
1

Enterprise lecture
Jim Fawcett

CSE681 – Software Modeling and Analysis

Spring 2010

 - VCRTS based example: Collaboration, Repository, Testharness Servers

 - Interesting questions: collaboration agents? Rule-based process? Rule-based testing?

2

“Only those who dare to fail greatly can ever achieve greatly”, Robert F. Kennedy, 1926 - 1968

- Goals

 - VCRTS supports work scheduling and collaboration (Collab), maintenance of the baseline (Repos),

 testing (TestH), and development (clients).

 - Everything of value concerning definition of work and scheduling goes on Collab

 - Collab has tools like whiteboard, scheduler with notifications, web cams, etc.

 - Everything of product value goes on Repos

 - Repos provides access to versioned components (a package and all its dependencies)

 - Everything of product value is extracted from Repos and tested on TestH

 - Test results generated by TestH are certified and stored on Repos, linked to component version

 - VCRTS has virtually instant access to all important project data, with the help of some tools like QATS

 - VCRTS is composed of virtual servers, e.g., server is not necessarily a machine boundary

 and can easily be moved.

 - has an interface and abstract class that defines what a virtual server is

 - supports cloning onto any machine with a receiver installed, e.g., has copy constructor

 - performance prototype would be interesting

 - subset of these mechanics used to synchronize servers

 - does all communication through http or tcp

 - VCRTS can be delivered to customer as maintenance facility

 - may get a subset of what is available to the development team

3

 - Each project has its own VCRTS

 - VCRTS supports cloning servers which may include only part of the original state

 - rule-based cloning?

 - each team can have its own VCRTS

 - but only project VCRTS has certified product: code, documentation, ...

 - company has company-wide VCRTS to hold and distribute reusable code

 - VCRTS supports rule-based management of Project and Product

4

- Organizing principles

 - continuous integration and test via built in test functionality

 - supports topdown testing - must be batchable with no human intervention

 - each package supports rTest (regression level) and uTest (unit level)

 - run top test driver for current baseline system – regression level test

 - top test driver calls regression test driver in all packages it calls

 - recursively works toward leaf elements

 - need to mark visited packages so don’t loop forever on mutual dependencies

 - if any fail, start that subtree with more detailed uTest tests.

 - no logging for regression accept at the top test level

 - needs internal consistency checks, ala Design By Contract (DBC).

 - Will parser like structure help here? Maybe - can add test rules at any time

 without rebuilding rest of system.

 - How do we specify these checks? Do we need to?, or just let test evolution have its way!

 - developer can build a test driver at any component node. Checkin should fail if drivers are

 not supplied or do not build.

 - test drivers should be verified with (sensible) mutation testing

 - must be able to support class, package, subsystem, and system invariants

 - each package provides a function that implements ITest, will normally be built as a DLL

5

 - documentation and builds are encapsulated.

 - Repository components are linked with XML manifests containing metadata

 - Each package documents itself only, with abstract treatment of those packages it calls.

 - spec, design, test document

 - perhaps design and test documentation can be (nearly) generated automatically by recursing

 through metadata

 - Each package provides a build script that use its callees build scripts recursively

 - builds: Static vs dynamic linking can be set with configuration in metadata

 - supports packaging that adapts to evolving baseline

 - storage: Test drivers link to their called code (obviously), test data links to test driver

 - each package has version stamp it supplies to test data.

 - Work Scheduling (Collab)

 - holds partitioned schedule, reviews, work packages, collaboration products

 - authority roles based on work package

 - Work package structure linked, similar to component model on Repos

 - Each leaf node work package describes the work of one individual with tangible completion condition

 - Repository holds components (pull model for access with file caching)

 - repository holds all versions in linked structure so earlier system is there all linked up.

 - linkages defined by XML manifests with metadata

 - manifest has brief description of component

 - link to more detailed documentation (for just top level)

 - links to files or lower level manifests

 - could we use change sets to reduce storage and still quickly spawn an old version?

 - baseline test only from repository

6

 - VCRTS

 - servers are virtual with replication

 - all communication message-passing is via web.

 - Performance issue?

 - notifications are ordinary messages

 - anyone can have a repository, testbed, and collab server

 - only project VCRTS holds certified products

 - Layering

 - message-passing communication service

 - notification based on message passing

 - virtual server service

 - batch spiral testing service

 - linkage scanning service

 - display service

 - Example of prototype code

 - file transfer via pull model with file caching

 - repository navigation via component manifests

