
CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

Examination #1

Name:______Instructor’s Solution_________________________ SUID:________________________

This is a closed book examination. Please place all your books on the floor beside you. You may keep one

page of notes on your desktop in addition to this exam package. All examinations will be collected promptly
at the end of the class period. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to
discuss your question. I will answer all questions about the meaning of the wording of any question. I

may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for

grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to
answer first those questions you believe to be easiest.

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

1. Write all the code to define, create, and use, a GUI child thread that retrieves string messages from
a receive queue and causes them to be inserted into a ListBox.

Answer:

 public MainWindow()
 {
 InitializeComponent();
 Thread t = new Thread(threadProc);
 t.IsBackground = true;
 t.Start();
 }

 void AddMsg(string msg)
 {
 listBox.Items.Insert(0, msg);
 }

 void threadProc()
 {
 while(true)
 {
 string msg = rcvQ.deQ();
 Action act = () => { AddMsg(msg); };
 string[] args = new string[] { };
 Dispatcher.Invoke(act, args);
 }
 }

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

2. Define the syntax and semantics for passing a reference type by value to a C# method. Please
consider all relevant cases.

Answer:

public class X { … }
public class Y

{
 public void someFun(X x) // method accepting reference type X by value

 {
 …

 }

}

X x = new X(); Y y = new Y();
y.someFun(x);

The code snippets, above, show the syntax for passing a reference type by value.

The semantics of this operation are as follows:

• The reference, x, is copied onto the stack frame of someFun. Note that x is a handle linked to

the instance of X, created by the caller, on the managed heap.

• If the function changes the value of the instance through its handle x, then the caller will see
the change because it’s x refers to the same instance.

• If the function assigns a new instance handle to its x:

 x = new X();

the caller will not see the change because the function has a copy of caller’s handle x.

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

3. Write an Executive Summary for the Operational Concept Document (OCD) of Project #1, as you
now think is should be written (not necessarily how you wrote it in your submission).

Answer:

This development will create a Build Server, capable of building C# and C++ libraries, using a
process pool to conduct multiple builds in parallel. The implementation is accomplished in three

stages.

The first, Project #2, implements a local Build Server that communicates with a mock Repository,
mock Client, and mock TestHarness, all residing in the same process. Its purpose is to allow the

developer to decide how to implement the core Builder functionality, without the distractions of a

communication channel and process pool.

The second, Project #3, develops prototypes for a message-passing communication channel, a
process pool, that uses the channel to communicate between child and parent Builders, and a WPF

client that supports creation of build request messages.

Finally, the third stage, Project #4, completes the build server, which communicates with mock

Repository, mock Client, and mock TestHarness, to thoroughly demonstrate Build Server Operation.

The final product consists of a relatively small number of packages. For most packages there
already exists prototype code that show how the parts can be built. For this reason, there is very

little risk associated with the Build Server development.

Critical issues include: building source code using more than one language, scaling the build

process for high volume of build requests, and using a single message structure for all message
conversations between clients and servers. All of these issues have viable solutions.

The Build Server will function as one of the principle components of a Software Development
Environment Federation, the others being Repository, TestHarness, and Federation Client. Building

these other Federation parts is beyond the scope of this development.

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

4. Describe all of the relevant contracts for the WCF channel you used in Project #3. Please be
specific.

Answer:

There is a [ServiceContract], defining the interface IMessagePassingComm, supporting a service
[OperationContract]:

 void postMessage(CommMessage msg)
and a non service operation:

 CommMessage getMessage();
The [ServiceContract] also supports service [OperationContract(…)]s:

 bool openFileForWrite(string name);

 bool writeFileBlock(byte[] block);
 void closeFile();

There is a [DataContract] defining the class CommMessage with public [DataMember] properties:

 MessageType type

 string to
 string from

 string author
 string command

 List<string> arguments
 int threadId

 string errorMessage

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

5. What is a delegate and why is it an important part of .Net Framework? Please list all of the uses
you can think of for delegates.

Answer:

A delegate is a reference type that declares a method signature defining the methods to which it
can be bound. It contains a reference to an instance of its own type, which, when initialized, refers

to another delegate of the same type which refers to a method, with the prescribed signature, of
any reference type. This allows the delegate to bind to any finite number of handlers, one for each

delegate in a linked list of delegates, rooted at the publisher’s delegate reference.

Delegates support the definition of processing to be invoked, along with any data needed to

execute the processing. The delegate may be passed or returned from a method, stored, and
executed at some later time. This allows an application to define processing that handles an event

defined in a library that exposes a delegate and the processing is invoked by library code when a
specific event, associated with the delegate, occurs within the library code. This behavior allows

the library to be ignorant of the application’s concrete types and allows the application to be

ignorant of when and how the library event occurs.

Delegates are used to support:

• Publish and Subscribe processing

• Binding to and transporting lambdas to scopes different from the scope of definition of the
lambda

• Starting threads and Tasks

• Dispatching messages to processing blocks specific to a message property

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

6. Write all the code for a lambda that accepts a string, and writes that, concatenated1 with a string
defined in its local scope, on the Console. Show how to bind that to a delegate and execute in

another scope.

Answer:

 class MT1Q6
 {
 static Action<string> makeLambda()
 {
 string staticMsg = "the lambda's message is \"";
 Action<string> act = (string msg) =>
 { Console.Write("\n {0}\n\n", staticMsg + msg); };
 return act;
 }

 static void Main(string[] args)
 {
 Console.Write("\n MT1Q6 - make lambda");
 Console.Write("\n =====================");

 makeLambda()("Hello CSE681 World");
 }
 }

1 You concatenate two strings by adding one to the end of the other.

CSE681 - SW Modeling and Analysis MidTerm Examination #1 Fall 2017

7. Draw an activity diagram for a message dispatcher2, used to handle messages coming into a
receive queue. Describe how you would implement the message dispatcher.

Answer:

A message dispatcher can be implemented with a Dictionary<Msg.command, Action<Msg>>3. The
Msg.command defines the type of processing needed for a message, and the Action<Msg> defines

the processing used to handle that message.

2 A message dispatcher invokes all the processing needed to handle each type of message, based on its command
property.
3 The Action<Msg> delegate would change to Func<Msg, Msg> for processing that returns a reply message.

