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Use Cases

 Dependency analysis generates information for:

 Building test plans:

 Don’t test a module until all the modules on which it depends 

have been tested.

 Software maintenance:

 What modules depend on the module we plan to change?  We 

need to test them after the change to see if they have been 

adversely affected.

 Documentation:

 Documenting dependency information is an integral part of the  

design exposition.



Scope of  Analysis

 This architecture is concerned with dependencies
between a program’s modules.
 A module is a relatively small partition of a program’s 

source code into a cohesive part.

 A typical module should consist of about 400 source 
lines of code (SLOC).
 Obviously some will be smaller, some larger, but this is a 

good target size

 Typical project sizes are:
 Modest size research project – 10,000 sloc

 25 modules

 Modest size commercial product – 600 kslocs
 1,500 modules



Conclusions from Use Case Analysis

 Even for relatively modest sized research 

projects, there is too much information to do 

an adequate analysis by hand.

 We need automated tools.

 The tools need to show dependencies in both 

ways, e.g.:

 What files does this file depend on?

 What files depend on this file?

 The tools need to disclose dependencies between 

all files in the project.



Critical Issues

 Scanning for Dependencies in C# modules

 Data structure used to hold dependencies

 Displaying large amounts of information to 

user

 False dependencies due to unneeded 

includes in C++ modules

 Dependence on System Libraries



Dependency Scanning

 Will naïve scanning work for 1500 files?
 If opening and scanning a single file takes 25 msec, then:

 Finding dependencies for 1 file takes: 
0.025 X1500 / 60 = 0.625 minutes

 Finding dependencies for all files takes:
0.625 X 1500 / 60 = 15.6 hours!

 So let’s scan each file once and store all its 
identifiers in hash table in RAM.
 If that takes 30 msec per file:

 Then making hash tables for all files takes:
0.03 X 1500 / 60 = 0.75 minutes

 If hash table lookup takes 10 sec per file then finding 
dependencies between all files takes:

0.00001 X 1500 X 1500 / 60 + 0.75 = 1.125 minutes!



Timing Results Parsing Prototype Source

Conservative

Estimate

Prototype

Results

Open file, parse, 

store in Hashtable –

Millisec
25 7

Hashtable Lookup -

Microsec
10 0.6



Comparison of  Estimated with Measured

 Naïve scanning – scan each file 1500 times:
 Estimated time to complete scanning of 1500 files:

15.6 hours

 Measured time to complete scanning of 1500 files:
4.4 hours

 Processing each file once and storing in Hashtable, 
then doing lookups for each file:
 Estimated time to complete processing:

1.1 minutes

 Measured time to complete processing:
0.2 minutes



Hash Table Layout

hash function

object

for storage



Memory to Store Hash Tables

 Assume each file is about 500 lines of source 
code  about 30 chars X 500 = 15 KB
 Assume that 1/3 of that is identifiers

 The rest is comments, whitespace, keywords, and 
punctuators

 5 KB of indentifier storage

 Assume HashTable takes 10 KB per file, so the 
total RAM required for this data is:

0.01 X 1500 = 15 MB.

 That’s large, but acceptable on today’s desktop 
machines.



File Scanning

 For each file in C# file set:

 For each class and struct identifer in file

 Look in every other file’s HashTable for those identifiers

 If found, other file depends on current file

 Record dependency

 Complexity is O(n2)

 For each file in C++ file set:

 #include statements completely capture dependency.

 Record dependency

 Complexity is O(n)



C# Scanning Process
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depends on me.



C# Scanning Activities

 Define file set
 User supplies by browsing, selection, patterns

 User may wish to scan subdirectory

 Extract token information from each file:
 Extract tokens from each file and store in HashTable.

 Save list of Class and Struct identifiers from scan

 Create HashedFile type with filename, class and struct list, 
and HashTable as data.

 Store HashedFiles in ArrayList

 For each HashedFile in list:
 Walk through ArrayList searching HashTables for the 

identifiers in class and struct list (note that this is very fast).

 First time one is found, stop processing file – dependency 
found.



C# Scan Activity 
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C++ Scan Activity 
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Memory to Hold Dependencies

 Naïve storage uses a dense matrix.  With 

1500 files, that’s 2,250,000 elements.

 Assume each path name is stored only once and 

we save 75 bytes of path information, so with 

1500 files  112.5 KB

 Dependency is a boolean and takes 1 byte to 

store  2.25 MB.

 So, the total dependency matrix takes 2.36 MB.

 Therefore, naïve storage is acceptable.
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False Dependencies in C++ files

 Need to scan both .h and .cpp files.

 Could programmatically comment out each include –

one at a time – and attempt to compile, thus finding 

the ones actually needed.

 We would probably do this with a seperate tool.

 We could also just scan, as we do for C#, but that is 

harder for C++ since we need to check 

dependencies on global functions and data as well 

as classes and structs.



Dependence on System Libraries

 Not practical to scan for system 

dependencies in C#.

 Can’t find source modules.

 System dependencies can be found using 

reflection, but are not particularly useful.

 System dependencies in C++ are easy to find 

from #include<someSystemHeader>

 This information is often useful, so why not 

provide it?



C# Scanner Class Diagram
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Displaying Large Sets of  Dependencies

 User will probably want to:

 Enter a name and get list of dependencies.

 Find all files with no dependencies.

 Find all files dependent on only the files processed so far 

this run.

 Show list of files entered so far and list of files not entered 

yet.

 Select subset of files for display.

 Show a compressed (bitmap?) matrix.

 Show a scrolling list of files with their dependencies.

 Show list of names, not matrix row.  Matrix row may be far 

too long to view (e.g., 1500 elements).



Partitions
UserInterface

fileHandler Scanner

C# Scanner C++ Scanner

DependencyHandler

DirectoryNavigator

DataViewManager



Summary of  Critical Issues

 Scanning for Dependencies in C# modules √

 Data structure used to hold dependencies √

 Displaying large amounts of information ~√

 False C++ dependencies ~√

 Dependence on System Libraries

 C# X

 C++ √



Prototype Code

 Scanning – critically important
 How much time to open file and scan for class, struct 

identifiers?

 How much time to build HashTables and HashedFile 
objects?

 How much time to evaluate dependencies between two 
files by HashTable lookup?

 Sizes - important
 How big is HashedFile object for typical files?

 User Display – could leave to design team with 
requirement for early evaluation.
 Mockup display alternatives.


