
Software Structure
Jim Fawcett

Software Modeling

Copyright © 1999–2017

Introduction

What Is Software Structure?

• Partitions—classes, packages, systems

• Separation of concerns

• Communication

• How do the parts make requests and send

notifications?

• Sharing

• How is data shared between the parts?

• Control

• Which parts interact with which other parts?

Program Structure

• Logical—class structure:

• Interfaces, classes, and class relationships

• Package—code file structure:

• Package dependency tree, as shown in package diagrams

• Subsystems, e.g., collection of packages separated by interfaces

with each focused on specialized processing

• For a radar those might be signal processing, beam forming, data

management, operator control, communication.

• Execution—binary structure:

• Monolithic program, e.g., an exe

• Program with loadable Dynamic Link Libraries (DLLs)

• Cooperating processes, e.g., client-server, server federation.

Code Analyzer Example

• The next slide shows the logical structure of a

code analyzer, focusing on the front-end analysis.

• There are four modules

• Lexical scanner—reads token groups from stream

• Parser with rules and actions—builds AST

• Executive with builder—assembles all the parts

• Display—maps AST data into information

• You will find more discussion in the Parser Blog

Scanner

Parser

Executive

+addRule(in pRule : IRule*) : void

+parse() : bool

-breakingRules : vector<IRule*>

-nonbreakingRules : vector<IRule*>

-ITokColl : ITokCollection*

Parser

+addAction(in pAction : IAction*) : void

+doActions(in pTokColl : ITokCollection*) : void

+doTest(in pTokColl : ITokCollection*) : bool

-actions : vector<IAction*>

IRule

+doAction(in pTokColl : ITokCollection*) : void

IAction

+get() : bool

+operator[](in n : int) : string

+find(in tok : string) : int

+remove(in tok : string) : bool

-pToker : Toker*

-toks : vector<string>

XmlParts or SemiExp

DerivedRule1

DerivedAction2

+getTok() : string

+attach(in name : const String&, in isFile : bool) : bool

-scToks : string

-putbacks : vector<char>

Toker

istream

ifstream istringstream

Parsing Facility

ostream

GUIExec

A

A

A

A

DerivedAction1

A

A

IBuilder

ConfigureParser

AA

DerivedRule2 ScopeStack

A

ConsoleExec

Repository

Display

Formatter Display

A

ITokCollection
AbstrSynTree

Software Structure Contents

• Data driven

• Client server

• Three tier

• Model-View-Controller

• Layered structure driven

• Components

• Services

• Analysis driven

• One pass

• Two passes

• Communication driven

• Client server

• Peer-to-peer

• Middleware

• Thread and event driven

• Single Threaded Apartment

(STA)

• Parallel execution

• Pipeline execution

• Enterprise computing

• Federated systems

Data-Driven Structures

Data-Driven Structures

• Some program structures are driven by the

presentation and management of data:

• Client-server

• Three-tier

• Model-view-controller

Structure: Client-Server

• Behavior:

• Server is passive, waits for client requests.

• Server contains data shared among its clients.

• Server handles multiple concurrent clients.

• Without additional structure system may become tightly coupled

and difficult to change.

• Example:

• Web server and browser clients

Client Server

Sharing Data

• Relational databases—SQL Server, mySql, …
• ACID—Atomicity, Consistency, Isolation, Durability

• ACID => transactional

• NoSQL databases—MongoDB, CouchDB
• Key-value, document, hierarchal

• Very flexible data structure

• Consistency is pushed onto the application

• File systems

• Ad hoc in-memory repositories

• Extensible record stores—Google’s Big Table
• Distributed partitioned tables

• Document stores—CouchDB
• Multi-indexed objects aggregated into domains

Separation of Concerns

• Except for the simplest of applications it’s

not a good idea to bind presentation,

control, and data together.

• There often are many views, more than one

application mode, many sources of data.

• If we bind these all together, we get spaghetti

code.

• Very hard to test, hard to maintain, hard to document

Structure: Three Tier

• Structure:

• Partitioned into presentation, application logic,

and data management.

• Intent is to loosely couple these three aspects

of an application to make it resilient to change.

• Examples:

• Most well-designed applications

Model-View-Controller

• Structure:

• MVC is a refined version of the three-tier structure, intended

to support multiple views and data models.

• Models do all data storage management.

• Views present information to user, format output, but do no

other transformations on data.

• Controllers accept inputs, implement application processing,

and use models and views to provide the application’s

behavior.

• Application phases often have one controller each.

• Models may be shared between controllers.

• Example: Asp.Net MVC

https://www.asp.net/

Basic MVC Structure

View Controller ModelRender

User Actions

Reply

Request

User Inputs

MVC—With Views

and Application Models

• Views and models often have some

substructure, e.g.:

View Controller
Applic

Model
Render

User Actions

Reply

Request
View

Model

Data

Model

N-Tier Structure

• So, the three-tier MVC has morphed into a five-

tier V-VM-C-AM-DM

• View—what gets rendered

• View model—an abstraction of the view

• Controller—routes View events to handlers in the

Application model

• Application model—classes that model the “business”

logic

• Data model—models data storage tables

• Database, XML file, custom data structures

Layer-Driven Structures

Component-Layered Structures

• Structure:

• A componentized system is composed of an application

with many pluggable component parts.

• A component is pluggable if it implements a plug-in

interface, published by the application, provides an

object factory for activating its internal objects, and is

packaged as a Dynamic Link Library (DLL).

• Example:

• http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE68

1/code/Parser/ almost implements

http://www.ecs.syr.edu/faculty/fawcett/handouts/CSE681/code/Parser/

Hiding Implementation Details

Package A

Factory Interface

Package B

Factory InterfaceFactory

class B

class A

class C

class A

Example Componentized System

Separate

presentation

from

application

logic
Component1 Component2 Component3

GUI

Asynchronous call

Asynchronous call

Asynchronous call

Service Layered Structure

• Provides a structure based on:

• System services—things the user doesn’t think

about

• Communication, storage, security, file caching, …

• User services—things the user manipulates as

part of the use of the system

• Input, Display, Check-in/Check-out, …

• Ancillary—things that are not part of the system

mission but are necessary

• Logging, extension hooks, test hooks, …

Distributed Services

• Structure:

• Service-oriented systems are simply client server.

• Usually the server is implemented with a web service or operating

system service.

• Web service is a web application that provides an interface for client

software to access.

• OS service is a system application that provides an interface for

requests and an administration interface for setting service startup and

shutdown policies.

• Windows Communication Foundation (WCF) has extended that

model to support hosting in:

• Desktop application

• Windows service hosted with Windows Service Control Manager (SCM)

• Web service hosted by Internet Information Server (IIS).

UDDI

Registry

Web Site

DISCO file

WSDL

WEB Service

Discovery

Interface

SOAP Messages

Internet

Internet

C# Web Services, Banerjee, et. al.,

WROX, 2001

WCF Protocols

• WCF supports:

• Http—SOAP over Http in clear text—BasicHttp

• Http—SOAP with security extensions—WsHttp

• NetTcp, SOAP over TCP

• SOAP—Simple Object Access Protocol

• An XML body for HTTP or TCP messages

• Usually contains a message body in XML defined by a

data contract

• WCF is a very flexible, relatively easy to use, but

heavyweight communication mechanism

REpresentational State Transfer

• REST is a message-passing communication system

built on the HTTP protocol, using the web verbs:

• Get—retrieve a resource without changing the state of the

server

• Post—send information to the server that may change its

state

• Put—place a resource on the server

• Delete—remove a resource from the server

• Its encoding is UTF text, not SOAP or some other

complex messaging format, but may use encryption,

as in HTTPS.

Analysis-Driven Structure

Analysis-Driven Structure

• Packages

• Gather working set (inputs needed for analysis)

• Execute one or more phases of analysis

• Filter and interpret resulting data to provide

information

• Present the analysis information

Package Structure—Analysis Driven

Gather

Inputs

Executive

Display

Results

collection

request

sends

parameters
computation

request

display

request

selects

filter

Transform

Inputs
collect

inputs

collect

results

Pipelined Dependency Analysis

filespecs

Type Analysis

Merge Type

Tables

Partial TypeTable

Filespecs

And

Type TableDep, Relation

Analysis
Partial Results

Merge Results

Start Pass #2

Start Pass #1

Scheme for Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Thread Safe

Blocking Queue

Communication-Driven

Structure

Communication-Driven Structure

• When users, data, and application logic are

distributed across processes and machines

communication becomes important:

• Client-server

• Peer-to-peer

• Communication middleware

• RPC (RMI)

• Message-Passing

Performance

• Suppose that processing a request takes T units

of time if requester and provider are in the same

process.

• Executing the same request across processes

takes about 10 T units of time.

• Executing the same request across a network

takes about 100 T units of time.

• Executing the same request across the Internet

takes about 1,000 T units of time.

Structure: Client-Server

• Behavior:

• Server is passive, waits for client requests

• Server handles multiple concurrent clients

• Without additional structure system may

become tightly coupled and difficult to change

• Example:

• Web server and browser clients

Structure: Peer-to-Peer

• Behavior:

• Peers interact, sending and receiving messages from each other.

• Peers are sometimes identical.

• Many peer-to-peer models support central or distributed locater

services.

• Examples:

• http://www.ecs.syr.edu/faculty/fawcett/handouts/

CoreTechnologies/SocketsAndRemoting/code/

WCF_Fawcett_Examples/WCF_Peer_Comm/

• BitTorrent

• Napster

http://www.ecs.syr.edu/faculty/fawcett/handouts/CoreTechnologies/SocketsAndRemoting/code/WCF_Fawcett_Examples/WCF_Peer_Comm/

Peer-to-Peer Asynchronous

Message-Passing Structure

Receiver

Sender

Receiver

Sender

Receiver

Sender

Sending

Message

Each Peer is a separate

process possibly on separate

machines

Peer UIForm

Peer UIForm

client

Send thread

Server

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

Main thread

Posts message

client

Send thread

Server

Remote Communication

Activated Object

(Receive) Thread

main thread

gets message

main thread

posts message

Remoting Object

Receive Thread

created by Run-

Time system

Send thread created

by client main thread.

Static

Collection

Of client

references

Static

Collection

Of client

references

A Reusable Communication Structure

Servers use

message IDs or

types to figure out

what to do with

each message.

Processing

Processing

Communication Types

• Remote Procedure Call (RPC):

• Supports function call semantics between processes and

machines.

• Sends messages over wire but provides stack frames for client and

server to support the function call model.

• Examples: COM, CORBA, WCF

• Message passing:

• Sends message with encoded request and/or data

• Message contains endpoint information for routing

• Directly supports asynchronous processing

• Examples: Internet, web, SMA and OOD projects

Communication Patterns

• TwoWay:

Synchronous request, wait for reply

• Duplex:

Asynchronous request, reply sent as callback

• OneWay:

Send message and forget

• Receiver may send result back to requester as a

subsequent OneWay message

• Examples:

• All of the above are supported by WCF

Communication Style

• Push model

• Send information to a remote endpoint via a service

call, perhaps via a message:

void PostMessage(Message msg);

• Pull model

• Retrieve information from a remote endpoint via a

service call, perhaps by a streaming download:

Stream downLoad(string filename);

Communication Style

• Pull service and caching

• A software repository could expose a WCF

service that provides information about its

package contents including dependencies.

• That allows a client, for example, to pull from

the repository all files in a package dependency

list that are not already in its file cache.

Thread and Event-Driven

Structure

Structure: Publish and Subscribe

• Structure:

• Many-to-many connection of publishers and

subscribers.

• Each subscriber registers for notifications with a specific

interface.

• Publishers send notifications to all enrolled subscribers

when a publisher event occurs.

• Publishers can support multiple events.

• Publishers don’t need to know anything about the

subscriber.

Publisher
Event

Event

Publisher
Event

Event

Subscriber

Subscriber

Subscriber

Notify

Register for Notification

Threading-Driven Structure

•Some program structures are a

consequence of specific threading

models.

• Event-driven and Single-Threaded

Apartment (STA)

• Parallel execution

• Pipelined execution

Structure: Event Driven

• Structure:

• Events from multiple concurrent sources

generate messages which are enqueued, and

typically are processed by a single handling

thread.

• Messages are dispatched to event-handlers for

processing.

• Example:

• Windows processing

Event Driven

Active Window

keyboard

mouse

other

devices

Window Manager

messages filtered for
this window
posted by

operating system
thread

event

handler

function

Main thread in active window

blocks on call to getMessage until

a message arrives. Then it is

dispatched to an event handler

associated with that message

Raw Input Queue

Windows Message
Queue

Single-Threaded Apartment

• Graphical user interfaces all use the STA model.

• Possibly concurrent clients send messages to the GUI’s

message queue.

• All messages are retrieved by a single thread, the one

that created the window.

• Child threads, often used to execute tasks for the GUI,

are not allowed to directly interact with the window.

• Instead they must send or post messages to the

window’s message queue.

• This is often done with Form.Invoke or

Dispatcher.Invoke.

Parallel Execution

• Structure:

• Often concurrent programs provide enqueued task

requests.

• Threads, perhaps from a thread pool, are dispatched to

handle each task.

• Tasks must be independent in order to fully realize the

benefits of concurrency.

• Example:

• Concurrent execution of dependency analysis tasks.

filespecs

Type Analysis

Type Analysis

Type Analysis

Type Analysis

Thread with filespec
Partial TypeTable

Merge Type

Tables

Partial TypeTable

Filespecs

And

Type Table

Dep, Relation

Analysis

Dep, Relation

Analysis

Dep, Relation

Analysis

Dep, Relation

Analysis

Thread with filespec

and

Type Table

Partial Results

Merge Results

Start Pass #2

Start Pass #1

Scheme for Parallel Execution of Dependency and Type Relationship Analysis

Projects #1, #2, #3, #4

Thread Safe

Blocking Queue

Enterprise Computing

Enterprise Computing

• Large enterprise applications are usually

constructed as a federation of lower-level

systems and subsystems.

• The federation is glued together with network-based

middleware, or more commonly now, with web services.

• Example: PeopleSoft, used by Syracuse U

• Payroll and accounting

• Academic planning and record keeping

• Employee services

• A variety of web applications, like mySlice

Enterprise App: Project Center

• Federation of tools supporting software

development

• Open source tools with integrating wrappers:

• CVS—configuration management

• Nant—software builds

• Nunit—software testing

• Newly developed and legacy tools:

• Bug tracker, change tracker, project scheduler

• http://www.ecs.syr.edu/faculty/fawcett/

handouts/webpages/ProjectCenter.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/ProjectCenter.htm

Project Center

ASP UIF

Project Center

WinForm UIF

Config Mgmt

CVS

RCS

Build

NAnt

Test

NUnit

Bug Tracker

Data Manager

Change Log

Project Scheduler

Project Center Packages

A viable configuration

Web Service

Communications

Federation Structure

• Federated systems often are based on one of two

design patterns:

• Façade provides an integrating interface that

consolidates a, possibly large, set of system interfaces

into a single application interface in an attempt to make

the system easier to use than working directly with its

individual parts.

• Mediator serves as a communication hub so that all the

various subsystems need know only one interface, that

of the mediator.

Collaboration System

 System that focuses on sharing of processes and

products among peers with a common set of goals.

 Primary focus is organizing and maintaining some complex,

usually evolving, state:

 Software development baseline

 Set of work plans and schedules

 Documentation and model of obligations

 Communication of events

 Example:

 Collab – CSE784, Fall 2007,

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CSer

v.htm

http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/CServ.htm

Example Collaboration System

