
CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

Examination #2

Name:_________Instructor’s Solution__________________ SUID:________________________

This is a closed book examination. Please place all your books on the floor beside you. You may keep one
page of notes on your desktop in addition to this exam package. All examinations will be collected promptly

at the end of the class period. Please be prepared to quickly hand in your examination at that time.

If you have any questions, please do not leave your seat. Raise your hand and I will come to your desk to

discuss your question. I will answer all questions about the meaning of the wording of any question. I
may choose not to answer other questions.

You will find it helpful to review all questions before beginning. All questions are given equal weight for

grading, but not all questions have the same difficulty. Therefore, it is very much to your advantage to

answer first those questions you believe to be easiest.

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

1. For Project #2 you where required to implement a NoSqlDb database that holds values defined by

instances of a DBElement class. The DBElement class declares metadata that includes a list of child
keys and an instance of a payload type. Draw an activity diagram that describes how a client

queries the NoSqlDb for values that hold a specified child key and what the NoSqlDb and its
associated classes do with that request. You need to be specific about what the code will do.

Answer:

 //----< QueryPredicate as answer for MT2Q1, F2015 >-----

 Func<string, bool> MakeQueryForSpecifiedChild(string test, DBL pdb)
 {
 Func<string, bool> qp = (queryKey) =>
 {
 DBElemL qelem;
 if (!pdb.getValue(queryKey, out qelem))
 {
 return false;
 }
 foreach (string child in qelem.children)
 {
 if (child == test)
 return true;
 }
 return false;
 };
 return qp;
 }

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

2. Write all the code to define and use a C# function that takes a single StringBuilder argument and

returns void. The function creates a new object of the same type in the caller’s scope with the
same state as the original. Show how to test for equality of the object before the call with the

object after the call. Repeat this demonstration for equality of state.

Answer:

 class MT1Q6
 {
 static void changeObjectInCallersScope(ref StringBuilder arg)
 {
 string temp = arg.ToString();
 arg = new StringBuilder(temp); // new object with the original object's state
 }
 static void Main(string[] args)
 {
 "MT2Q2 - Function that changes passed object".title('=');

 StringBuilder sb = new StringBuilder("original state");
 StringBuilder orig = sb;

 Console.Write("\n Original state of StringBuilder is \"{0}\"", sb.ToString());

 MT1Q6.changeObjectInCallersScope(ref sb);
 Console.Write("\n State of StringBuilder after call is \"{0}\"", sb.ToString());
 Console.WriteLine();

 // show that object has changed

 if (orig == sb)
 Console.Write("\n object was not changed");
 else
 Console.Write("\n object was changed");

 if (orig.Equals(sb))
 Console.Write("\n state of object was not changed");
 else
 Console.Write("\n state of object was changed");

 Console.Write("\n\n");
 }
 }

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

3. Describe any three of the member functions of the System.Object type. Please provide the function

signature and describe its operation.

Answer:

string System.Object.ToString()

Provides a string representation of the class that inherits this function. The class may override
ToString() to provide something useful, but many of the .Net Framework classes just return the

name of the class. Instances of string, StringBuilder, Int32, etc. return more useful information.

Type System.Object.GetType()
Returns an instance of the Type class filled with reflection information for the class that inherits this

function. When a C# package is compiled into an assembly, the compiler puts all of the type

information it developed during compilation into the assembly’s metadata, in a tokenized form. The
GetType() function parses that information and stores it in an instance of Type which it returns to

the caller.

bool System.Object.Equals(Object)

The Object class defines Equals(Object) to compare reference handles, e.g., do these two handles
refer to the same instance. However, many of the .Net Framework classes, like StringBuilder,

overload bool Equals(Object) to provide value comparisons. StringBuilder.Equals(StringBuilder sb)
compares the strings that each string builder holds for equality of value.

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

4. How would you implement a message Receiver for Project #4? You may describe the functioning

of the instructor’s latest example code or define your own. How do instances of this Receiver
support multiple concurrent message senders without needing to provide thread-safety in the

NoSqlDb database?

Answer:

The Receiver exposes the ICommService to senders, and must aggregate an instance of

ServiceHost to do that. ServiceHost is the execution environment for instances of the service,
CommService. Instances of CommService accept messages that match the ICommService Data

Contract and deposit them into a BlockingQueue shared by all service instances.

Processes that use an instance of Receiver can access the message queue by instantiating an

instance of the service and calling getMessage() on the service instance.

Alternately the user may create an Action delegate bound to a lambda that does whatever message
processing is needed.

Because concurrent clients place requests into the single thread-safe blocking queue and only one
thread dequeues messages, all server activities run on the dequeuing thread and do not have to be

locked. That kind of processing is often referred to as a Single Threaded Apartment (STA).

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

5. Write all the code for a C# class that provides an asynchronous function1 that will, at the end of its

processing, invoke callback processing provided by the client code. Show how the client can
provide that callback processing. Please invent simple processing for the asynchronous function

and its callback. Writing a Console message will be accepted for that processing.

Answer:

 public class AsyncWithCallback
 {
 Action doMainTask = null;
 Thread t;

 public AsyncWithCallback()
 {
 doMainTask = () => { Console.Write("\n I'm busy doing work"); };
 }
 public void asyncRun(Action callback) // called by client
 {
 ThreadStart ts = () =>
 {
 doMainTask.Invoke();
 callback.Invoke();
 };
 t = new Thread(ts);
 t.Start();
 }
 public void join() { t.Join(); }
 }
 class MT2Q5
 {
 public void myCallbackHandler()
 {
 Console.Write("\n I'm being called back");
 }
 static void Main(string[] args)
 {
 "MT2Q5 - Asynchronous function that calls back when done".title('=');
 MT2Q5 mt2q5 = new MT2Q5();
 Action callback = () => { mt2q5.myCallbackHandler(); };
 AsyncWithCallback cb = new AsyncWithCallback();
 cb.asyncRun(callback);
 Console.Write("\n waiting for async to finish");
 cb.join();
 Console.Write("\n\n");
 }
 }

1 Asynchronous functions return almost immediately without waiting for the function’s processing to complete.

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

6. What is an extension method? Name two extension methods commonly used with the XDocument

class. What do they do?

Answer:

An extension method is a static method of a static class with the signature:

 public static RT theMethod(this T myType, …)

where RT is the return type, perhaps void, and T is the type of the instance to which the method is

applied. The invocation has the same syntax as a member of the class, e.g.:

 T t = new T();
 t.theMethod(…);

where the ellipsis represents any arguments the method may have, possibly none.

Note that an extension method does not get access to private members of its associated instance.
It must use the public interface of the instance to carry out its processing. In the example above,

theMethod must use the public interface of t, using the formal parameter, myType.

System.Xml.Linq provides extension methods Elements(…) and Descendents(…) with a couple of

overloads that are useful for making Linq queries on XDocument or XElement instances.

XElement.Elements() returns the child elements of the XElement instance to which it is applied.
XElement.Descendents() returns a collection of all the descendent elements of the XElement

instance to which it is applied.

CSE681 - SW Modeling and Analysis MidTerm Examination #2 Fall 2015

7. What does the following code do:

 Action act += () => { Console.Write(“\n Hi there”); };

Answer:

It defines a delegate act of the Action type, bound to the lambda processing shown. Note that the
lambda is not executed here. It is simply bound to act and will be executed with either of the

statements:

 act() or act.Invoke()

by any code that has access to act, perhaps by having it returned in a function call.

We showed in class, using reflection in the LambdaDemos example, that this binding results in an

instance of a class that has a method with the code of the lambda and fields for each datum used
by the lambda which is embedded in the act Action delegate. In this case there are no data being

stored in the internal class.

