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Project Center

• Project Center was a project assigned to 

another course, CSE784—Software Studio, 

but these slides are also relevant to our 

projects #1 and #4.

• Project Center is a software development 

collaboration system, built from a number 

of open-source projects with code wrappers 

to enable them to communicate and 

collaborate effectively.
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Developer’s Daily Use

• Look at Project Center schedule, notices pages, alerts

• Get today’s work from Project Center:

• Get latest source of my code from CVS including NAnt build script.

• Get latest build of other team’s code on which my code depends

• Make modifications or additions to my code.

• Build my source, incorporating libraries on which my code depends, using 

NAnt.

• Run NUnit on my source and iterate, recording and working off bugs.

• Commit changes to CVS. That automatically results in change log entry.  

Any components frozen cannot be committed to CVS.

• Send libraries of my latest code that others need to Project Center via 

CVS.

• Project Center tools used: 

• CVS, NAnt, NUnit, Schedule, Change Log, Bug Tracker



Developer at Customer’s Site

• Walk customer through requirements issues, demo part of code, 

record customer issues in P.C. from customer site.

• Login to P.C. via browser

• View Requirements Database

• Open CVS web interface from browser

• Extract demos from CVS and run at customer’s site

• Can modify and rebuild onsite if developer takes laptop with 

P.C. installed.

• Walk through bug reports and change logs to discuss progress

• Project Center tools used:

• CVS, Requirements Database, Bug Reports, Change Log, all via 

Asp—possibly NAnt and NUnit run on laptop.



Use of Project Center for Qualification

• All Qualification builds—typically four or five—ready to go in CVS 

with NAnt scripts to rebuild should the customer want to peek at 

internals.

• Usually extract just executables

• But may rebuild any of the test builds with single NAnt command

• NUnit set up to run each of the Qualification Tests, showing, by 

default, only what is necessary for qualification.

• Each test procedure captured in help module

• Requirements database synchronized to qual test showing B-

Spec requirement for this test and A-Spec requirements it maps 

to.

• Project Center tools used:

• Requirements Database, CVS, NAnt, NUnit, Help



Customer’s Use of Project 

Center for Maintenance

• We deliver Project Center along with product

• CVS, NAnt, NUnit all set to run regression tests on 

delivered product

• Project Center help has inserted module that 

documents product code—a supplement to delivered 

documents

• Customer can now immediately do modifications and 

builds without studying the product packaging for 

weeks.

• Project Center tools used:

• CVS, NAnt, NUnit, Help



Manager’s Use of Project Center

• Review status of builds and tests through schedule-based status reports. What is important 

here is clarity of the information transfer, not having a pretty or fancy calendar. You are not 

asked to reinvent Outlook or Microsoft Project Manager.

• Schedule says Display team has scheduled integration build to integrate with Data Editing team.

• Schedule shows that Display team has not installed the required build the day before integration.

• Checks Quality Assurance report for last display build and reviews (from CVS).

• Checks bug tracker reports.

• Checks to make sure that the notification for scheduled integration has been posted (a month 

ago).

• Sends notice to Display team leader that there will be a meeting in half hour in manager’s 

office.

• After meeting manager posts action items associated with that meeting, assigned to the 

Display team leader.

• Note that much of this functionality is fairly close to that supplied with the requirements database 

and other tools.

• Project Center tools used:

• Schedule, CVS, Bug Tracker, Schedule Alerts, Action Item Database (Bug Reporter with a 

different name?)



Architect’s Use of Project Center

• Reviews all interfaces held by CVS against the OCD.

• Reviews CVS holdings for implementation and test of each interface’s 
implementations.

• Extracts a team’s source and NAnt build script, builds executable and 
reviews functionality by running NUnit.
• Each team is required to deliver test drivers with their libraries.

• Each obligation of the team’s code is either demonstrated or a message is 
stubbed stating its current status.

• All of this runs under NUnit.

• Architect reviews team’s view of its obligations using this process from 
the beginning of development.
• Each team is asked to declare its assigned interfaces and provide a fully 

stubbed implementation at the beginning. It then replaces each stub as the 
real code is developed.

• Each stub announces what it will be delivering.

• Project Center tools used:
• CVS, NAnt, NUnit, Requirements DataBase



Quality Assurance Use 

of Project Center

• QA member assigned to Display team extracts source from CVS, 
including NAnt build script.

• Uses NUnit to run series of code standards conformance tests on 
source.

• Builds executable or library with test drivers, supplied by Display 
team.

• Notes warnings.

• Runs QA build and notes functionality supplied.

• Each team is required to supply NUnit tests that display what 
works and have stub messages for what does not yet work.

• Writes QA report and stores in CVS, associated with the Display 
build.

• Project Center tools used:

• CVS, NAnt, NUnit with special QA tests



Some Observations about Design

• Most of the custom tools are minor variants of a single design

• Requirements Database

• Bug Tracker

• Change Log

• It would be extremely useful to have web service interfaces to add and modify 

entries in any of the databases.

• Examples:

• When modified code is committed to CVS it would be simple to have Project Center user 

interfaces insert the change record to Change Log using its service interface.

• When Qual Testing, it would be simple to synchronize NUnit test with display of B-Spec 

requirement and A-Spec requirement in separate windows using web service access to 

Requirements Database to search for requirement by number.

• Meetings and reviews could be scheduled using web service interface to scheduler. 

• It may also be useful to provide a command line interface for insertion and 

modification of database entries. Will make our tools consistent with the open-

source tools, which all have command line interfaces.



Observations about Design

• Should designate Project Center server

• Users have Project Center WinForms interfaces on their client 

machines.

• Users can access most of the Project Center functionality through a 

browser, viewing Asp pages from server.

• All persistent data resides on Project Center server

• CVS/RCS code and document storage

• Should support private and public storage for each team

• NAnt build scripts (in CVS)

• Requirements

• Bug Reports, Change Logs

• Schedule and Tracking information

• Tools may reside on client or server.  Architect will choose with help of 

team leaders.



Prototyping

• The best way to decide how to glue all this 

together is to use the open-source tools before 

committing to the Project Center structure.

• Suggest we download all of them and use them 

with a couple of small example projects, 

perhaps CSE784, Project #1 for this year.

• Since the custom tools are entirely under our 

control, they can fit into the same structure 

needed for CVS, NAnt, and NUnit.



Distributing Workload across Teams

• Database and Security:

• Designs queries for all accesses to any of the databases, providing 
interfaces with insertion, update, and extraction

• Open-Source Tools team:

• Prototype use of open-source tools with Project #1

• Responsible for help subsystem design and implementation

• Provides help contents for open-source tools

• Communication team:

• Provides web service message-passing for custom tools

• Provides web service message-passing wrapper for open-source 
tools.

• All open-source tools have command line interfaces so this should 
be straightforward.  

• Tutorial links—later slide—indicate how command line interfaces 
work.



Distributing Workload across Teams
• Scheduling and Tracking team

• Design and implement Scheduler, Requirements Database, Bug Tracker, 

Change Log.

• Design and implement support for inserting new tools.

• WinForms Interface team

• Will have plenty of work with interface.

• Main problem is getting early access to code to call.

• Asp Interface team

• Plenty of work with interface pages

• Same problem as WinForms team

• Test team—plenty of work already

• To get a quick start, User Interface teams could work out detailed use cases

• Then start hooking up open-source tools using communication stub

• Comm stub is just post-message, get-message interfaces used in the local 

process as a stand-in for commlink to another machine until that becomes 

available.



Derived Requirements

•User authentication

• Interoperation between tools

• Bug Tracker cites CVS entries

• CVS writes to Change Log

• Project Scheduler reads CVS and/or 

Change Log, NUnit log



Open-Source Tool Tutorials

• Tutorial links

• CVS: 

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/

• RCS—used by CVS: 

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/

• NAnt: http://nant.sourceforge.net/help/index.html

• NUnit: http://www.nunit.org/getStarted.html

• Notes:

• You will find, looking at these links, that all these open-

source tools provide command-line interfaces.

• That means that accessing them through a web service 

interface should be straightforward.

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/
http://nant.sourceforge.net/help/index.html
http://www.nunit.org/getStarted.html



