
Dependency Architecture

Jim Fawcett

CSE681 – Software Modeling & Analysis

Fall 2002

Use Cases

 Dependency analysis generates information for:

 Building test plans:

 Don’t test a module until all the modules on which it depends

have been tested.

 Software maintenance:

 What modules depend on the module we plan to change? We

need to test them after the change to see if they have been

adversely affected.

 Documentation:

 Documenting dependency information is an integral part of the

design exposition.

Scope of Analysis

 This architecture is concerned with dependencies
between a program’s modules.
 A module is a relatively small partition of a program’s

source code into a cohesive part.

 A typical module should consist of about 400 source
lines of code (SLOC).
 Obviously some will be smaller, some larger, but this is a

good target size

 Typical project sizes are:
 Modest size research project – 10,000 sloc

 25 modules

 Modest size commercial product – 600 kslocs
 1,500 modules

Conclusions from Use Case Analysis

 Even for relatively modest sized research

projects, there is too much information to do

an adequate analysis by hand.

 We need automated tools.

 The tools need to show dependencies in both

ways, e.g.:

 What files does this file depend on?

 What files depend on this file?

 The tools need to disclose dependencies between

all files in the project.

Critical Issues

 Scanning for Dependencies in C# modules

 Data structure used to hold dependencies

 Displaying large amounts of information to

user

 False dependencies due to unneeded

includes in C++ modules

 Dependence on System Libraries

Dependency Scanning

 Will naïve scanning work for 1500 files?
 If opening and scanning a single file takes 25 msec, then:

 Finding dependencies for 1 file takes:
0.025 X1500 / 60 = 0.625 minutes

 Finding dependencies for all files takes:
0.625 X 1500 / 60 = 15.6 hours!

 So let’s scan each file once and store all its
identifiers in hash table in RAM.
 If that takes 30 msec per file:

 Then making hash tables for all files takes:
0.03 X 1500 / 60 = 0.75 minutes

 If hash table lookup takes 10 sec per file then finding
dependencies between all files takes:

0.00001 X 1500 X 1500 / 60 + 0.75 = 1.125 minutes!

Timing Results Parsing Prototype Source

Conservative

Estimate

Prototype

Results

Open file, parse,

store in Hashtable –

Millisec
25 7

Hashtable Lookup -

Microsec
10 0.6

Comparison of Estimated with Measured

 Naïve scanning – scan each file 1500 times:
 Estimated time to complete scanning of 1500 files:

15.6 hours

 Measured time to complete scanning of 1500 files:
4.4 hours

 Processing each file once and storing in Hashtable,
then doing lookups for each file:
 Estimated time to complete processing:

1.1 minutes

 Measured time to complete processing:
0.2 minutes

Hash Table Layout

hash function

object

for storage

Memory to Store Hash Tables

 Assume each file is about 500 lines of source
code  about 30 chars X 500 = 15 KB
 Assume that 1/3 of that is identifiers

 The rest is comments, whitespace, keywords, and
punctuators

 5 KB of indentifier storage

 Assume HashTable takes 10 KB per file, so the
total RAM required for this data is:

0.01 X 1500 = 15 MB.

 That’s large, but acceptable on today’s desktop
machines.

File Scanning

 For each file in C# file set:

 For each class and struct identifer in file

 Look in every other file’s HashTable for those identifiers

 If found, other file depends on current file

 Record dependency

 Complexity is O(n2)

 For each file in C++ file set:

 #include statements completely capture dependency.

 Record dependency

 Complexity is O(n)

C# Scanning Process

Current

ArrayList

Item

HashedFile

fileName

Class, Struct name list

HashTable of all identifiers

HashedFile

fileName

Class, Struct name list

HashTable of all identifiers

For each class and struct in my

list, search for identifiers in target

Hashtable. If found, that file

depends on me.

C# Scanning Activities

 Define file set
 User supplies by browsing, selection, patterns

 User may wish to scan subdirectory

 Extract token information from each file:
 Extract tokens from each file and store in HashTable.

 Save list of Class and Struct identifiers from scan

 Create HashedFile type with filename, class and struct list,
and HashTable as data.

 Store HashedFiles in ArrayList

 For each HashedFile in list:
 Walk through ArrayList searching HashTables for the

identifiers in class and struct list (note that this is very fast).

 First time one is found, stop processing file – dependency
found.

C# Scan Activity

Diagram
scan to build

file set

Build

HashTable

of Identifiers

User

Confirmation

Build

list of class

and struct

names

Open file,

create

HashedFile

Object

Processed

all Files?

no

Insert

HashedFile

into

ArrayList

Select

HashedFile

look for its

class and struct

identifiers in every

other HashedFile.

Store

dependencies

Processed

all HashedFiles?
no

display

results

another

file set?

yes

no

C++ Scan Activity

Diagram
scan to build

file set

Record

dependencies

User

Confirmation

Open file,

extract

#includes

Processed

all Files?

no

display

results

another

file set?

yes

no

yes

Memory to Hold Dependencies

 Naïve storage uses a dense matrix. With

1500 files, that’s 2,250,000 elements.

 Assume each path name is stored only once and

we save 75 bytes of path information, so with

1500 files  112.5 KB

 Dependency is a boolean and takes 1 byte to

store  2.25 MB.

 So, the total dependency matrix takes 2.36 MB.

 Therefore, naïve storage is acceptable.

Dependency Matrix

X X

X

X X

X X X

X X

X X

X X

filename

filename

filename

filename

filename

filename

filename

filename

False Dependencies in C++ files

 Need to scan both .h and .cpp files.

 Could programmatically comment out each include –

one at a time – and attempt to compile, thus finding

the ones actually needed.

 We would probably do this with a seperate tool.

 We could also just scan, as we do for C#, but that is

harder for C++ since we need to check

dependencies on global functions and data as well

as classes and structs.

Dependence on System Libraries

 Not practical to scan for system

dependencies in C#.

 Can’t find source modules.

 System dependencies can be found using

reflection, but are not particularly useful.

 System dependencies in C++ are easy to find

from #include<someSystemHeader>

 This information is often useful, so why not

provide it?

C# Scanner Class Diagram

Attribute:

 String FileName

 HashTable Identifiers

 StringCollection ClassOrStruct

HashedFile

CSScanner ArrayList

Dependency Array Array

HashTable
(fileName, Array index)

Displaying Large Sets of Dependencies

 User will probably want to:

 Enter a name and get list of dependencies.

 Find all files with no dependencies.

 Find all files dependent on only the files processed so far

this run.

 Show list of files entered so far and list of files not entered

yet.

 Select subset of files for display.

 Show a compressed (bitmap?) matrix.

 Show a scrolling list of files with their dependencies.

 Show list of names, not matrix row. Matrix row may be far

too long to view (e.g., 1500 elements).

Partitions
UserInterface

fileHandler Scanner

C# Scanner C++ Scanner

DependencyHandler

DirectoryNavigator

DataViewManager

Summary of Critical Issues

 Scanning for Dependencies in C# modules √

 Data structure used to hold dependencies √

 Displaying large amounts of information ~√

 False C++ dependencies ~√

 Dependence on System Libraries

 C# X

 C++ √

Prototype Code

 Scanning – critically important
 How much time to open file and scan for class, struct

identifiers?

 How much time to build HashTables and HashedFile
objects?

 How much time to evaluate dependencies between two
files by HashTable lookup?

 Sizes - important
 How big is HashedFile object for typical files?

 User Display – could leave to design team with
requirement for early evaluation.
 Mockup display alternatives.

