

REMOTE

KEY/VALUE DATABASE
Operational Concept Document

Rupan Talwar
SUID: 402408828
MS Computer Engineering

CSE 681 Software Modelling and Analysis
Fall 2015

Dr James Fawcett

Remote Key/Value Database Operational Concept Document

1

Table of Contents
1 Introduction ... 3

1.1 Executive Summary ... 3

1.2 Purpose .. 5

1.3 Requirements .. 6

1.3.1 Functional Requirements .. 6

1.3.2 Non-Functional Requirements .. 6

1.4 High-Level Design .. 7

1.4.1 Client ... 7

1.4.2 Server .. 8

2 Uses .. 9

2.1 Software Developer ... 9

2.2 Instructor ... 10

2.3 Teaching Assistant ... 10

2.4 Software System .. 10

2.5 Institution or Organization .. 11

3 Views .. 12

3.1 Connection Window .. 12

3.2 Client Operations Window .. 13

3.3 Write Client Window ... 16

3.4 Read Client Window .. 17

4 Architecture ... 18

4.1 Client Partitions ... 18

4.1.1 Client GUI Package .. 18

4.1.2 Message Parser Package ... 19

4.1.3 Communication Module Package ... 19

4.2 Server Partitions .. 21

4.2.1 Communication Module ... 22

4.2.2 Message Parser ... 22

4.2.3 Server Engine .. 22

4.2.4 DB Element Package ... 23

4.2.5 Query Engine Package ... 23

4.2.6 DB Engine Package .. 24

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

2

4.2.7 DB Factory Package ... 25

4.2.8 XML Parser Package .. 25

4.2.9 DB Extensions Package ... 26

5 Application Activities ... 27

5.1 Activity Diagram for Client .. 27

5.2 Activity Description ... 27

5.3 Activity Diagram for Server ... 29

5.4 Activity Description ... 30

5.5 Activity Diagram for Read Client ... 31

5.6 Activity Description ... 32

5.7 Activity Diagram for Write Client .. 33

5.8 Activity Description ... 33

5.9 Activity Diagram for Sharding.. 34

5.10 Activity Description ... 35

5.11 Activity Diagram for Querying ... 36

5.12 Activity Description ... 36

6 Critical Issues .. 37

6.1 Database (or Query) Performance .. 37

6.2 Concurrent Access to Remote Key/Value Database by Read and Write Clients 37

6.3 Message passing using Blocking queue ... 38

6.4 Concurrent Write to the same Key .. 38

6.5 Embed application logic in Client GUI ... 39

6.6 Client crashes after sending a request .. 39

6.7 Key-Value deletions ... 40

6.8 Dictionary look-up ... 40

6.9 Version Control .. 40

7 Prospective Application ... 41

8 Conclusion .. 42

9 References ... 42

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

3

1 Introduction

1.1 Executive Summary
The following Operational Concept Document details the Remote Key/Value

database project. It explains various features of the project including its users,

architectural structure, UI Views, application activities, critical issues and

applications for which it can be used in its futurity.

Key/Value database is essentially a noSQL database, and thus it supports

features and independence that comes with a noSQL database in the form of

schema-free architecture, horizontal scalability and capability to handle large

streams of data. In this Operational Concept Document and the project

following it, we explore how a non SQL database can be constructed and used.

Owing to its distributed nature, the Remote Key/Value database would find its

utility in applications that require to access remote databases.

The users of such a database vary in terms of scale and their capacity for

storage requirements, yet a noSQL database seems to be fit for all the below

mentioned users.

Developer, be it a student developer or a professional developer, the first

hands-on user to a database after or while it is being constructed will be its

programmer itself.

Instructor, an instructor acts as a user here owing to the project requirement

of demonstrating the design features.

Teaching Assistant, a teaching assistant acts as a supplement to an instructor

and hence is also counted as a user.

Software System, a noSQL database such as a Key/Value database may find

various software using it.

Institution or Organization, these include organizations that deal with large

sets of data such as supply chain organizations, social media, etc.

The Remote Key/Value database is composed of several packages that make

up its architecture. These are listed below but not limited to,

Communication Module, defines a package that provides a sender and a

receiver blocking queue to support message passing between the client and

server.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

4

Message Parser Package, defines a class that would order the messages in a

specified structure to be sent across the communication channel to the server

or vice-versa.

DBElement Package, defines the generic key/value pair contents. Here the

value consists of a metadata (that comprises of a name, description,

timestamp and children of a key) and the actual data payload.

Query Engine Package, defines the modules that as the name suggests deals

with the formation of queries.

Database Engine Package, defines the module that would hold the C#

dictionary class member.

Database Factory Package, defines the module that would act as a virtual

Database, for faster query processing.

XML Parser Package, as the name suggests it helps parse XML elements to

store in the form of key/value pairs in the in-memory database and vice-versa.

It also manages the persistence engine and helps schedule the persists.

DBExtensions Package, this package provides extension methods to support

display of various types of DB elements.

Lastly, the Remote Key/Value database experiences various critical issues that

have been acknowledged in this document, these critical issues if not

addressed properly may impact the design and usability of the project.

Database (or Query) Performance, An important part of this project is to

consider the query performance of the Clients. This performance would differ

with different types of messages.

Concurrent Access to Remote Key/Value Database by Read and Write Clients,

The application involves multiple Read and Write Clients to interact with the

database simultaneously, there might be a contest as to who would access the

database first, considering two or more Clients run on parallel threads at the

same time.

Message passing using Blocking queue, situations when the there are an

overwhelming number of messages in the blocking queue, more than what the

Server has been designed to handle.

Concurrent Write to the same Key, situation where two Clients try to write to

the same Key.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

5

Embed application logic in Client GUI, the temptation of dumping all the code

behind each dialog window control to the respective button handler. This is a

malpractice and even though it might sound easier to do, it usually causes the

system to slow down considerably.

Client crashes after sending a request, there can be a scenario where a client

can crash after it has sent the request but not received response.

Key-Value deletions, with the deletion of Keys, comes the question of deleting

its subsequent children as well or not. Deletion of the children of a particular

key that is deleted, might cause various application inconsistencies and hence

is an issue of concern.

Dictionary look-up, Dictionary is a constant time operation if the key of the

key/value pair being searched is provided. However, it turns into a linear

search through all the key/value pairs if a specific key is not provided. Thus

leading to large time taken for query processing.

Version Control, version control is used to manage medium to large software

systems in order to provide them with a sense or organization and consistency.

1.2 Purpose
NoSQL databases essentially consists of a wide variety of different database
technologies that amalgamate in such a manner to form a noSQL database. Its
purpose was to respond to the high volumes of data utilized by users, objects
and products everyday with high amount of frequency in terms of data
accessibility.
On the other hand, relational databases were not designed to cope with such
high volumes of data in a time and resource-efficient manner, nor were they
built to take advantage of cheap storage and processing power available today.

Thus defining the following points can sum up the purpose of a noSQL
database such as a Key/Value database,

i. High Data Velocity, large amounts of data coming in fairly quickly, and
through possibly different locations

ii. Data Variety, storage of structures, semi-structured and un-structured
data

iii. Data Volume, Terabytes or Petabytes of data size

iv. Data Complexity, Data stored and managed from different locations or
data centers

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

6

1.3 Requirements
The Key/Value Database project shall implement the following the functional

and non-functional requirements.

1.3.1 Functional Requirements
The Key/Value database project shall implement,

i. A generic key/value in-memory database where each value consists

of a metadata (that comprises of a name, description, timestamp and

children of a key) and instance of a generic type.

ii. Addition, deletion and editing of key/value pairs including their

metadata.

iii. Persistence of database contents to XML file.

iv. Support for query processing on various key(s) conditions.

v. Support creation of a write client that sends data to the remote

server.

vi. Support creation of a read client that would read data sent from the

remote server.

vii. Support for measurement of performance metrics of the messages

being sent between the clients and the server.

1.3.2 Non-Functional Requirements
The Key/Value database project shall implement,

i. C# using the facilities of the .Net Framework Class Library and Visual
Studio 2015.

ii. Display shall be implemented in the form of Windows Presentation
Foundation (WPF).

iii. A test executive that clearly demonstrates meeting of all functional
requirements.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

7

1.4 High-Level Design
The top-level architecture of the Remote Key/Value database includes two

components,

Figure 1. High-Level Architecture Diagram for Remote Key/Value Database

1.4.1 Client
The Client side of the application consists of four major components. Namely,

the Graphical User Interface (GUI), Performance module, Message parser and

the Communication module.

Graphical User Interface (GUI) defines the Client display. It acts as the face of

the application and would be the only point-of-contact to the user itself. The

client GUI and its sample design are explained in detail later in this document.

Performance Module defines the package that is responsible to measure

performance metrics of the messages sent from the client to the server.

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝐶𝑙𝑖𝑒𝑛𝑡 =
𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑜𝑟 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑃𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

Message Parser defines the module that consolidates the message to be sent

to the server by the client. This consolidation helps in the transport of the

message across the communication channel.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

8

Communication Module defines the communication structure of the client. It

consists of sender/receiver blocking queues to facilitate message passing.

1.4.2 Server
The Server side of the application is made up of 4 major components. Namely,

the Communication module, Message parser, Performance module and the DB

server that links to the rest of the Key/Value DB logic.

Communication Module defines the communication structure of the server. It

consists of sender/receiver blocking queues to facilitate message passing.

Message Parser defines the module that consolidates the message to be sent

back to the client by the server. This consolidation helps in the transport of the

message across the communication channel.

Performance Module defines the package that is responsible to measure

performance metrics of the messages sent from the server to the client.

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑀𝑒𝑡𝑟𝑖𝑐𝑆𝑒𝑟𝑣𝑒𝑟 =
𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒 𝑄𝑢𝑒𝑟𝑖𝑒𝑠 (𝑜𝑟 𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠) 𝑠𝑒𝑛𝑡

𝑃𝑒𝑟 𝑢𝑛𝑖𝑡 𝑡𝑖𝑚𝑒

Key/Value DB defines a broad category that encapsulates the entire database

logic that helps in query processing, addition/deletion/edit of records and

persistence of database into XML files.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

9

2 Uses
The Uses focus on understanding the architecture of the product, the needs of

the users of the product, the design implications that may arise with different

users using this product and the requirement of the product in various

environments.

The following diagram addresses the top-level context diagram of the project

and mentions the wide variety of users that may use the Key/Value Database.

Figure 2. Context Diagram for Key/Value Database

2.1 Software Developer
A software developer, be it a student developer or a professional developer

would form the primary user of a Key/Value database, since it is the same user

that develops the project and thus inherently uses it.

On the other hand, if we compare the developer to a database administrator,

we notice that a developer would be willing to use a noSQL daabase such as a

key/value database owing to its schema-free and programmer friendly nature.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

10

It is not necessary that a database administrator is the only end-user of such a

database.

Design impact: The design implication of having a developer be a user of such

a system is that the system needs to be more developer oriented, in terms of

technologies used to implement varied packages in the project. The developer

must be able to understand and/or tweak the package code structure if need

be, for this the system must be understandable by the developer.

2.2 Instructor
An instructor forms a user to such a database owing to the project obligation

of demonstrating the requirements. The instructor may use such a key/value

database in order to manage real-time data about his/her class. This data may

vary from in-class attendance to survey quizzes taken in the classroom.

Design impact: The design implications may vary from course to course and

may also be different for each instructor. Generally, a design implication might

include not being able to understand or relate the requirements to the

requirement demonstration.

2.3 Teaching Assistant
A teachning assistant acts as a supplement to an instructor, and thus the needs

of this user might as well mimic the needs of an instructor. This may again

include management of real-time data about his/her class. This data may vary

from in-class attendance to survey quizzes taken in the classroom.

Design impact: The design implications may also be same as the one stated for

an instructor with minor changes. Generally, a design implication might include

not being able to understand or relate the requirements to the requirement

demonstration.

2.4 Software System
A software system might be a paramount user of such a key/value database.

Cognizant of the fact that noSQL databases are indeed very useful for

managing large amounts of data, software that deals with such large amount

of data would be an active user of such a database. For example: Software

such as JBoss by RedHat, open source software that supports enterprise

middleware uses a noSQL database, Cassandra, as its back-end. Adobe’s

content management solution software uses noSQL database, MongoDB for

scaling purposes.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

11

Design impact: Varied software systems have varied input requirements and a

key/value database might not fit into the structure of inputs required for a

software systems, say a cloud based software might take inputs using a Restful

API, whereas a legacy software based on mainframes might take a different

input.

2.5 Institution or Organization
Companies and institutions also form users of a noSQL database such as a

key/value database. Supply chain organizations, health care analytics and

social media are some of the organizations that deal with large amount of data

and large frequency of data are actively adopting noSQL for its various

benefits. For example, Facebook and Twitter, uses noSQL database, MongoDB,

to support real-time user analytics.

Design impact: The design implications on the database due to a wide variety

of users are mainly centeres around the use of different technologies in

different companies that might use such a database.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

12

3 Views
This section provides a detailed explanation of the sample UI views that the

user may face in the actual application. It consists of UI windows to suffice

most of the project requirements that includes Connection window, Client

Operations window, Read Client window and Write Client window.

3.1 Connection Window
The Connection window, as the name suggests, helps in provision of

connection of the Clients and the Server. Since the requirements entail

showcasing more than one Client, the design incorporates two Client ports to

be active simultaneously.

On the other hand, there would be just one Database Server interacting with

multiple instances of these two clients. Since the application would be tested

locally, the provision of an IP address input has been omitted from the design.

Figure 3. Connection Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

13

3.2 Client Operations Window
The Client Operation window provides tabs for database operations including

addition/deletion/edit of records, query processing and persistence of

database into XML file and vice-versa.

DB Operations Window provides the user with a window suitable for addition,

deletion and edit of records. In case of Addition and edit, the user is required

to enter the Key to add/edit, the metadata information that consists of name,

description and children of the Key and lastly the payload or the value of the

Key. In case of deletion, the user is required to enter the key that he/she wants

deleted.

Figure 4. DB Operations Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

14

QueryDB Window provides a window for query processing. It consists of

various radio buttons that represent a pre-set query defined on any Key. When

the user selects a radio button, the query matching the radio button is fired

and the result is displayed on the ‘Database Output’ screen.

Figure 5. Query DB Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

15

PersistDB Window provides a window to support the persistence of database

contents from in-memory database to an XML file. Unpersist causes the data in

the XML, in the form of various XML elements to be restored in the form of a

Key/Value database. The UI view provides a button to the said functions.

Figure 6. Persist DB Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

16

3.3 Write Client Window
The Write Client window provides a sample UI view to the Write Client. Its

functions include sending a pre-fixed number of messages to the remote

server and displaying the contents written to the database in the database

output screen.

Figure 7. Write Client Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

17

3.4 Read Client Window
The Read Client window provides a sample UI view to the Read Client. Its

functions include display of the response query messages sent to the server.

It also includes a Check box that gives the users an option to view the

responses in a detailed manner or a concise manner.

Figure 8. Read Client Window for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

18

4 Architecture
The structure of the Remote Key/Value database consists of various

components that perform complex operations with the help of eachother or

independently. The following diagrams depicts the various components of the

Remote Key/Value database and the flow of data.

4.1 Client Partitions
The Client side includes Client GUI, Message Parser and Communication

Modules packages to support the remote Key/Value database operations. The

Performance module mentioned in the architecture may be eventually

described in one of the Client Package structures.

Figure 9. Client Package Diagram for Remote Key/Value Database

4.1.1 Client GUI Package
The Client GUI package contains the classes to define the UI of the application.

It consists of a Windows Presentation Foundation (WPF) project that would

outline the various windows that the user would view when he/she uses the

application.

Responsibilities: The main responsibility of the Client GUI is to provide

fucntions to carry-out various operations on the screen and delegate the actual

database logic to a separate class.

Interaction with other packages: The client GUI interacts with Message Parser
and the Communication Module.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

19

4.1.2 Message Parser Package
The Massage Parser provides a Class that provides a definite structure to the

messages going out of the Client through the Blocking queue. The structure of

the Message might look like this,

[DataContract]

 public class Message

 {

 [DataMember]

 public string fromUrl { get; set; }

 [DataMember]

 public string toUrl { get; set; }

 [DataMember]

 public string content { get; set; }

 }

The Message structure involves a fromURL and toURL that would help to track

the owner and the recipient of the package. The string content field may be

used to populate an XML message format.

Responsibilities: It sole responsibility is to parse the messages from the client

using suitbale Windows Communcation Foundation (WCF) Data Contract.

Interaction with other packages: It interacts with Client GUI to gain the

messages and the Communication Module to send the messages through the

Blocking queue.

4.1.3 Communication Module Package
The Communication Module, as the name suggests, helps in the

communication of messages between the Client and the Database Server. The

Communication Module would hold Interface for communication that would

hold a Data Contract. This could be implemented in C# as,

 [ServiceContract]

 public interface ICommService

 {

 [OperationContract(IsOneWay=true)]

 void PostMessage(Message msg);

 Message GetMessage();

 }

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

20

[DataContract]

 public class Message

 {

 [DataMember]

 Command cmd = Command.DoThis;

 [DataMember]

 string body = "default message text";

 public enum Command

 {

 [EnumMember]

 DoThis,

 [EnumMember]

 DoThat,

 [EnumMember]

 DoAnother

 }

 [DataMember]

 public Command command

 {

 get { return cmd; }

 set { cmd = value; }

 }

 [DataMember]

 public string text

 {

 get { return body; }

 set { body = value; }

 }

 }

Responsibilities: It defines a sender and a receiver blocking queue. A blocking

queue is a queue that block when you try to dequeue from it and the queue is

empty, or if you try to enqueue items to it and the queue is already full. A

thread trying to dequeue from an empty queue is blocked until some other

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

21

thread inserts an item into the queue. This ensures the messages are sent in a

thread-safe manner and no message is lost.

Interaction with other packages: The communication module interacts with

the Communication Module at the Server end.

4.2 Server Partitions
The Server side includes Communication Modules, Message Parser, Server

Engine, Query Engine, DB Extensions, DB Engine, DB Element, DB Factory and

XML Parser packages to support the remote Key/Value database operations.

The Performance module mentioned in the architecture may be eventually

described in one of the Structure Package structures.

Figure 10. Server Package Diagram for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

22

4.2.1 Communication Module
The Communication Module, as the name suggests, helps in the

communication of messages between the Client and the Database Server.

Responsibilities: It defines a sender and a receiver blocking queue. A blocking

queue is a queue that block when you try to dequeue from it and the queue is

empty, or if you try to enqueue items to it and the queue is already full. A

thread trying to dequeue from an empty queue is blocked until some other

thread inserts an item into the queue. This ensures the messages are sent in a

thread-safe manner and no message is lost.

Interaction with other packages: The communication module interacts with

the Communication Module at the Server end.

4.2.2 Message Parser
The Massage Parser provides a Class that provides a definite structure to the

messages going out of the Client through the Blocking queue.

Responsibilities: It sole responsibility is to parse the messages from the client

using suitbale Windows Communcation Foundation (WCF) Data Contract.

Interaction with other packages: It interacts with Client GUI to gain the

messages and the Communication Module to send the messages through the

Blocking queue.

4.2.3 Server Engine
The Server Engine package acts as the Executive package, that delegates to the

various packages with respect to the application logic.

Responsibilities: The responsibilities of the Server Engine package consists

collecting input messages from the clientand delegating to the appropriate

package.

Interaction with other packages: It needs to interact with all the other

packages of the server system that are vital to the requirement specification.

This includes packages like, DBElement, QueryEngine, DBEngine, XML Parser

DBFactory and DBExtensions.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

23

4.2.4 DB Element Package

The DBElement package is used to define items or instances, which shall
consist of metadata and an instance of a generic type. This essentially forms
the key/value pair. Each database Value has structured meta-data and an
Instance of the generic type. This implemented using C#, would look like this,

public class DBElement<Key, Data>

 {

 public string name { get; set; } // metadata

 public string descr { get; set; } // metadata

 public DateTime timeStamp { get; set; } // metadata

 public List<Key> children { get; set; } // metadata

 public Data payload { get; set; } // data

 }

Responsibilities: The sole reponsibility of the DBElement package is to provide

package to define the structure of the instances or items, which in this case

consists of a key and a value that shall contain certain metadata fields such as,

A name string, A text description of the item, A DateTime string recording the

date and time the value was written to the database, A finite number (possibly

zero) of child relationships with other values.

Interaction with other packages: The DBElement package would interact with

DBEngine, DBFactory, QueryEngine and DBExtensions package.

4.2.5 Query Engine Package
The Query Engine package prescribes over the vital query processing tasks of

the system. This module includes the design of the queries, which shall be used

to fulfill the requirement specifications. The Query Engine may utilize Predicate

Lambda functions to support query processing. This implemented using C#,

would look like this,

Query to display children of a key:

Func<string, bool> qp = (string key) =>

 {

 DBElement<string, PL_ListOfStrings> qelem;

 if (db.getValue(key, out qelem))

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

24

 if (qelem.children.Count() > 0)

 return true;

 return false;

 };

Responsibilities: It satisfies the requirement to support queries for the value of

a specified key, the children of a specified key, the set of all keys matching a

specified pattern which defaults to all keys, all keys that contain a specified

string in their metadata section and all keys that contain values written within

a specified time-date interval.

Interaction with other packages: It interacts with ServerEngine package to

provide the input, DBEngine package in order to support query processing

using the Dictionary and DBFactory in order to provide a virtual database for

faster query processing.

4.2.6 DB Engine Package
The database engine package defines the C# Dictionary class member. C# class

representing the Database Engine class might look like this,

public class DBEngine<Key, Value>

 {

 private Dictionary<Key, Value> dbStore;

 }

Responsibilities: The sole responsibility of a Database Engine package is to

provide a class to hold the Dictionary<Key,Value> member. It is also used to

populate its noSQL database instance through an API provided by the

DBEngine package.

Interaction with other packages: The Database Engine package interacts with

the ServerEngine package to ackowledge the input, the QueryEngine package

to process queries using the db connection, the XML Parser since it needs to

store data contents from the database into the XML file, the DBFactory since

the DBFactory package is essentially a virtual database.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

25

4.2.7 DB Factory Package
The Database Factory package supports the creation of a new immutable

database constructed from the result of any query that returns a collection of

keys. It thus provides a virtual database that can be used to query upon by

means of formation of compound queries, thus eliminating the need to query

the actual database each time a key is required to be queried, which in-turn

will save time and thus lead to faster query processing which is crucial in an

environment dealing with large data sets.

Responsibilities: The Database Factory package is responsible for providing

this virtual database as mentioned above.

Interaction with other packages: The Database Factory package interacts with

DBEngine package to support Dictionary look-up and QueryEngine to support

the link to all the queries mentioned under the requirement specification.

4.2.8 XML Parser Package
The XML parser package provides a couple of Classes to provide Database

persist, unpersist and scheduled persist functionality. It also helps in data

sharding.

Sharding, divides the data set and distributes the data into multiple files or

shards. This in-turn reduces the time taken to process a query, since the search

is limited to a shard instead of the entire database.

Shard Key, is the criteria based on which shards are created or partitions are

created. Shard key is either an indexed field or an indexed compound field that

exists in every document in the collection (or database collection). This might

be accomplished using either range based partitioning or hash based

partitioning.

Responsibilities: The main responsibility of the XML Parser package is to

provide a class that deals with storing of database content from in-memory

database to an XML file. XElement and XDocument are used to convert the DB

content into an XML format. It also does unpersistence, which involves

converting data back from an XML format into the database as Key/Value

elements.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

26

The XML Parser package also provides for a Persist Scheduler class, this class is

used to automatically persist the database contents into an XML file based on

an auto-timer.

Interaction with other packages: It interacts with the Server Engine and

DBEngine package.

4.2.9 DB Extensions Package
The DB Extensions package is another crucial package that provides extension

methods to display or print the DB Element on the console.

Responsibilities: Its reponsbility includes prinitng or displaying the results of

the queries, the key/value pairs or other important information required to

accurately depict the requirement fulfillment.

Interaction with other packages: It interacts with the DBEngine, DBElement,

DBFactory, QueryEngine and ServerEngine package in order to support

displaying the Database Elements on the console.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

27

5 Application Activities

5.1 Activity Diagram for Client

Figure 11. Client Activity Diagram for Remote Key/Value Database

5.2 Activity Description
Selection of a function via Client GUI

The activity defines the selection of a function in the Client GUI. This may

include activites mentioned previously in the sample UI, that is, DB Operations,

Write Client operations and Read Client operations.

Parse Messages

The process flow would then be directed onto the Message Parser package,

which as the name suggests would parse the different type of messages and

consolidate them into a structured format for message passing over the

communication channel.

Send Messages to Server side Communication channel (Blocking queue)

Once the messages have been formed they need to be tranmitted using a

suitable WCF Data Contract to the server. This is done using the sender

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

28

blocking queue. The blocking queue ensures delivery of the messages to the

server side receiving blocking queue.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

29

5.3 Activity Diagram for Server

Figure 12. Server Activity Diagram for Remote Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

30

5.4 Activity Description
Receive messages via the Client side Communication Channel (Blocking

queue)

This activity defines the receipt of messages sent by the client using a WCF

Data Contract over the blocking queue. The messages on the server-side are

received by the receiving blocking queue defined in the communcation module

of the server.

Parse Messages

Once the messages have been received, they are parsed on the server side in

order to transfom them into elements that may be stored and re-used by the

database.

Generate Key/Value pairs (or DB content)

This activity or task supports creation of items or instances described by

metadata and holding some generic type of value.

Save content to in-memory DB

The process to save the contents or in this case the instances into the

database. In case the data set is too large, it is sent out to Shard. In other cases

where the data is not large it is sent out to be persisted to an XML file.

Data Sharding

In case of large data chunks determined by specific size considerations, the

large data is sharded or divided into smaller pieces and then persisted onto

XML files.

Data Persistence to XML file

Data is stored in XML file. This is followed by a decision node which supports

the addition, deletion or updation of any instance record in the database. If

either is wished, the process is repeated again starting form generation of

key/value pairs, else the data flow is allowed to move further down the activity

diagram to proceed with the remaining tasks.

Scheduled Time Event Action

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

31

This is an event that occurs in a fixed schedule, in this case the data persistence

into the XML files is a process required to occur after every specfic time

interval.

Query DB for specified key(s)

This activity supports simple and compound query processing. If further query

result is wished then the process is repeated, else the results are printed out to

the console.

5.5 Activity Diagram for Read Client

Figure 13. Activity Diagram for Read Client

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

32

5.6 Activity Description
Enter Requests to read (via Client GUI)

Initially, the read client prompt the user to enter the number of messages the

user wants it to process and display.

Server Activity logic for request processing

The database server processes the messages that are requested from the

database and sends it through the communication channel back to the Client.

Read Messages from the Server

Messages sent from the database server are parsed into a format that can be

displayed onto the Client display GUI.

Performance metrics measurement

 The time taken for the database to process each request as a measure of unit

time is calculated with the help of the performance metric module. It may also

perform calculations for the time taken to perform the entire operation. The

result are then stored and displayed via console or GUI.

Display

If the user asks for a detailed report of all the messages or queries read from

the database, he/she is directed to a more informative view of the messages.

Else, a generic view is displayed on the Client GUI.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

33

5.7 Activity Diagram for Write Client

Figure 14. Activity Diagram for Write Client

5.8 Activity Description
Enter Number of Messages to send (via Client GUI)

Initially, the write client prompt the user to enter the number of messages the

user wants it to process and display.

Send Messages to Server

The messages are loaded from an XML file in random fashion, i.e. this may

include various different types of messages randomly selected from a base of

messages defined in an XML file. These messages are parsed and sent to the

database server.

Server Activity Logic

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

34

The database server performs its logic to store the message contents into the

database. In case of a query it would process each query based on the type of

query. Once the processing is completed a result of the database output is sent

back to the Client via the communication channel.

Performance metrics measurement

The time taken for the database to process each request as a measure of unit

time is calculated with the help of the performance metric module. It may also

perform calculations for the time taken to perform the entire operation. The

result are then stored and displayed via console or GUI.

Display

An output of all the messages or queries performed on the database is

displayed on the Client GUI.

5.9 Activity Diagram for Sharding

Figure 15. Activity Diagram for Sharding in Key/Value Database

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

35

5.10 Activity Description
Save content to in-memory DB

The process to save the contents or in this case the instances into the

database. In case the data set is too large, it is sent out to Shard. In other cases

where the data is not large it is sent out to be persisted to an XML file.

Data partioning into smaller shards

In case of large data chunks determined by specific size considerations, the

large data is sharded or divided into smaller pieces and then persisted onto

XML files.

Sharded collection balancing

The collection of sharded data pieces are balanced to make sure any shard

does not hold unnecessary large amount of data, thus defeating the purpose of

Sharding all together.

Data Persistence to XML file

Data is stored in XML file.

Scheduled Time Event Action

This is an event that occurs in a fixed schedule, in this case the data persistence

into the XML files is a process required to occur after every specfic time

interval.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

36

5.11 Activity Diagram for Querying

Figure 16. Activity Diagram for Querying in Key/Value Database

5.12 Activity Description
Query virtual DB (DBFactory) for specific key(s)

This activity or task supports the requirement of creation of a new immutable

database constructed from the result of any query that returns a collection of

keys

Query DB (QueryEngine) for all keys

This activity includes querying the actual database to support the requirement

specification.

DB retrieval (DBEngine)

This activity supports the database storage using the C# Dictionary.

Print result on the console

The activity prints or displays the query results on the console window.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

37

6 Critical Issues

6.1 Database (or Query) Performance
Issue: An important part of this project is to consider the query performance of

the Clients. Query performance is the time metric measured once a successful

query is implemented. This performance would differ with different types of

messages. Though the type of payload we consider in the following project

may be fixed to List of Strings but it may vary in terms of its construction. For

example a message payload might be a list of single worded strings, or a list of

paragraphs of strings. This causes an issue with respect to the query

performance of each message.

Solution: A possible solution for faster query retrieval is to ensure faster

serialization and de-serialization. Serialization is a process of converting an

object into a stream of bytes to send over a network or store in a database.

Design Impact: Serialization entails accessing the class’ objects whose fields

need to be serialized. Initially it is inspected through reflection in order to

generate fields that serialize the declared fields. This process is made faster if

objects can be accessed directly. Ensuring the class to be in the same package

as the serialized object’s class could do this.

6.2 Concurrent Access to Remote Key/Value Database by Read and

Write Clients
Issue: The application involves multiple Read and Write Clients to interact with

the database simultaneously, while producing results in a fairly small amount

of processing time. Owing to this nature of the application, there might be a

contest as to who would access the database first, considering two or more

Clients run on parallel threads at the same time.

Solution: A trivial solution of this issue is the implementation of blocking

queues at the Client and the Server end.

Design Impact: The solution would entail building a sender and receiver

blocking queue at the Client as well as the Server end. The blocking queue

would act as a queued buffer that would hold and release the messages in a

linear fashion to the other end, i.e. the Client or the Server.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

38

6.3 Message passing using Blocking queue
Issue: Although implementation of blocking queue solves the issue of

concurrent access, there may be situations when the there are an

overwhelming number of messages in the blocking queue, more than what the

Server has been designed to handle. This leads to an issue with message

passing using the Blocking queue.

Solution: A dynamic or open-ended blocking queue might be helpful in a

situation of heavy load of messages, but eventually it might be a good idea just

to let the system run its course and re-run the queries when the load is less.

Design Impact: A dynamic blocking queue may be designed using C# and

might look like this,

public class BlockingQueue<T>

 {

 private Queue blockingQ;

 object locker_ = new object();

 //----< enqueue a string >-------------

 public void enQ(T msg)

 {

 lock (locker_) // uses Monitor

 {

 blockingQ.Enqueue(msg);

 Monitor.Pulse(locker_);

 }

 }

 }

6.4 Concurrent Write to the same Key
Issue: There might be a situation where two Clients try to write to the same

Key. That is, when the Key-Value pair is initially being populated, two separate

clients might have the same Key but assign different value to the Key. This

causes a critical issue since it could lead to inconsistency within the database.

Solution: The situation can be handled in two ways, either prevent this issue to

occur and thus modify the design accordingly or, the value may be overwritten

each time a new Client tries to write to an existing Key.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

39

Design Impact: In case of prevention, implementation would consist of not

allowing a client to add value to a key that is already in the database. In the

other case, the existing value and metadata of the key would just be

overwritten to the value set by the latest Client.

6.5 Embed application logic in Client GUI
Issue: As mentioned in section 4, the UI of the application contains a

considerable amount of control, and would be the eventual executive of the

application; this could lead to the temptation of dumping all the code behind

each dialog window control to the respective button handler. This is a

malpractice and even though it might sound easier to do, it usually causes the

system to slow down considerably.

Solution: The Client GUI in the application would act as nothing but a façade to

the further complex sub systems that it hides. This leads to a light UI package

structure with less amount of code, thus making it faster and adhering to code

standards.

Design Impact: The Client GUI package would act as a delegate, calling other

respective functions based on which control button is accessed by the user.

Thus the Client package structure would not contain the complex sub system

design logic that actually carries out the bulk of the operations in the

application.

6.6 Client crashes after sending a request
Issue: There can be a scenario where a client can crash after it has sent the

request but not received response.

Solution: Even though client might have crashed but server would have started

the database operation, or worst finished it but failed to send the response.

This will lead to wastage of server bandwidth. Server can implement a failed

queue and store the result until client comes up. Once the client is ready it can

send out the results to it.

Design Impact: As the solution suggested, the design impact would accost the

implementation of a queue that would store the result until the Client wakes.

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

40

This could be implemented as a separate queue implemented in the

Communication Module package structure of the Server.

6.7 Key-Value deletions
Issue: With the deletion of Keys, comes the question of deleting its subsequent

children as well or not. Deletion of the children of a particular key that is

deleted might cause various application inconsistencies and hence is an issue

of concern.

Solution: Eventual deletion of a child key due to the deletion of its parent

might cause a query to point to a key that does not exist in the database. In

order to prevent the application from crashing at this point of time, exception

handling must be carried out.

Design Impact: Provision of a simple try-catch block at the point where the

code accesses the database should be appropriate to ensure the application

does not crash. It might return a false value at this instant, but the application

is prevented from total failure.

6.8 Dictionary look-up
Issue: Dictionary is a constant time operation if the key of the key/value pair

being searched is provided. However, it turns into a linear search through all

the key/value pairs if a specific key is not provided. Thus leading to large time

taken for query processing.

Solution: A solution to avoid such an escalated time of search is to divide the

data set into smaller pieces or files called Shards, this process is called

Sharding.

Design Impact: Provision of a Class that will be utlized to break the large data

set into smaller pieces for faster query processing.

6.9 Version Control
Issue: Version control is used to manage medium to large software systems in

order to provide them with a sense or organization and consistency. In this

case, multiple users may try to simultaneously build of check-in changes in the

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

41

code they have developed, thus it may cause inconsistent database data if not

handled carefully.

Solution: The solution entails ensuring that the data committed to the final

version in the server is consistent and accurate.

Design Impact: This can be achieved by th creation of a module that ensures a

versioning of the build each time the code is checked out to make changes by

any user.

7 Prospective Application

After the completion of the project driven by this operation concept
document, we shall work on a concept and implement remote access to the
noSQL prototype via message-passing communication.

Finally we develop architecture, for a data management service in a large
Software Development Collaboration Environment using the noSQL model we
created in the earlier projects. The architecture of this future project is
mentioned below.

Figure 17. Diagram depicting Software Collaboration Federation(SCF)

http://www.wikipedia.org/

Remote Key/Value Database Operational Concept Document

42

8 Conclusion
The Remote Key/Value Database provides a useful application as a noSQL

database implemented in a distributed environment, whilst retaining the

advantages of large data storage, quick query processing, instant data

availability, scalability and agility. The remote key/value database finds its

utility in users like developers, instructors, software systems, organizations and

industries involveing supply chain management, health care analytics and

social media. Robust and functional structure of its various components lead to

its utility in other functional languages as well. This Operational Concept

Document precisely defines sample UI screens, the task or activity description

involved in the project and also lists a number of possibe critical issues that

may be experienced while constructing the application. The solution and the

design impacts listed with the critical solutions must be adhered to in order to

ensure an able and successful application.

9 References
1. Fawcett, Jim. CommPrototype. .Net Framework ed. C# Project. 2015.
2. Fawcett, Jim. "Code Artistry - No SQL Databases." Blog NoSql. Accessed

September 6, 2015.
http://ecs.syr.edu/faculty/fawcett/handouts/webpages/blogNoSql.htm.

3. Fawcett, Jim. "SG - OCD." SG - OCD. Accessed September 10, 2015.
http://ecs.syr.edu/faculty/fawcett/handouts/CSE681/Lectures/StudyGui
deOCD.htm.

4. “MongoDB”. Accessed September 10, 2015.

http://docs.mongodb.org/master/MongoDB-sharding-guide.pdf.

5. "NoSQL Databases Defined & Explained." Planet Cassandra. January 10,
2014. Accessed September 8, 2015.
http://www.planetcassandra.org/what-is-nosql/#nosql-explained.

6. "NOSQL Database Explained." NoSQL Databases Explained. Accessed
September 10, 2015. https://www.mongodb.com/nosql-explained.

http://www.wikipedia.org/

