] with 32 bytes of data: Reply from 192.168.0.103: bytes=32 time=1ms TTL=128 Reply from 192.168.0.103: bytes=32 time=2ms TTL=128 Reply from 192.168.0.103: bytes=32 time=19ms TTL=128 Ping in network Reply from 192.168.0.103: bytes=32 time=6ms TTL=128 Ping statistics for 192.168.0.103: few millisec Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 19ms, Average = 7ms C:\temp >ping www.ecs.syr.edu Pinging ecswww.syr.edu [128.230.208.33] with 32 bytes of data: Reply from 128.230.208.33: bytes=32 time=22ms TTL=113 Reply from 128.230.208.33: bytes=32 time=23ms TTL=113 Reply from 128.230.208.33: bytes=32 time=24ms TTL=113 Ping in Syracuse Reply from 128.230.208.33: bytes=32 time=23ms TTL=113 Ping statistics for 128.230.208.33: few tens of millisec Packets: Sent = 4. Received = 4. Lost = 0 (0% loss). Approximate round trip times in milli-seconds: Minimum = 22ms, Maximum = 24ms, Average = 23ms C:\temp >ping www.moscow-guide.ru Pinging moscow-guide.ru [81.176.69.152] with 32 bytes of data: Reply from 81.176.69.152: bytes=32 time=156ms TTL=42 Reply from 81.176.69.152: bytes=32 time=156ms TTL=42 Reply from 81.176.69.152: bytes=32 time=178ms TTL=42 Ping to Moscow Reply from 81.176.69.152: bytes=32 time=155ms TTL=42 - few hundreds of millisec Ping statistics for 81.176.69.152: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss). Approximate round trip times in milli-seconds: Minimum = 155ms, Maximum = 178ms, Average = 161ms


Tracing HTTP Message with Tracert

trac	ert (366.	moscou	v−qu	ide.ru	u –	
rac i	ng re	oute	to m	osco	w-guid	de.r	u [81.176.69.152]
ver	a max	ximu	m of 🕻	30 h	ops:		
1	1	ms	1	ms	- 1	ms	192.168.0.1
	- 7	MS	- 7	ms MS	- 7		10.101.208.1
2		MS	10		ź		fas3-2.syrcnybsh-rtr01.nyroc.rr.com [24.92.227.138]
4	2	MS	- 19	MS	ź		srp2-0.syrcnyspp-rtr04.nyroc.rr.com [24.92.227.136]
5	- 8	ms MS	- 2	ms MS		ms MS	srp10-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.224.137]
š.	- 2	ms MS		ms MS	8	ms MS	srp8-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.224.138]
23456789	- 11	ms MS	- 11	ms MS	11	ms MS	son0-1-1.albynywav-rtr03.nyroc.rr.com [24.92.224.130]
6	13	MS	12	MS	11	MS	pop1-alb-P7-0.atdn.net [66.185.133.229]
ŏ	14		12	MS	11	MS	bb1-alb-P0-1.atdn.net [66.185.148.100]
lÓ –	18	MS	15	MS	19	MS	bb2-nye-P3-0.atdn.net [66.185.152.71]
11	16	MS	29	MS	16	MS	pop1-nye-P1-0.atdn.net [66.185.151.51]
12	16	MS	15	MS	15	MS	0.so-2-0-0.BR1.NYC4.ALTER.NET [204.255.173.33]
13	17		15	MS	15	MS	0.so-6-0-0.XL1.NYC4.ALTER.NET [152.63.21.78]
14	_	MS	18	MS	15	MS	0.so-4-0-0.TL1.NYC9.ALTER.NET [152.63.0.173]
15	*	113	18	MS	16	MS	0.so-7-0-0.IL1.NYC9.ALTER.NET [152.63.9.245]
16	15	ms	40	MS	15	MS	0.so-1-0-0.IR1.NYC12.ALTER.NET [152.63.23.62]
17	- <u>9</u> 5	MS	94	MS	- <u>95</u>	MS	so-0-0-0.TR2.LND9.ALTER.NET [146.188.15.26]
18	- 96	MS	- 97	MS	- 94	MS	so-6-0-0.XR1.LND9.ALTER.NET [146.188.15.42]
ĩğ –	- 94	MS	- 94		- 94	MS	POS3-0.cr1.lnd10.gbb.uk.uu.net [158.43.150.97]
20	- 99	MS	98	MS	- 99	MS	pos3-0.cr1.lnd8.gbb.uk.uu.net [158.43.253.142]
21	104		98	MS	- 99	ms	ge0-0.gw1.lnd8.gbb.uk.uu.net [158.43.188.25]
22	149	MS	149	ms	150		rtcomm-gw.customer.ALTER.NET [146.188.66.50]
23	156		156	ms	156		msk-dsr7-ge1-0-0-0.rt-comm.ru [217.106.7.200]
24	156		159		155		81.176.69.152
	com	alet	e.				

HTTP Methods

- GET request-URI HTTP/1.1
 - Retrieve entity specified in request-URI as body of response message
- POST request-URI HTTP/1.1
 - Sends data in message body to the entity specified in request-URI
- PUT request-URI HTTP/1.1
 - Sends entity in message body to become newly created entity specified by request-URI
- HEAD request-URI HTTP/1.1
 - Same as GET except the server does not send specified entity in response message
- DELETE request-URI HTTP/1.1
 - Request to delete entity specified in request-URI.
- TRACE request-URI HTTP/1.1
 - Request for each host node to report back


HTTP Request

Multipurpose Internet Mail Extensions (MIME) <u>skip to HTTP Response</u>

- Defines types of data/documents
 - text/plain
 - text/html
 - image/gif
 - image/jpeg
 - audio/x-pn-realaudio
 - audio/x-ms-wma
 - video/x-ms-asf
 - application/octet-stream

HTTP Response skip to Programming the Web

Status Codes

200	OK	Classes:	
201	Created		
202	Accepted	1xx: Informa	
204	No Content		
301	Moved Permanently	2xx: Succes	
302	Moved Temporarily		
304	Not Modified	3xx: Redired	
400	Bad Request	4xx: Client E	
401	Unauthorized		
403	Forbidden	5xx: Server	
404	Not Found		
500	Internal Server		
	Error		
501	Not Implemented		
502	Bad Gateway		
503	Service Unavailable		

national

SS

ction

Error

Error

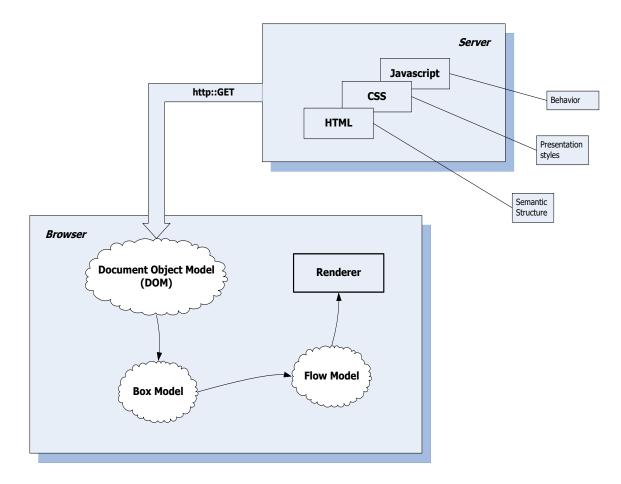
- not used, reserved for future
- action was successfully received, understood, and accepted
- further action needed to complete request
- request contains bad syntax or cannot be fulfilled
- server failed to fulfill an apparently valid request

Programming The Web

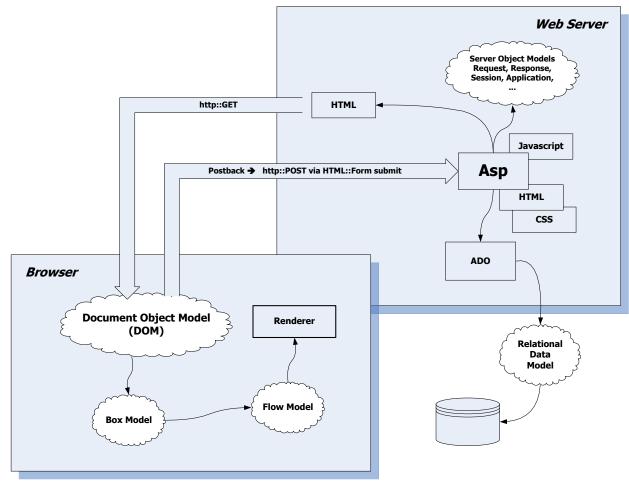
Web Programming Model

Packaged functionality

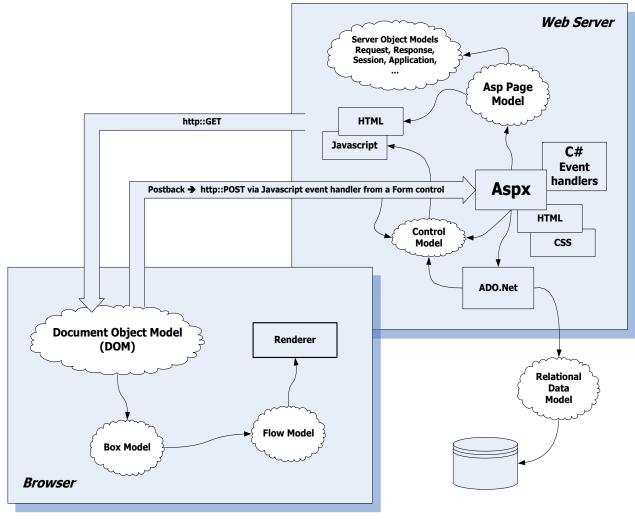
- Web server supports default and user supplied controls
- Dynamic content display
 - ASP, JSP generates HTML using server data
 - Browser interprets client side scripts
- Machine-to-Machine
 - Web services provide RPC interface

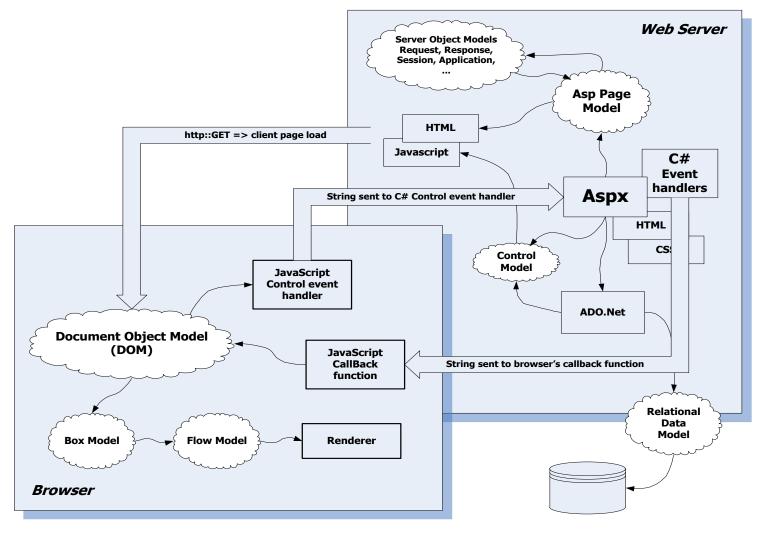

Programming the Web

- Client-Side Programming
 - JavaScript
 - Can modify html document using scripts sent from server and interpreted by client.
 - Silverlight uses C# in embedded CLR in Browser plug-in
 - .Net controls, Java applets need permissions
- Server-Side Programming
 - ASP script, C# code-behind
 - Server components
 - Session, Application, ADO, FileSystem, ...
 - Web controls used on ASPX pages
 - Web services

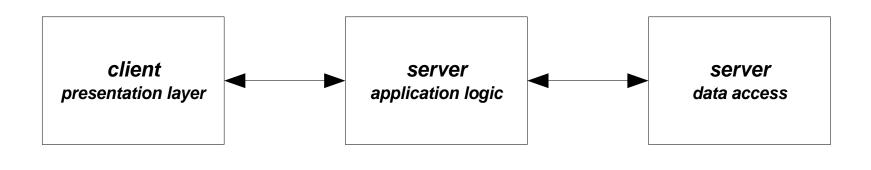

Programming the Web Server-Side Code

- What is server-side code?
 - Software that runs on the server, not the client
 - Receives input from
 - URL parameters
 - HTML form data
 - Cookies
 - HTTP headers
 - Can access server-side databases, e-mail servers, files, Web Services, etc.
 - Dynamically builds a custom HTML response for a client


Traditional HTML Serving Model


ASP Dynamic Serving Model

ASP.NET Serving Model



Asp.Net Ajax Serving Model

Three Tier Architecture

- Client Tier
 - Presentation layer
 - Client UI, client-side scripts, client specific application logic
- Server Tier
 - Application logic, server-side scripts, form handling, data requests
- Data Tier
 - Data storage and access

Server Object Model

- Application Object
 - Data sharing and locking across clients
- Request Object
 - Extracts client data and cookies from HTTP request
- Reponse Object
 - Send cookies or call Write method to place string in HTML output
- Server Object
 - Provides utility methods
- Session Object
 - If browser supports cookies, will maintain data between page loads, as long as session lasts.

Security Issues

Threats

- Data integrity
 - code that deletes or modifies data
- Privacy
 - code that copies confidential data and makes it available to others
- Denial of service
 - code that consumes all of CPU time or disk memory.
- Elevation of privilege
 - Code that attempts to gain administrative access

Protections

Least privilege rule:

- Use the technology with the fewest capabilities that gets the job done.
- Digital signing
 - Who are you?
- Security zones
 - Trusted and untrusted sites
- Secure sockets layer (SSL)
- Transport layer security (TLS)
- Encryption

Extending The Web

Current Extensions

- Describe data with XML
- Extend HTML into XHTML
- Separate style from content with CSS
 - Cascading style sheets
 - Can be included from a file to give uniform style of pages and documents
- Document Object Model DOM
 - Defines a scripting interface

Areas of Exploration

- XML
- TVWeb
- MathML
- RDF
- Accessibility

- Universal Data Services
- merger of features
- Mathematical Markup Language
- Resource Description Framework
- for the handicapped
- SMIL Synchronized Multimedia Integration Language
- Internationalization
- Speech

People in the Web

Web Development

- Web server, HTTP
 - Tim Berners-Lee, Robert Cailiau
- Mosaic web browser
 - Marc Andreessen
- Internet
 - TCP/IP protocol
 - Vinton Cerf, Robert Kahn
 - Internet flow control
 - Larry Roberts

References

World Wide Web Consortium

- Excellent Tutorial Papers, standards
- Source of several slides used here
 - Mark Sapposnek
- webdev.htm
 - Tutorials
 - Web developer's links
 - Web designer's links
 - Tech details links
- XHTML Black Book, Steven Holzner, Coriolis, 2000
 - Aging but comprehensive treatment of HTML, XHTML, JavaScript
- Web Developers Virtual Library
 - More tutorials

End of Presentation