
Interception

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2007

References

 Essential .Net, Volume 1, The Common Lanaguage
Runtime, Don Box with Chris Sells, Addison-Wesley,
2003

 Aspect-Oriented Programming, Shukla, Fell, Sells,
MSDN, March 2002

 Advanced .Net Remoting, Ingo Rammer, Apress,
2002

 Microsoft .Net Remoting, Scott McLean, James
Naftel, Kim Williams, Microsoft Press, 2003

http://www.msdn.microsoft.com/msdnmag/issues/02/03/AOP/

What is Interception?

 Interception is the process of inserting processing:

– after a client call, but before the method executes

– after method execution, but before the thread of exectution
returns to the client

 This processing, in .Net, is usually specified by an attribute:

– [Serializable]

– [OneWay]

 One use of interception is to attempt to separate solution
domain processing from problem domain processing.

Invoking a Method

stack before call

address of arg3

address of arg2

arg1

this

arg3 value

arg2 value aMethod

stack after call

result

int aMethod(int arg1, ref int arg2, out int arg3)

Interception
happens here

Interception
happens here
also

Invocation Message
Model

 The CLR makes method call-
stack transformation accessible
via the IMessage interface.

 IMethodMessage provides
access to method arguments,
return value, and to the
metadata for the method via a
MethodBase property.

 This provides access to stack
frame contents without requiring
knowledge of the stack layout.

IMessage

IMethodMessage

IMethodCallMessage IMethodReturnMessage

Creation of Messages

 A transparent proxy, created by the CLR, is used to
translate method calls into messages.

 The transparent proxy is always associated with a
real proxy, responsible for transforming a
MethodCallMessage into a MethodReturnMessage.

The transparent proxy then uses the
MethodReturnMessage to transform the call stack
into the result stack configuration.

Stack to Message to Stack

Transparent Proxy Real ProxyInvoke

MethodCallMessage

Method Return MessageMethodReturnMessage

StackBuilder SinkExecuteMessage

target object

aMethod

aMethod

Converts stack to
message

Converts message
to stack

ContextBound Objects

 Deriving a class from System.ContextBoundObject ensures
that every access to an object is through a transparent proxy.

 A context represents services required by the bound object.

 The whole purpose of interception is to automatically provide
pre and post processing of method calls.

 This is done with MessageSinks.

 The context specifies what MessageSink process will be
applied to a context bound object.

Transparent Proxy

Real Proxy

Invoke

M
e

th
o
d
C

a
llM

e
s
s
a
g
e

M
e

th
o
d
R

e
tu

rn
M

e
s
s
a
g
e

StackBuilder SinkExecuteMessage target objectaMethod

aMethod

MessageSink1

MessageSink2

SyncProcessMessage

SyncProcessMessage

 MessageSinks provide
processing applied to
MethodCall and MethodReturn
messages.

 This is an extensible process.
Any number of MessageSinks
can be inserted in connection
between a client and target
object.

Message Sinks

Installing Message Sinks

 The CLR gives context attribute objects the
chance to install context properties as the
context is being created.

 It also gives context property objects the
opportunity to put MessageSinks between a
proxy and ContextBound object when the
proxy is created.

Afterword

 These notes summarize material provided in Chapter 7 of Don
Box’s “Essential .Net”, Volume 1.

– In that chapter the author provides a small example that shows
code fragments illustrating how to build the interception
apparatus.

 Ingo Rammer in his “Advanced .Net Remoting”, provides
examples of how channels work and how to build custom
Message Sinks, in chapters 7, 8, and 9.

 Scott McLean, et. al., in “.Net Remoting”, also provide
examples of how to build interception in chapters 5, 6, and 7.

End of Presentation

