
.Net Application Domains

Jim Fawcett

CSE681 – Software Modeling and Analysis

Fall 2015

Using AppDomains Effectively 2

Agenda

 Role of AppDomains
 Application isolation

 Visibility

 Data

 Security settings

 Type safety and verification

 Dynamic application extensions

 AppDomain structure

 AppDomain managers

 Summary

Using AppDomains Effectively 3

References

 Common Language Runtime, Steven
Pratschner, Microsoft Press, 2005

 Essential .Net, Volume 1, Don Box with
Chris Sells, Addison-Wesley, 2003

 www.ecs.syr.edu/faculty/fawcett/handouts
/CSE681/code/TestHarnessPrototype

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/TestHarnessPrototype

Using AppDomains Effectively 4

Role of Application Domains

 Memory Access Isolation
 Isolate unrelated applications from each

other at run time.
 Win32 Processes

 CLR Appdomains

 Intent is to make system as stable as
possible and minimize security exploits.
 Web services and ASP applications run in

AppDomains to isolate them from IIS

Using AppDomains Effectively 5

What is an Application Domain?

 An execution environment in which managed code runs

 Safe managed code in an application domain is isolated from
safe managed code running in any other.
 Safe code is code that can be verified by the JIT

compiler.
 C# with no unsafe regions, is safe code.

 Application domains are cheaper to start, unload, and run,
than Windows processes, in terms of CPU cycles and
memory.

 It is cheaper to make calls between AppDomains than
between Windows processes.

Using AppDomains Effectively 6

What is a Module?

 CLR programs reside in Modules

 Modules contain:
 Code(IL code)

 MetaData (module description)

 Resources (any external resource)

 Modules are not deployable components

Using AppDomains Effectively 7

Assemblies

 Modules are the physical structure of a program
that resides in file system

 Assembly is a logical construct that the CLR uses
to access modules

 Assemblies are deployable modules
 Each assembly has a manifest
 Assemblies might have multiple modules
 Only one manifest exists per assembly

 Manifests describe the modules in the assembly
 Assembly can be:

 Executable application
 Library

Using AppDomains Effectively 8

Assemblies

Multiple File Assembly
myLibrary.dll

Single File Assembly
myProject.exe

Manifest

Type

Metadata

MSIL code

optional

resources

Manifest

Type

Metadata

MSIL code

optional

resources

Type

Metadata

MSIL code

Type

Metadata

MSIL code

Using AppDomains Effectively 9

Application Domains and Processes

 Each application
domain runs in the
context of one and
only one native
Windows process.

 A windows process
can have no
application domains,
one, or many.

Process One

AppDomain A

Assembly

one

Assembly

Two

Assembly

Three

Process Two

AppDomain B

Assembly

one

Assembly

Four

Assembly

Five

AppDomain C

Assembly

Two

Assembly

Three

Assembly

Six

Using AppDomains Effectively 10

Creating Child AppDomains

 AppDomainSetup dInfo
= new AppDomainSetup();

dInfo.ApplicationName = ADname;

Evidence evidence
= AppDomain.CurrentDomain.Evidence;

 AppDomain child
= AppDomain.CreateDomain(

ADname, evidence, dInfo
);

Using AppDomains Effectively 11

Loading Assemblies into AppDomain

 If child is a child AppDomain, then:
 child.Load(assembly);

Probes paths beneath application and private paths
to find an assembly to load, using Fusion rules,
where assembly is the assembly name, without
extension.

 Load can be called by anyone with a reference to
the AppDomain instance.

 Assembly.LoadFrom(fileSpec);

Loads specific assembly into current AppDomain, so
to load into the child, this must be called from code
in the child domain.

 This is what the Test Harness prototype does.

Using AppDomains Effectively 12

Unloading

 The Win32 API provides LoadLibrary and
UnloadLibrary for injecting and removing
libraries from an application dynamically.

 The .Net CLR does support loading, but does
not support dynamically unloading libraries.

 You have to create a child domain, load
libraries into it, and unload the domain when
you are done, using:

public static AppDomain.Unload(AppDomain);

Using AppDomains Effectively 13

Communicating between AppDomains

 Creating and using types in child domain:
 ObjectHandle oh

= ad.CreateInstance(Assembly, aType);

 aType p = oh.Unwrap() as aType;

 Use p, a proxy, just like an instance of aType.

This creates a proxy, typed by the CLR as aType.

The proxy, p, marshals all calls to the real object

in the child domain.

Using AppDomains Effectively 14

Communicating between AppDomains

 Access using AppDomain Dictionary
 public virtual void

AppDomain.SetData(string key, object value);

marshals a reference into dictionary.

 public virtual object
AppDomain.GetData(string key);

returns a proxy to object in other domain.

 Dictionary objects must derive from
MarshalByRefObject

Using AppDomains Effectively 15

Isolation – Win32 IIS Example

 In IIS, Prior to .Net, you had the choices:
 Load and run (ISAPI) application dlls in IIS

process and possibly take down the server.
 Run (CGI) application as a separate process,

paying interprocess communication
performance penalty.

 Run (ASP) script with scripting performance
penalty and development issues.

 Use “standard” COM objects loaded inproc
and accessed from script to improve
performance, so just like ISAPI, but known
quantities “may” be safe.

Using AppDomains Effectively 16

Isolation - .Net IIS Example

 In IIS, with .Net, you have all the previous
choices plus:
 Run applications (ASP.Net and Web Services)

each in its own child AppDomain, loaded by
IIS, but isolated from it.
 CLR isolates code loaded into child domain from

the application running in primary AppDomain.

 This is the default processing model supported
by both ASP.Net and Web Services.

Using AppDomains Effectively 17

Objects and Types

 An object resides in exactly one
AppDomain, as do values.

 Object references must refer to objects
in the same AppDomain.

 Like objects, types reside in exactly one
AppDomain. So if two AppDomains need to
use a type, one must initialize and allocate
the type once per AppDomain

Using AppDomains Effectively 18

Types cont.

 If a type is used in more than one
AppDomain, one must load and initialize the
type’s module and assembly once for each
AppDomain the type is used in.

 Since each such AppDomain maintains a
separate copy of the type, each has its own
private copy of the type’s static fields.

Using AppDomains Effectively 19

Isolation – Visibility

 Type visibility
 When a type is loaded into a child AppDomain it is

visible only within that domain unless it is also loaded
or marshaled back into the primary domain.

 An instance of a type can be marshaled by value, which
results in a serialization, transmission, and
deserialization.
 Class must be attributed as [serializable()]

 An instance of a type can also be marshaled by
reference, which creates a proxy in the using domain.
 Class must derive from MarshalByRefObject

 Usually, we want to marshal by reference, because we
want the instance to run in the child domain.

Using AppDomains Effectively 20

Resources and Memory

 An AppDomains’ resources are held in
memory as long as the owning AppDomain is
loaded.

 Unloading an AppDomain is the only way to
unload a module or an assembly or to
reclaim the memory consumed by a type’s
static fields.

Using AppDomains Effectively 21

Test Harness Example

 The test harness example, discussed in CSE681
and CSE784 illustrates this visibility:
 The primary domain coerces a child domain to load a

“loader” into a child domain and marshal back a
reference to it.

 The primary domain then, using the loader
reference, instructs it to load a collection of test
assemblies for processing.

 The affects of this are:
 The primary AppDomain only knows about the

loader type, not all the testing types.
 The test manager, running in the Primary

AppDomain is isolated from failures of the test and
tested code.

Using AppDomains Effectively 22

Test Harness Configuration

Child AppDomainPrimary AppDomain

Tester Loader ITest

TestThrows

Test

TestConfig

Source TestLibraries

Configure

Loader

Using AppDomains Effectively 23

Isolation – Configuration Data

 Each AppDomain in a process can be
independently configured, either
programmatically or with a configuration
file.
 Each application domain may have a

configuration file that can be used to
customize:
 Local search paths

 Versioning policy, e.g., what is allowed to run

 Remoting information

 User defined settings

Using AppDomains Effectively 24

AppDomain Config Files

 An AppDomain config file resides in the
process exe’s directory and has the process
exe’s name with .config extension:
 myProcess.exe.config

 That can be changed with
AppDomainSetup.ConfigurationFile = newPath;

 Some examples:
http://blogs.msdn.com/suzcook/archive/2004/05/14/132022.aspx

 Config file schema:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpgenref/html/gngrfNETFrameworkConfigurationFileSchema.asp

http://blogs.msdn.com/suzcook/archive/2004/05/14/132022.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gngrfNETFrameworkConfigurationFileSchema.asp

Using AppDomains Effectively 25

Isolation – Security Settings

 Application domains can be used to modify
Code Access Security (CAS) settings
applied to code running within the domain.
 You can modify CAS policy for the domain.

That maps code identity, based on evidence,
to a set of granted permissions.

 You can also set security evidence on the
domain itself. If the grants for the domain
are less than the grants for the assembly,
the domain wins, and vice versa.

Using AppDomains Effectively 26

Isolation - Static Data

 Static members of classes are isolated by
AppDomains:
 If the same type is loaded into a parent and

child domain, they are considered to be
distinct types, and do not share static
members.

 If code is loaded domain-neutral, the code
base is shared, but separate copies are
maintained for all static members.

Using AppDomains Effectively 27

Process Resources not Isolated

 Resources not isolated to an AppDomain:
 Managed heap

 Managed threads
 CLR prevents data and behavior leaks

 Managed ThreadPool

 Mutexes and Events
 If named, these kernel objects are shared

across AppDomains

Using AppDomains Effectively 28

AppDomain Events

 The AppDomain Type supports a handful of events
that allow interested parties to be notified of
significant conditions in a running program.

 Events:
 AssemblyLoad
 AssemblyResolve
 TypeResolve
 ResourceResolve
 DomainUnload
 ProcessExit
 Unhandled Exception

Using AppDomains Effectively 29

IIS Application Domain Structure

 When application starts by getting first request,
IIS creates a child domain, loads the application
into it.

 Request details are extracted and processed by
HTTP handler. Handler creates and uses instance
of application.

IIS Process

Primary
AppDomain
Web Server
Processing

Child AppDomain
ASP.Net Application

Child AppDomain
WebService Application

HTTP
handler

HTTP
handler

Using AppDomains Effectively 30

Plugin Architecture Structure

 Load plugin assemblies

 Use reflection to find plugin types and
ensure that they implement IPlugin.

 Create and use type as shown earlier.

Extensible Application

Primary AppDomain

Main application
processing

Child AppDomain

IPlugin

Plugin_1

Child AppDomain

IPlugin

Plugin_2

Using AppDomains Effectively 31

AppDomain Managers

 AppDomain Managers are available in .Net
version 2.
 The System namespace provides a base

definition, which your applications will
specialize.

 Looks like they are intended to do about
what my Loader does.

Using AppDomains Effectively 32

AppDomain Managers

 The CLR loads your AppDomain manager into each
application domain created in the process.

 The manager intercepts all calls to CreateDomain,
allowing you to configure the domain as needed by
the application.

 AppDomainManager.ApplicationActivator(…)
activates plugins defined by a “formal” manifest.

 You define the AppDomain manager to a process
using either CLR hosting APIs (COM) or using a set
of Environment variables using a configuration file.

Using AppDomains Effectively 33

Summary

 AppDomains provide:
 Isolation
 Control of type visibility
 Fine-grained configuration of loading,

versioning, remoting, user settings
 Programmatic control of Library loading and

unloading
 Marshaling services to access type

instances in another domain.

 AppDomains are used by:
 ASP.Net, Web Services, IExplorer, …

Using AppDomains Effectively 34

End of Presentation

Using AppDomains Effectively 35

Appendix – Dynamic Code Generation

 This material was developed by Vijay
Appurdai, as a presentation for our Brown-
Bag Seminar series.
 His primary source was “Essential .Net”,

Don Box and Chris Sells, Addison-Wesley,
2003

Using AppDomains Effectively 36

AppDomains and Assembly Resolver

 AppDomains play a critical role in
controlling the behavior of the assembly
resolver

 Each AppDomain can have its own APPBASE
and configuration file. So each can have its
own probe path and version policy

 The AppDomain stores the properties used
by the assembly resolver in a data
structure called AppDomainSetup which is
maintained on a per-AppDomain basis.

Using AppDomains Effectively 37

AppDomains and Dynamic Directories

 Consider the case in which an application
needs to generate code dynamically.

 If the application needs to load the code
by probing, then the application needs to
have write access to a directory
underneath APPBASE

 However we may want to execute code
from a read-only part of file system.

Using AppDomains Effectively 38

Dynamic Directories

 This means that we need to have an
alternate location for dynamic code
generation.

 This is the role of the
AppDomain.DynamicDirectory property.

 Each AppDomain may have at most one
dynamic directory.

 This dynamic directory is added
automatically to the probe path. ASP.Net
is a heavy user of this feature

Using AppDomains Effectively 39

Shadow Copying

 Shadow copying addresses the problem
related to server side development and
deployment.

 The classic Win32 loader takes a read lock
on a file that it loads to ensure that no
changes are made to the underlying
executable image.

 So overwriting this dll with a new version
requires shutting down the server.

Using AppDomains Effectively 40

.Net Solution

 In .Net we have the shadow copying
facility.

 When the CLR loads an assembly using
shadow copying, a temporary copy of the
underlying files is made in a different
directory.

 These temporary files are loaded in lieu of
the original assemblies.

 When shadow copying is enabled for an
AppDomain, we need to specify two
directory paths.

Using AppDomains Effectively 41

Shadow Copying cont.

 One path is the directory which needs to
be shadow copied.

 The other is the path to which it needs to
be shadow copied.

 This can be accomplished using the
SetShadowCopyPath() and the
SetCachePath() functions provided by the
AppDomain class.

 Again, ASP.NET is a heavy user of this
feature

Using AppDomains Effectively 42

AppDomains and Code Management

 Each AppDomain has its own private copy
of a type’s static data.

 The JIT compiler can generate code either
on a per-AppDomain basis or on a per-
process basis. So we can decide which one
to use.

 There are three types of Loader
Optmizations
 SingleDomain

 MultiDomain

 MultiDomainHost

Using AppDomains Effectively 43

SingleDomain

 The SingleDomain assumes that the
process will contain only one AppDomain.

 The JIT compiler therefore generates
machine code seperately for each domain.

 This makes static field access faster and
because we expect only one AppDomain we
generate only one copy of machine code.

Using AppDomains Effectively 44

MultiDomain

 The MultiDomain flag assumes that the
process contains several AppDomains
running the same application.

 The JIT compiler generates only one
machine code for the entire process.

 This makes static field access slower but
significantly reduces memory needed.

Using AppDomains Effectively 45

MultiDomain Host

 This flag assumes that the process will
contain several AppDomains, each of which
will run different Application code.

 In this hybrid mode, only assemblies loaded
from the GAC share machine code.
(MultiDomain)

 Assemblies not loaded from GAC are
assumed to be used only by the loading
AppDomain.(SingleDomain)

 ASP.Net uses this flag.

