

CSE 681- Software Modeling and Analysis

Test Harness
Project 1 – OCD

Moneesha Modi (SU ID : 861810128)
9/14/2016

Table of Contents

1. Execution Summary .. 3

2. Introduction .. 5

2.1 Application Obligations ... 5

2.2 Organizing Principles ... 5

2.3 Key Architectural Ideas ... 6

3. Users and Uses .. 7

3.1 Developers .. 7

3.2 Instructor/Teaching Assistant/Graders ... 7

3.4 Quality Assurance (QA) ... 7

3.5 Extending to Project 4 ... 8

4. Partitions ... 9

4.1 Test Executive ... 9

4.2 Demo Client .. 10

4.3 Blocking Queue ... 10

4.4 XML Parser .. 10

4.5 Repository ... 11

4.6 File Manager ... 11

4.8 Application Domain Manager ... 11

4.9 Logging Manager ... 12

4.10 Database ... 13

5. Application Activities .. 14

5.1 High Level Activity Diagram ... 14

5.2 Application Domain Manager Activity Diagram .. 16

6. Critical Issues ... 18

6.1 Ease of Use .. 18

6.2 Performance and Productivity .. 18

6.5 Logging .. 19

6.6 Security ... 20

6.7 Extending to Project 4 ... 20

7. References .. 21

1. Execution Summary

In large software development companies, the software developed consists of millions

of lines of code and is developed by hundreds of developers. Every developer perhaps is

responsible for a set of modules which is developed, tested and then needs to be

integrated. This integration needs you to combine the modules and packages developed

by the developers after individually testing each module. Testing each package or

module is an extremely tedious and time consuming process especially for large

software systems. Hence comes into scenario the concept of a test harness. A test

harness interacts with the client for input of test code and automates the process of

testing multiple packages. It sends the test results to the user through messaging. The

tested code is then added to the baseline code. The test harness can be used to perform

various forms of tests such as Construction Tests, Unit Tests, Regression Tests,

Integration Tests, Qualification Tests and Performance Tests.

The key features of this system can be illustrated as follows:

 Test Executive: This module will demonstrate the user the working of the entire

system and ensure that all the requirements are met.

 Application Domain Manager: This module will enable the test harness to

isolate each of test requests consisting of test codes to run separately and

records the test results.

 Loader: This package will assist the application domain manager to load the

dynamic link libraries associated with each test driver and its test code.

 Logger: The logging manager will record the details of all the testing performed

such as timestamp, test cases tested, results of the tested test cases etc.

 Messaging: The test driver and test code to be tested will be specified to the test

harness through this module via XML files. The test results will also be

communicated to the user via this feature.

 Demo Client: This package will feature a command line interface for the user to

provide the code to be tested.

The primary users for this system are the developers, instructors, teaching assistants,

QAs and the managers. A few critical issues shall be considered while developing the

system and their solutions would be provided. Some of these are:

 Ease of Use:

 Performance

 Demonstration

 Accuracy

 Security

 Logging

 Extending to Project 4

The test harness will therefore be excellent for automated testing and will reduce the

load of the users to a great extent. This document shall explain all the functions of the

system, users at various levels, application activities, interactions between various

packages, modules and the structure of the test harness in detail. It will also provide

discussion on the various critical issues and the solutions recommended for these issues.

2. Introduction

In the recent age of technology and communication, Information Technology plays a

huge role in all aspects of our lives. There are millions of people seeking jobs in this

industry and building companies on this front. There are huge IT companies such as

Microsoft, Google, Amazon, Apple, VMWare, Yahoo, Facebook and IBM where billions

of lines of code is being developed everyday by millions of software developers. This

code needs to be tested again and again by developers, testers and managers. To make

the lives easier of these IT professionals easy, we need to develop a test harness to

automate the test procedure and monitor the results. The test harness should enable

the tests to run multiple times or at fixed intervals. The test harness should provide the

following benefits:

 High productivity and performance

 Improved quality of software being delivered

 Reduce manual labor and intervention

2.1 Application Obligations

The key feature of the test harness is to automate the testing process such that the

procedure becomes less complicated, easy to use, fast and robust. The primary

obligations of the system are:

 Creating a repository for all the dependent code, test drivers and tested code

 Sending out test requests to test harness through XML files

 Parse the XML files and queue the requests with the help of a blocking

queue.

 Using application domain managers to isolate each of the test requests so

that they run separately on the child app domain.

 Creating dynamic link libraries (dlls) through C# code for each of the tests

that need to be run.

 Using a loader to load the dynamic link libraries into the application domain

managers

1.1 Organizing Principles

The organizing principles of the system are to perform the primary functions of the

test harness and provide solutions to all the critical issues. The system should make

use of various C# factory methods, test drivers; different packages for each features,

dynamic link libraries and application domain managers and XML files.

1.2 Key Architectural Ideas

In our system, we will create a directory consisting of all the baseline code, test drivers

and the test code in the form of dynamic link libraries. This directory serves as our

repository. This system will be built in C# using the .Net framework and Visual Studio

2015. The users will interact with the test harness through a command line interface

and send out test requests in the form of XML files. These test requests are enqueued in

a blocking queue and dequeued one at a time. Every request is parsed and the required

dynamic link libraries are fetched from the repository. The dynamic link library for every

test request is run on a separate application domain with the help of a loader. Finally

the test results are sent to the user and the results are logged in the database.

2. Users and Uses

2.1 Developers

The developers can use the test harness to automate their testing process and

generate test results of the code they have developed. The developers can specify

the names of the test drivers and the test code libraries through an XML file. These

libraries will be fetched from the repository and run on different application

domains to get a “Pass” or “Fail” test result for every test case in the test driver.

2.2 Instructor/Teaching Assistant/Graders

The instructor, teaching assistant and graders can use this tool to examine the

system and check if all the requirements are met or not. They will be provided with a

test executive by the developers which will demonstrate all the requirements of the

test harness.

2.3 Managers

The managers in a software company can use the test harness to check the log

messages which are recorded by the logging manager. The log messages can provide

them the information of all the code that has been tested in a current period of time

and their corresponding results i.e. whether a particular test case has passed or

failed. By this process, the managers can constantly monitor the progress made by

the developers and can track their activities.

2.4 Quality Assurance (QA)

The quality assurance team in various software companies perform testing before

the code is delivered or deployed. Hence they can also use the test harness to

perform qualification tests, performance tests and regression tests. They can use the

test results to determine of the code is fit to be deployed or not.

2.5 Extending to Project 4

In Project 4, we will be converting the test harness to run on remote machines on

different threads thereby increasing the impact of the system. This will enable the

test harness to run simultaneously on various machines and test different test

drivers on different machines. It will improve the speed of the entire testing process.

It also enables the system to be scalable, robust and perform better.

3. Partitions

The test harness is divided into various packages which perform a set of functions and

interact among each other. The package diagram for our system is illustrated below:

 The basic functionalities of all the packages are described below:

3.1 Test Executive

The test executive is the main entry point of the application. This package provides a

batch file to the user which will demonstrate that all the requirements of the system

have been met and that the system is working as expected. The test executive shall

demonstrate a few test cases which are successful, a few test cases that fail. It will

also test a part of the code of the test harness.

The main method resides in this package and shall make a call to the Demo Client

package which will provide a command line interface to the user.

The test executive can make calls to the following other packages to perform other

functions:

i) Demo Client to show the test results on the console

ii) Logging to display log messages to the manager

iii) Database to retrieve test results and test logs.

3.2 Demo Client

The demo client package displays a command line interface to the user when called

by the Test executive package. The demo client parses the command line arguments

provided in the test harness. These command line arguments will be a path of the

repository, type of user and a directory which consists of the XML test requests that

need to be run on the test harness. These test requests are retrieved from the

specified directory and sent to the Blocking Queue package.

3.3 Blocking Queue

The Blocking Queue package provides a mechanism for the XML files to be tested

one at a time. It consists of two operations:

3.3.1 Enqueue

The enqueue operation adds all the XML files to the queue when the test harness

calls the Blocking Queue package.

3.3.2 Dequeue

Once all the XML files are enqueued in the blocking queue, one XML file is dequeued

at a time. If the queue is empty when the reader attempts to dequeue an item then

the reader will block until the writing thread enqueues an item. The blocking queue

is implemented using a monitor and lock to make the waiting efficient. The dequeue

operation calls the XML parser package for decoding the XML files

3.4 XML Parser

When the XML parser receives the XML document, from blocking queue, the

document is parsed by the XDocument class which is represented by a XML

document under the System.Xml.Linq namespace in the C# library. The parser

retrieves the names of the test drivers and libraries from the XML file and stores

them in a List. After the document has been parsed, the Repository package is

called. A sample XML file has been included in the appendix.

3.5 Repository

The Repository consists of a directory which consists of all the dynamic link libraries

of the dependent code, test drivers and the code to be tested. When the XML Parser

makes a call to the Repository package, the repository scans through the list of

libraries to be tested and checks which are the dependent libraries for the libraries

mentioned in the XML input. The dependent libraries are also added to the list of

required libraries. The repository also consists of the path at which it resides on the

machine. The repository calls the file manager package and sends the list of libraries

to the file manager.

3.6 File Manager

The File Manager package accepts the list of libraries required to test the code from

the repository and runs a scan from the directory where the repository is placed. It

searches for all the *(.dll) files, compares them with the required list of libraries and

then extracts the path of each of the libraries to be tested.

3.7 Loader

The loader is responsible for loading the dynamic link libraries for each of the test

drivers and their test codes in individual application domain managers so that they

are isolated and run separately from each other.

3.8 Application Domain Manager

Each .NET process usually hosts just one application domain: the default domain,

created automatically by the CLR when the process starts. It’s also possible and

sometimes useful to create additional application domains within the same process.

This provides isolation while avoiding the overhead and communication

complications that arise with having separate processes. It’s useful in scenarios such

as load testing and application patching, and in implementing robust error-recovery

mechanisms.

3.8.1 Creating an Application Domain

 // Create application domain setup information for new AppDomain

 AppDomainSetup domaininfo = new AppDomainSetup();
 domaininfo.ApplicationBase = "file:///" + System.Environment.CurrentDirectory;

 // defines search path for assemblies

 //Create evidence for the new AppDomain from evidence of current

 Evidence adevidence = AppDomain.CurrentDomain.Evidence;

 // Create Child AppDomain

AppDomain ad = AppDomain.CreateDomain("ChildDomain", adevidence,
domaininfo);

3.8.2 Unloading an Application Domain

// unloading ChildDomain, and so unloading the library

 AppDomain.Unload(ad);

The application domain manager is responsible for isolating each of the test

requests so that they run separately on child app domains. The loader is injected in

the primary application domain. The dynamic link libraries are loaded by the loader

in their individual app domains. Once the application domains have run the code,

the results of each test case is inserted in the database and sent to the demo client

for display to the user using the getLog() function of the ITest interface. This function

returns a string consisting of the test results of the request. The logs of the test case

are sent to the Logging Manager package which are further stored in the database

and can be accessed by the manager whenever required.

3.9 Logging Manager

The logging manager keeps a track of all the details of the test harness. It constantly

monitors the following attributes of the system:

i) Timestamp of when the test harness was last run

ii) Test cases that were executed in the past 24 hours

iii) Test cases that were executed in the past one week

iv) Test cases that were executed in the past one month

v) Test results of the test cases executed in the past 24 hours

vi) Test results of the test cases executed in the past one week

vii) Test results of the test cases executed in the past one month

viii) Modules tested in every run

ix) Increase of modules in the baseline code in the past one week

x) Increase of modules in the baseline code in the past one month

The above attributes will be sent to the database through query processing using a

feature called ADO.Net in C#

3.10 Database

We will be using the NoSQL database MongoDB for storing the test results and the

test result logs. When a user wants details regarding a specific test run, we can

query the database and retireve the results and send it to the Demo Client which will

display the log details of that test run on the console for the user to see.

4. Application Activities

4.1 High Level Activity Diagram

The above activity diagram describes the flow of activities which will occur in the test

harness that we will build. Following are the steps of action for the entire system:

1) When the test executive runs, a few command line arguments are passed to the

system. These are:

a) Path of the repository

b) Type of User

c) Path of test requests

2) The type of the user is checked. If the user is a manager, he just needs to access log

files of previous test requests while if the user is a developer, he will actually

perform test automations on the test harness.

3) If the type of user is a ‘Developer’, then the xml test requests are retrieved from the

path specified in the command line arguments and these files are enqueued in the

blocking queue.

4) If the queue is empty, then it just waits until a request is enqueued in the blocking

queue and updates the database with previous log files, if any.

5) If the queue is not empty, then the first test request from the blocking queue is

dequeued and passed to the XML parser.

6) The XML Parser decodes the dynamic link libraries of the test drivers and the

associated code to test from this XML file and adds it to a list. The list is sent to the

Repository

7) The repository is a directory consisting of the baseline code which is at a path

specified as a command line argument, accepts the list from the parser, checks if the

code to be tested is dependent on any libraries from the baseline code and adds the

dependent libraries to the list of libraries.

8) The file manager accesses the repository and retrieves the paths of the dynamic link

libraries required based on the list of libraries

9) This list is then sent to the Application domain manager which creates a child

domain to run the test request.

10) The loader in injected in the application domain manager and the dynamic link

libraries are loaded in it. The test requests run separately on different child app

domains

11) Once the application domain manager starts running the test requests, the logger

manager is called to log the results of each test driver and its test cases.

12) The test results for each test request are saved in a directory and then sent to demo

client so that they are displayed to the user.

13) After this the control foes back to the blocking queue and checks if there are any

more test requests enqueued and if there are, then the next test request is dequeud

and the entire process from step 5 to 13 starts and executes all over again till the

blocking queue becomes empty.

14) Once all the test requests are processed, then we call the getLog() method to get the

logging details such as the author, timestamp, test results, test cases and the entire

report of all the test requests.

15) We can create a log file and insert the data to a database by establishing a

connection using ADO.Net in C#.

16) If the type of user is a ‘Manager’ then we retrieve the list of XML test request files

and send it to the logger.

17) The logger checks the database for the latest test run of these libraries through

query processing.

18) The database returns the results through a log file.

19) The contents of this log file are displayed to the user on the console.

4.2 Application Domain Manager Activity Diagram

The detailed functioning of the application domain manager can be given through the

following steps:

1) The primary application domain manager is created for the test harness to run.

2) The app domain is setup by setting up parameters of the application domain such as

Application Base and Evidence.

3) When the test requests are ready to execute and all the dynamic link libraries

associated with the test request have been retrieved, then the primary app domain

is called to create a child domain to run the test request.

4) After the instance of the child app domain is created, the loader is injected into the

app domain.

5) The libraries associated with the test code and the dependent libraries are loaded

into the child domain using the ITest Interface.

6) The libraries are run on the child application domain using the test() method of the

ITest interface.

7) After the test request is executed, the logger is called to log the details of the test

request and test results.

8) The test results are displayed to the user on the console after every test request is

executed.

9) The test results are stored in a dictionary with a key value pair where the key is the

test request and the value is the result in the form of “Pass” or “Fail”.

10) The ITest interface also consists of a getLog() method which gets a string consisting

of all the details of the test request. This is inserted into the database.

5. Critical Issues

5.1 Ease of Use

The first and foremost critical issue of a test harness is the simplicity and user

friendliness of the system. The main purpose of a test harness is to make life easy for

the IT professionalism. The test harness has a lot of scope to this since the entire

process of testing can be automated and they can leave the test harness for hours with

a queue of test requests without any manual intervention. But this can be achieved only

if the system is simple and easy to use.

Solution:

The solution to this issue is to create a user friendly interface for the test harness which

does not ask for too many input parameters. Hence, we can pass the path of the

repository and test request along with the type of user. We can also address this issue

further by construction of a graphical user interface in the further project 4 where user

can choose the type of user from a combo box and can browse through the file system

to choose the path of the test request and the repository.

5.2 Performance and Productivity

The performance of the test harness refers to the complexity of the algorithms used to

design the system. We can measure this by the time complexity and the space

complexity of the system. The productivity of the system depends on the usage and the

comparison of the time taken to perform the test requests through the test harness and

manually.

Solution:

To achieve low time complexity, we must make sure that the interaction between

various packages occurs in an efficient manner without any deadlock conditions. Also,

we can monitor the number of nested loops. The space complexity can also be reduced

by reducing the number of data structures such as arrays, lists and generics such as

dictionaries, hashtables etc used for the development of the system.

5.3 Demonstration

Demonstration of the test harness is an important factor when we consider the

flexibility of the system. In order to project the proper working of the system, the

complete set of requirements need to be showcased to the user so that the user

understands the working of the system in an adequate manner. Also, all the

functionalities of the system need to be properly tested.

Solution:

 The solution to demonstrating requirements can be fulfilled through the test executive

package which demonstrates the working of the test harness by testing its requirements

through the following test requests as a developer type of user:

i) Test code that generates test result “Pass”

ii) Test code that generates test result “Fail”

iii) Test code that tests the test harness code

The creation of log files and insertion of the database can be demonstrated by the user

type as manager.

5.4 Accuracy

The accuracy of the system is a significant issue since the test harness should provide

the correct results of the code that is being tested. If the test harness gives the result as

“Pass” then the code should be correct and function as per the requirement while if the

test harness claims failure for a certain test case, then there should actually be some

defect or bug in the code.

Solution:

Accuracy in the test harness can be ensured by adopting the following coding measures:

i) Correctly parsing the XML test request document and decoding all the library

names accurately.

ii) Proper maintenance of library lists. Clearing the list every time the test harness

runs.

iii) Retrieving the correct paths for the dynamic link libraries from the repository.

iv) Loading the test request libraries properly into the child app domain and

recording the test results correctly for each test case.

5.5 Logging

Logging is a critical issue for the test harness since we need a efficient mechanism to

send messages to the database and back to the demo client and display messages to the

user. Messages should be test results or log files to the database.

Solution:

An interesting way of logging messages that has been adopted in this project is by

recording the results of the test cases in a dictionary and print the values to the user

after every test request is executed After all the test requests are executed we can

retrieve a string by the getLog() method and create a log file by adding the details. We

can then insert the log file in the database.

5.6 Security

Security is an important aspect of this system since it comprises of many different types

of users and every user has different levels of functionalities associated with the system.

The developer uses the test harness for testing their own code. The managers use it for

checking logs. The QAs use it to test the developer’s code. Lastly the TAs and the

instructors use it to evaluate the requirements of the system.

Solution:

The system can be made secure by giving permissions to the users in such a way that

the developer cannot access the functionalities of the manager.

5.7 Extending to Project 4

We will be further extending this project to a more complex version of the test harness

where we would be implementing the following features:

i) Running the test harness on multiple threads

ii) Executing test requests simultaneously on multiple machines through a client-

server model using Windows communication server (WCF)

iii) Establishing a two-way communication between the primary application domain

and the child domain.

iv) Handling complex test code to enable that it can be run on the test harness

v) Designing a graphical user interface (GUI) for the better usage and efficient

interaction with the system.

6. References

1) http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures

2) https://en.wikipedia.org/wiki/Test_harness

3) Project starter code given by Prof. Jim Fawcett

4) Joseph Albahari, Ben Albahari, O’Reily, C# 6.0 in a Nutshell

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/lectures
https://en.wikipedia.org/wiki/Test_harness

7. Appendix

7.1 Sample Test Request XML File

Below is a sample test request in the form of an XML file which we will be providing as a

command line argument to the user in the test executive.

7.2 File Manager Prototype

The file manager prototype takes an input test request in the form of an XML file

consisting of names of various .dll files. We parse the file using the XDocument class

and get the various dynamic link libraries in the XML file. These libraries are then

searched in the repository which is a directory tree and their entire DLL name along

with the full directory path in which they reside is displayed on the console.

Below is the output of the file manager prototype:

7.3 Child App Domain Prototype

In the child app domain prototype, we create a child app domain, load the dynamic

link libraries, create an ITest interface which loads the test driver and the associated

test code and executes the code.

Please find below the output of the child app domain prototype:

