Managed Classes

Syntax:

class N { .. }; // native C++ class

ref class R { .. }; // CLR reference type
value class V { .. }; // CLR value type
interface class I { .. }; // CLR interface type
enum class E { .. }; // CLR enumeration type

* N is a standard C++ class. MNone of the rules have changed.
* R is a managed class of reference type. It lives on the managed heap and is
referenced by a handle:
+ R™ rh = gcnew R;
+ delete rh; [opticonal: calls destructor which calls Dispose() to release unmanaged resources]

+ Reference types may also be declared as local variables. They still live on the managed heap,
but their destructors are called when the thread of execution leaves the local scope.

* V is a managed class of value type. It lives in its scope of declaration.

+ Value types must be bit-wise copyable. They have no constructors, destructors, or virtual
functions.

+ Value types may be boxed to become objects on the managed heap.

* T is a managed interface. You do not declare its methods virtual. You qualify an
implementing class’s methods with override (or new if you want to hide the
interface’s method).

* E is a managed enumeration.
N can hold “values”, handles, and references to managed types.
N can hold values, handles, and references to value types.
N can call methods of managed types.
R can call global functions and members of unmanaged classes without marshaling.

R can hold a pointer to an unmanaged object, but is responsible for creating it on the C++ heap and
eventually destroying it.




