
Test harness-OCD
SAHIL SHAH 1

CSE-681|Software Modeling and Analysis

Project #1- Operational Concept Document (OCD)

TEST HARNESS

Instructor- Dr. Jim Fawcett

SAHIL SHAH (SUID- 654427435)

14th September, 2016.

Test harness-OCD
SAHIL SHAH 2

Table of Contents
CSE-681|Software Modeling And Analysis ... 1

1. Executive Summary .. 4

2. Introduction ... 5

2.1. Automation Testing ... 5

2.2 Integration Testing .. 6

2.3 Organization .. 7

2.3.1 Organizing Test Data ... 7

2.3.2 Integration testing organization ... 7

2.4 Prototype Implication.. 7

2.5 Architectural Ideas for Test Harness... 7

3. Users ... 9

3.1 Software architect ... 9

3.2 Quality Assurance Manager .. 9

3.3 Teachers Assistants ... 9

3.4 Developers .. 9

3.5 Test Manger .. 10

3.6 Testers ... 10

3.7 Manager .. 10

3.8 Uses ... 11

3.9 Impact On Design ... 11

4. Application Activity.. 12

4.2 Activity Diagram for Testing Process only .. 14

4.3 Flow of data: ... 16

4.4 Queuing and testing of data .. 17

5. Partitions ... 18

6. Critical Issues .. 20

6.1 Easy To Use .. 20

6.2 Performance .. 20

6.3 Deadlock Situations .. 20

6.4 Managing Regression Testing... 20

6.5 Overloading... 21

6.6 When to stop testing? .. 21

6.7 Service Level Agreement .. 21

Test harness-OCD
SAHIL SHAH 3

6.8 Catching Exceptions ... 22

6.9 Security ... 22

7. Conclusion .. 22

8. Prototype ... 23

8.1 File Manager package that searches a directory tree, rooted at a specified path, and

displays the names of all DLL files encountered: ... 23

8.2 Child App-Domain demo that loads a simulated test library, executes it, and displays the

results. ... 24

9. References ... 25

Test harness-OCD
SAHIL SHAH 4

1. Executive Summary

Today in the world of heavy loaded applications, testing becomes an important factor to reduce
the bugs and make an application run perfectly. Manual testing for such big projects is outdated
as concurrently testing hundreds of thousands of cases concurrently is a slow and tedious task
to be carried out manually. Furthermore it may lead to faulty results. Hence, now we build the
new age automated testing environment known as test harness.

Test harness has an advantage as they can carry out tests in two ways:

• Automation test

• Integration test

In automated test a test harness runs several cases under varying conditions and notes the
output. It also monitors the behavior during several test conditions. The test harness then
compares these outputs to the desired output of the test. In integration testing, there is a
combination of two or more modules and tests are run to check whether the results are as
expected that is, desired output or not.

Therefore in this project we expect that the test harness should have the capabilities to perform
a number of desired tasks. A few of them are listed as:

• It provides logging facilities.

• Create a test harness that can run tests concurrently and also run subsequent tests.

• We can make use of communication methods between different modes of the system, to take
proper inputs and supply proper test results, and smooth integration of these modules.

• It should have a queue for input data to manage high incoming load.

• Possibility of stubs and drivers should be available for testing purpose, whether individually or
both together.

• The test harness should be able to process both, automated testing and continuous
integration.

• It should be able to support regression testing.

• It should be able to record the result of every test and have a detailed report of it.

• We can make use of multithreading to run concurrent projects.

• It should have an App-Domain manager.

The possible users of this operational concept document (OCD) are developers, testers and
quality assurance managers. Quality assurance managers as the name suggests take active
role in the proper functioning of the test harness and maintain quality. Developers can use this
document as a guidance to build the test harness project in the later stages. It is important for
tester to be an active part so that there is no gap of communication between developers and
testers as to what is being made and what is the demand of the testers.

Test harness-OCD
SAHIL SHAH 5

There are some critical issues that might need to be managed during the building of the test
harness who's solution will be referred to in a later section of the document, a few of these
issues are:

• The testers might not be able to understand and use the test harness build by the developers.

• The testers might have not received the features that they need in the test harness.

• A few of the functionalities might not work during demonstration as expected.

• Deadlock issues in the testing cycle.

• What if there is a failure or lag of communication during integration testing of different
modules?

• Maintaining a detailed report of all the test failures might be an issue, even for the
programmer to understand.

2. Introduction

Software testing is a process to measure the correctness and quality of a developed software or
application. To fulfill this task we make use a test harness. Test harness is an environment that
runs various tests, automated and integrated, which gives us the measure of completeness of
the software. To check whether there are defects or not the output of the tests are compared to
the desired outputs and what changes are to be made to the software are thereafter decided.

Now one might say that to make software bug-free we can test each and every permutation and
combination possible, but this increase the cost and time factors drastically. What would we do
in this case is assess the possible risks in an application and test those. An experienced
developer can catch such faulty sites and test it. Care must be taken that similar kind of cases
are not tested repeatedly, because the same test cases will not lead to new bugs. Another
important factor in the test harness is that it requires continuous reviewing and save detailed
reports of test cases, especially the faulty test cases. Reviewing different type of test cases will
bring out other type of bugs and hence contribute to the completeness of the system. These are
the reasons why test harness is important and a brief overview of how they should work. The
working of a test harness for different types of soft-wares can be subjective.

2.1. Automation Testing

Manual testing is a very primitive type of testing method and requires a skilled tester to carry out
its operations, adding to that it is pretty time consuming and repetitive. Our test harness should
support complete automation and integration testing. With proper communication of what are
the needs of the tester and what the developer is going to build, a test harness can be created
to run tests continuously without human intervention.

Automated tests are easier to manage as they create reports of the test and leave out the
tedious task of manual testing. In fact, it supports offline testing too. Automation testing is the
primary function of a test harness and is built for complex applications and for applications that
need to run test cases concurrently and on a continuous basis. A few areas where we can
implement automated tests are:

Test harness-OCD
SAHIL SHAH 6

• Tests that need various data sets

• Tests that can cause human error.

• Applications that use certain functionalities that can be risky.

• Severely reduce time and cost factors.

Now, while building a test harness we need to populate the test data correctly to run the
automated tests properly. One such method is when the testers have complete control of the
testing environment. Here data loading (in any type of storage facility) is much quicker than any
other method. A problem arises when the testers might have to manipulate the existing data
structures into a more desired type of data structure.
Another method is to create test scripts. These test scripts run and help populate the storage
facilities with the data required for automated testing. This method is slower but has less
dependency on data structures.

2.2 Integration Testing

In a testing environment it is important that we have two cases to validate. Naturally one is
where it is made sure that valid input is parsed and in the other scenario a false input is passed
and an exception is raised. This method should be followed throughout as we write small or
large chunks of code. The reason behind it is that the newer code is tested and integrated to the
existing code. This is one of the other main functionality of the test harness, continuous
integration and integration testing.

A software is made up of multiple modules that actually might have been made by separate
teams. It is important that when these separate modules pass their individual automated tests
and integrated, the data communications amongst these modules are perfect for proper
functioning of the application. During unit testing the modules might work perfectly but different
developers have different style and concept of building a piece of code, the important part is that
when these modules are brought together as a single unit, they should work without nay
erroneous effects.
Another important point to note is that the clients might change their requirements during the
course of developing and these might not be unit tested and hence integration testing becomes
even more important.

Steps to follow for continuous integration in software are:

• Maintain a single source repository

• Automate the build

• Commit should be built on an integrated machine

• Automate integration testing for testing the links between two modules.
Integrated testing provides completeness to the testing factor of an application because here it
checks the flow of data between modules and not unit wise. Usually integration testing takes
place logically that is, it checks the modules that are logically related and incrementally adds
modules until the entire software has been tested.

Test harness-OCD
SAHIL SHAH 7

2.3 Organization

If the data is correctly managed and tested in a well directed manner, the process of testing
becomes easier, faster and causes less confusion in the methodology and collection of data,
both input and output.

2.3.1 Organizing Test Data

Organizing test data is an important factor in test harness. There might hundreds of thousands
of test inputs to be tested for a particular software. The important factor is that the test data
should not be dependent on each other. Tests cannot rely on what happens prior to them or
they create confusion on whether the test is faulty or the code. Each test should have it’s own
setup such that is should have the setup for a particular test to run on it’s own. Each test should
leave the system in it’s initial state after completion. Hence isolation of test cases is important.

2.3.2 Integration testing organization

Testing can be done in two ways, bottom up and top down approach. In the bottom up approach
all the lower level modules are tested with the higher level modules until all are tested.
Similarly, in top down approach all the higher level modules are tested with the lower level
modules until all modules are exhausted.

2.4 Prototype Implication

Our entire project is based on the test harness, and an important part of the code is the App-
Domain. The App-Domain it isolates executed software applications from each other such that it
does not affect other applications. The code prototype for this app-domain gives us a brief idea
about how would we implement the parent and child app-domain for each child for each user. It
would load the given assemblies from a child app-domain. It also used to display each dll file
separately in the app-domain. The other one is the file manager which is important cause we
need to load each of the user files correctly for the process to start using
Directory.getFiles(parameters).

2.5 Architectural Ideas for Test Harness

The idea of a test harness is to implement App-Domain where we can run multiple assemblies
to run within a single process but it also prevents assemblies from accessing each other
memories. We can make use of a single App-Domain for a dynamically loaded DLL from a
folder, this will not allow different tests to interfere with each other. For this we will be coding in
C# using visual studio 2015 and .Net framework.
We have three block architecture for a test harness which consists of the input layer, the domain
layer and last is the test logic layer.
The diagram of the architectural layers of the test harness are shown on the next page.

Test harness-OCD
SAHIL SHAH 8

Figure 1: Architecture layers of a test harness

The three layers are explained as:

• Input layer: These are basically the test cases that need to be examined. As seen in a few
examples by our instructor, Dr. Jim Fawcett, These cases are like

• Domain Layer: This layer has the task of getting the Xml properties from the Xml input from
the user. Rather than X-path or Xml it represents the test cases in domain language.

• Test Logic Layer: These consist of all the test cases and expresses the test logic with the
help of the domain layer below and provides the test results.

• Report Generation: One important job that the test harness performs is generate reports of
the performed tests, whether successful or unsuccessful.

Test harness-OCD
SAHIL SHAH 9

3. Users

The key users of this test harness can be software architects, teaching assistants, testers,
developers, test managers, managers and quality assurance managers. Most of these users are
a part of the entire life cycle of this test harness. The way in which each user uses the system is
different and described in detail below:

3.1 Software architect

As the name suggests the software architects manages the systems architecture and it’s
attributes. The ultimate aim of the architect is to make sure that the built system accomplishes
the goals it has been built to achieve. Namely a few other functions of the architects are :

• Define the document of the system.

• How to make advancements in the system for betterment.

• Make sure the integration process takes place in overly fashion and proper functioning of the
system.

• Make sure the functionalities are properly understood by the developers and testers.

3.2 Quality Assurance Manager

Quality assurance managers basically are interested in the smooth functioning of the system
and assure quality of service to all it’s clients. They manage the following activities:

• They review the project requirements and quality criteria.

• They design test scripts and mange it.

• They manage and control the automation of tests in the test harness.

• Maintain that the functionalities required by the customer can be performed by the system.

3.3 Teachers Assistants

Teacher’s assistant works closely with the developer to check whether the system works in an
expected fashion without any issue and also make sure the code is clean and simple.

3.4 Developers

The developers of the test harness have to work closely with the testers. This is important
because there shouldn't be a wide gap in what the developer has produced and the actual
needs of the tester. They define the requirements of the system and start the coding process.
They are also responsible to create test cases that are used to test the modules they have
created.

Test harness-OCD
SAHIL SHAH 10

3.5 Test Manger

Software test manger is the team leader of the software testing team and responsible for all the
testing teams functioning.

• They delegate work to the testing team.

• They are responsible for communication with clients when needed.

• Responsible for the election of the right tools.

• Responsible for the integration of tests.

3.6 Testers

Testers should have the ability to understand usability issues and generate test cases. They
should also have knowledge of the execution methods. A tester should be in constant
communication with the development team to ensure the right system is built. A few functions
are:

• Carry out testing according to the procedure.

• The most essential job is to create reports of the tests that are carried out.

• Responsible for designing theist scenarios and also knowing what to test, as testing all
permutations and combinations is an impossible task.

3.7 Manager

Manger is the main coordinator and work delegator in this system. A few roles of a project
manager are listed below:

• Define activities for testers, developers and other project groups like maintenance teams etc.

• To make sure the required resources are available to all the teams.

• They make the overall report of the system.

• Make sure that all the processes are carried out in strict order and in line with the guidelines
of the project.

Test harness-OCD
SAHIL SHAH 11

3.8 Uses

Test harnesses have multiple uses in a testing environment and along with the automated
testing environment it’s uses increases because of the time efficiency. The main uses of a test
harness are listed below:

• Increased effectiveness : Since we are using an automated and continuous integrated
environment the cost and time factors both decrease exponentially as compared to manual
testing.

• It supports regression testing. Hence it also makes sure that the integration of software is
done correctly or not, and what changes to make before further testing.

• A detailed report of the test results are made, especially for the failed tests. Using these
reports a track of the test cases and test cases outputs are kept, keeping the system
organized and it’s smooth functioning.

• Since we start testing at an early phase, the system tends to be more reliable. Also, these
systems run repeatedly and without human intention.

• It supports logging. Logging is perhaps a very strong tool in the developers hands. It gives
data about what the code is doing an handles complex situations well and quick debugging.

3.9 Impact On Design

Ideally, testing should be designed such that it takes minimum input from the user, and displays
the results of the test effectively in a pretty concise manner. It should basically be a well crafted
code with simplicity. Precaution must be taken that we do not stuff up everything into one
package. Continuous integration support is one of the main features of a test harness can have
and all the packages should be cohesive with proper naming conventions should be followed.
Having all this in mind we need to create proper test packages that can demonstrate the
functions of the test harness. Here we also use loading testing, in this where the performance of
the system is tested in both normal conditions and peak or high load situations.

Test harness-OCD
SAHIL SHAH 12

4. Application Activity

This shows all the major task of the system that are broken down into activities. It is represented
in the form of an activity diagram as shown below.

Start

Repository: Input source

File Manager: Takes Dll from repository
for the test harness

Read Xml
Code for logic

Loader: Loads the input Xml data from the
user into a queue for the testing harness to

begin testing.

Testing harness: Performs automation
testing.

Report Generation

 More test
cases?

No

Display

yes

Logging: All tests, loading activities
are logged.

GUI

Test Driver: used as a dummy module

Error HandlerError?

No

Yes

Stop

No File Found?

Yes

No

Re-Input

Create App-Domain

Figure 2: Activity diagram for the test harness system

Test harness-OCD
SAHIL SHAH 13

The flow of the activities in the system is very important, such that all the process should run in
order for proper functioning and not even the smallest activity is left out. The activities that take
place in this system are as explained:

• 4.1) GUI: We start with the Graphical user interface or GUI, which is the interface of the
system for the user and takes input from the user that marks the beginning of this test
harness system. In our project we focus less on the GUI aspect and more on the coding and
documentation aspect of the application.

• 4.2) Repository: Repository is what contains all the data link library (dll) and logs, it needs

to be connected to the loader or test harness. It basically contains the testing code from the
user input that needs to be tested.

• 4.3) File Manager: The file manager itself does not contain any data, it helps in connecting

the repository to the Test harness functionality. There is a decision box there that checks if
the file is actually present in the file manager that has to be tested, if yes it goes further to the
next activity. If not then the process is sent back to the GUI phase to make sure the file is
present for testing.

• 4.4) Read Xml code: Here the logic for the Xml code is retrieved that tells us what testing

operation we need to do for a particular input.

• 4.5) Loader: As the name suggests the loader loads the file to the test harness environment

for the testing activity to start. There is one more step here after the loader is the test driver
phase is used for integration testing. Loading of file details are also logged.

• 4.6) Test Driver: Here we make use of a “dummy” module to complete integration testing

process. It is used when the calling function is needed for execution by the lower module
function to complete the testing. It is more complicated than stubs.

• 4.7) Error Handler: If there is an error during integration or any exception error like data

structure error is empty or queue is empty we have to cats these errors and make them test
ready. We can also use try-catch block for exceptions.

• 4.8) Queues: The input from the user is put into a queue for the test harness to pop and run

tests on. This avoids overloading of input data and unnecessary complexity in the system.
Basically the user queues the Xml input data and the test harness de-queues the data for
testing.

• 4.9) App-Domain: This is an important part of the code here we use App-Domain such that

if one data is running a test then it’s presence or result should not affect any other test that is
or will be conducted. One single user has one App-Domain for it’s test cases. So each user
has a different App-Domain for it’s test cases.

• 4.10) Test Harness: Here is where the crux of our code lies and also the central idea of our

project. Test harness can compute different types of automaton testing be it regression, unit

Test harness-OCD
SAHIL SHAH 14

Testing or integration testing. It computes test cases concurrently and gives test results for
each case whether positive or negative.

• 4.11) Report Generation: This is for the generation of a statement about a test that has

been conducted. It is a detailed summary about the test cases from the input to the output.
Irrespective of the test result it reports it and maintains the data of that particular test case.

• 4.12) Logger: The way to a proper coding application is that a developer must log very

possible activity. If any error or exception occurs the first thing a developer does is checks the
log files. Hence we log everything form the test output to the loading process.

• 4.13) More test cases?: This is a decision box that needs to run so that the test harness ca

make sure that all the test cases in the queue have been completed that were requested by
the user. If not it display’s the result to the user. If there are test cases left in the queue then
it goes back to the loader to mark the start of the testing of the next case as shown in the
activity diagram above.

• 4.14) Display: This simply display’s the result to the end user notifying it about the success

or un-success of the test.

The stop symbol suggests the end of the testing process.

4.2 Activity Diagram for Testing Process only

The diagram below shows the main process of the testing process in the application.

• Testing is the core area of our project where we process test cases to be tested in an
automated way.

• Once the initial phases of the repository and file manager are understood as explained in the
earlier activity diagram the next step towards testing is when the App-Domain is created.

• The child App-Domain has two roles:
1) Isolate different test cases from separate users so that the test running does not affect
another running test of a second user by the intervening of unhanded exceptions.

2) It enables the test harness to unload libraries, which means one has to unload the entire
library and not possible to unload only one. So, if we do not have any child App-Domain then
the main App-Doman has to be unloaded which stops the working of the entire test harness.
Hence it is clear that we need to unload libraries on a regular basis to avoid the memory from
getting over used.

• Once all the inputs from the queue are popped and executed the test harness moves onto the
test execution of anther user inputs after logging the results of the process.

Test harness-OCD
SAHIL SHAH 15

 The diagram of the above explained part is shown below:

Figure 3: Activity diagram of the testing process

Test harness-OCD
SAHIL SHAH 16

4.3 Flow of data:

Figure 4: Flow and reading of data before reaching the testing area

Test harness-OCD
SAHIL SHAH 17

Knowing the flow of data is an important factor in developing an application. It has to be known
precisely so that correct data can be monitored correctly and exceptions can be handled in an
easier fashion. In fact that is why we even log the entries of when the data is loaded or queued
or tested. The diagram above shows the flow of data before it reaches the testing area. It also
shows what information is extracted from the data that is, the Xml input.

4.4 Queuing and testing of data

The diagram below shows how:

 The input data from the user is stored in queue after the initial processes on the data are
completed.

 The data is stored in the queue for the test harness to test and display the result.

 The test harness de-queues the data one at a time and runs the testing processes on
them. It continues this process till the queue is completely empty.

 After this it displays the result.

 An important point to note is that all the inputs for a single user have one App-Domain,
and separate users have a different App-Domain so that test results are not affected.

File ManagerUser gives input Queueing of inputs

Test Harness pops each test
case input for testing and a
separate App-Domain for

each user.

If all the inputs in the queue
are tested it notifies the

user.
Display and log result

Figure 6: Queuing Process

Test harness-OCD
SAHIL SHAH 18

5. Partitions

In this each task becomes a package candidate. In this we decide the name of each package
and explain the function of each package and also the communication between them.
This figure below shows us the package diagram of the test harness system.

Tester Test Driver

Repository

Reports

Loader

LoggingUnit Testing

File
Manager

Display

Queue

Client

Figure 6: Package diagram for the test harness application

Test harness-OCD
SAHIL SHAH 19

The working of these packages is as explained below:

• 5.1) Repository: In a single line it is a central location in which data is stored and managed

in an organized way. In software testing it is a baseline of the test plans of the system and
various types of testing. The repository is accessible to users and also a place where data
and documents are found and used further in the system. Here for our purpose the repository
consists of the Xml code that needs to be tested.

• 5.2) File Manager: This is a connection that connects the repository to the loader. It itself

does not consist of any data but from the repository.

• 5.3) Test Driver: This an important part of the test harness system and make as the

“dummy” function for a calling module. They are used during bottom up integration testing in
order to act as temporary module for the higher modules that have not been tested. They give
the same output as the actual module. They are also be used when the software needs to
interact with an external system. Hence they are the building up process for an automation
testing environment.

• 5.4) Loader: A loader is a component that locates a certain document or data in a storage
area and loads it to a main stage area of the computer and gives the control power to this
particular data. Here in our system the loader fetches the particular input Xml files and gives it
to the test driver.

• 5.5) Tester: This is the main component of our project, the tester. Here is where the input

code from the user is tested for different tests and a result is received. These are automated
tests and run multiple test cases concurrently. Each test is conducted in such a way that it’s
result does not affect the result or working of the tester for an another test. There is a single
App-Domain for a single Xml request, which is generated by the test harness.

• 5.6) Reports: Every test that has been conducted needs to have a test report whether the

test was a pass or fail. Reports are a formal way of representing test results. They give us an
opportunity to estimate test results before hand. They show the operation condition of the test
conducted and help us to compare it with test objectives and desired results.

• 5.7) Logging: Logging is keeping track of all the test results, whether the loader loaded the

data correctly or information about any testing that was carried out. Basically logging
increases efficiency of a system and code. It can communicate what the system is doing with
the developer and help decrease complexity of the system. That is why as seen in the
diagram logging has been used at every step.

• 5.8) Unit Testing: Unit testing although preferred to be done via automation it can be done

manually too. Unit testing is basically the testing of all the small modules of the system to
ensure their proper working before we move onto the her testing phases of the system and
input data. These results are logged too.

Test harness-OCD
SAHIL SHAH 20

6. Critical Issues

These are issues that a test harness might face as discussed in the earlier section. Here we will
give a detailed ideas and solution to each issue. The solutions to such issues are discussed in
detail below:

6.1 Easy To Use

This is the most important critical issue in a test harness or rather any software project.

Solution: It is important that the testers, developers, managers and clients work and discuss
the project details and work out the necessary requirements of the project. If this doesn't
happen the software created by the developers wouldn't be of any use to the clients and the
testers might not understand how to use it or haven't been provided with the functionalities they
were looking for. This document can be very handy for all the users of the project. A strict
agenda and protocol should be followed towards building the project and testing methodologies,
in this way the project is clear and it becomes easier to use.

6.2 Performance

The system should be able to handle high load as well, when the flow of input is higher and the
load increases it might lower the speed of the test harness.

Solution: For this way we can make use of a data structure,queue. This can hold the input in
case of higher load and not affect the performance of the system.
Also, we can make use of messaging between modules, request and acknowledgment based
for usage of resources and not affect unwanted situations.

6.3 Deadlock Situations

Since we make use of multithreading during programming on a test harness and although they

provide us wit better performance the create a new issue, deadlock.

Solution: In this issue we can make use of thread pool. These thread pools reduce the number
of application thread and provide management of worker threads. They also help in decreasing
the complexity of the program.

6.4 Managing Regression Testing

When the project keeps in expanding, sometimes the the regression testing might go out of
hand or become uncontrolled.

Test harness-OCD
SAHIL SHAH 21

Solution: To check this uncontrolled problem of regression testing we can:

• Identify and label the cases to be tested.

• Manage the new modification of the regression tests to avoid confusion.

• Maintain a test log of the regression test cases result.

6.5 Overloading

As there can be endless testing options, there might be an increased load on the resources and
hence the system. There can be high number of cases and this can affect the performance of
the system.

Solution: There can be a check on which module is using the sources and for how long. Based
on the urgency, requirement and priority a module can gain access of the resource required.
The lock system can be used.

6.6 When to stop testing?

The possibility of performing tests are never ending as the permutation and combination of tests
cases can be endless. This makes testing an infinite process. We need to have a check on the
system to know when to stop the testing process.

Solution: Truly, there are three ways by which the testing process can be affected:

• Time factor

• Cost factor

• quality factor
Now depending in the budget and time factor testing need to be done smartly, leaving out the
unnecessary cases that do not need to be tested. Manual testing can check the easy bugs that
do not require automation testing. For the quality factor we can stop when the quality meets the
requirements or further testing will yield no better results than that are already present.

6.7 Service Level Agreement

We need to set a bar on the time frame or availability for a particular test case to increase the
efficiency.

Solution: For this we use Service Level Agreement or SLA is basically marked as a measurable
requirement check. It can label test case as ‘pass’ or ‘fail’. Depending on the response time the
tester can monitor and check for inefficiencies in the test cases.

Test harness-OCD
SAHIL SHAH 22

6.8 Catching Exceptions

The app domain will crash if there is an exception at runtime.

Solution: .NET provides to handle an exception at runtime and also the developer must try to
run exceptions by using try try-catch block.

6.9 Security

This system is being build for a class project and does not require any sort of security like
authorization or authentication.

7. Conclusion

Hence in conclusion we have created a concept document that can be used by different users as

mentioned in the earlier section of the OCD. It gives an idea of the working of the test harness

because of the separate diagrams that have been drawn. In the next section there are a few

prototype codes that explain the working of a few main areas of the project like loading using

App-Domain and getting the list of all Dll files from the file manager in a specified directory.

The document will be of great help to build the test harness in project #2 using C# and .Net

framework.

(P.T.O)

Test harness-OCD
SAHIL SHAH 23

8. Prototype

Here are a few code prototypes to first get .dll files from a directory and second to load
an App-Domain, execute it and display the result.

8.1 File Manager package that searches a directory tree, rooted at a specified
path, and displays the names of all DLL files encountered:

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace getFiles
{
 class getFiles
 {
 public static void Main()
 {

 // Get all the files ending with .dll in a specified directory
 //Using Directory.GetFiles(path, file ending in, search all directories)
 string[] filepath = Directory.GetFiles(@"C:\Users\Sahil\Documents\Visual
Studio 2015", "*.dll", SearchOption.AllDirectories);

 foreach (string file in filepath)
 {
 Console.WriteLine(file);
 }

 }
 }
}

Output:

*We can use try-catch block, but it is not necessary for this code prototype.

Test harness-OCD
SAHIL SHAH 24

8.2 Child App-Domain demo that loads a simulated test library, executes it, and
displays the results.

//With the help of Dr. Jim Fawcett's code from his website.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Reflection;
using System.Security.Policy;
using System.Text;
using System.Runtime.Remoting;
using System.Threading.Tasks;

namespace appDomain
{
 class Program
 {

 static void Main(string[] args)
 {
 //creeating child App-domain
 AppDomainSetup dinfo = new AppDomainSetup();
 dinfo.ApplicationBase = "file:///" + System.Environment.CurrentDirectory;
 Evidence evi = AppDomain.CurrentDomain.Evidence;
 //App Domain is created with this command with name Test
 AppDomain Test = AppDomain.CreateDomain("ToTestAppDomain",evi,dinfo);
 Test.Load("AppDemo");

 //give the path of the other .exe file to see if the app domain can run it
 // Test.ExecuteAssembly(@"C:\Users\Sahil\Documents\Visual Studio
2015\Projects\csdemo\csdemo\bin\Debug\csdemo");
 ObjectHandle handle = Test.CreateInstance("AppDemo",
"ConsoleApplication4.Program");
 object obj = handle.Unwrap();
 ConsoleApplication4.ITinterface console =
(ConsoleApplication4.ITinterface)obj;
 console.app();

 }
 }
 }

Test harness-OCD
SAHIL SHAH 25

Output:

Another application in the project folder is called and executed by the current App-Domain

9. References

1) http://ecs.syr.edu/faculty/fawcett/handouts/csE681/Lectures/Project1-F2016.htm
The entire crux of the project and OCD given by Dr. Jim Fawcett.

2) http://www.guru99.com/software-testing.html
Basic information about different types of testing and users of software testing.

3) http://stackoverflow.com/
 Helped resolving small conceptual errors

4) https://msdn.microsoft.com/en-us/library/system.appdomain.aspx

Gave definition and explained syntax for the prototype.

5) http://istqbexamcertification.com/what-is-test-harness-unit-test-framework-tools-in-
software-testing/
Entire basics of the software testing concept.

6) https://www.wikipedia.org/

Small definitions about different components of the application.

http://ecs.syr.edu/faculty/fawcett/handouts/csE681/Lectures/Project1-F2016.htm
http://www.guru99.com/software-testing.html
http://stackoverflow.com/
https://msdn.microsoft.com/en-us/library/system.appdomain.aspx
http://istqbexamcertification.com/what-is-test-harness-unit-test-framework-tools-in-software-testing/
http://istqbexamcertification.com/what-is-test-harness-unit-test-framework-tools-in-software-testing/

Test harness-OCD
SAHIL SHAH 26

