
Project Center Use Cases
Jim Fawcett

Software Modeling

Copyright © 1999–2017

Project Center

• Project Center was a project assigned to

another course, CSE784—Software Studio,

but these slides are also relevant to our

projects #1 and #4.

• Project Center is a software development

collaboration system, built from a number

of open-source projects with code wrappers

to enable them to communicate and

collaborate effectively.

Project Center

ASP UIF

Project Center

WinForm UIF

Config Mgmt

CVS

RCS

Build

NAnt

Test

NUnit

Bug Tracker

Data Manager

Change Log

Project Scheduler

Web Service

Communications

Project Center Packages

Developer’s Daily Use

• Look at Project Center schedule, notices pages, alerts

• Get today’s work from Project Center:

• Get latest source of my code from CVS including NAnt build script.

• Get latest build of other team’s code on which my code depends

• Make modifications or additions to my code.

• Build my source, incorporating libraries on which my code depends, using

NAnt.

• Run NUnit on my source and iterate, recording and working off bugs.

• Commit changes to CVS. That automatically results in change log entry.

Any components frozen cannot be committed to CVS.

• Send libraries of my latest code that others need to Project Center via

CVS.

• Project Center tools used:

• CVS, NAnt, NUnit, Schedule, Change Log, Bug Tracker

Developer at Customer’s Site

• Walk customer through requirements issues, demo part of code,

record customer issues in P.C. from customer site.

• Login to P.C. via browser

• View Requirements Database

• Open CVS web interface from browser

• Extract demos from CVS and run at customer’s site

• Can modify and rebuild onsite if developer takes laptop with

P.C. installed.

• Walk through bug reports and change logs to discuss progress

• Project Center tools used:

• CVS, Requirements Database, Bug Reports, Change Log, all via

Asp—possibly NAnt and NUnit run on laptop.

Use of Project Center for Qualification

• All Qualification builds—typically four or five—ready to go in CVS

with NAnt scripts to rebuild should the customer want to peek at

internals.

• Usually extract just executables

• But may rebuild any of the test builds with single NAnt command

• NUnit set up to run each of the Qualification Tests, showing, by

default, only what is necessary for qualification.

• Each test procedure captured in help module

• Requirements database synchronized to qual test showing B-

Spec requirement for this test and A-Spec requirements it maps

to.

• Project Center tools used:

• Requirements Database, CVS, NAnt, NUnit, Help

Customer’s Use of Project

Center for Maintenance

• We deliver Project Center along with product

• CVS, NAnt, NUnit all set to run regression tests on

delivered product

• Project Center help has inserted module that

documents product code—a supplement to delivered

documents

• Customer can now immediately do modifications and

builds without studying the product packaging for

weeks.

• Project Center tools used:

• CVS, NAnt, NUnit, Help

Manager’s Use of Project Center

• Review status of builds and tests through schedule-based status reports. What is important

here is clarity of the information transfer, not having a pretty or fancy calendar. You are not

asked to reinvent Outlook or Microsoft Project Manager.

• Schedule says Display team has scheduled integration build to integrate with Data Editing team.

• Schedule shows that Display team has not installed the required build the day before integration.

• Checks Quality Assurance report for last display build and reviews (from CVS).

• Checks bug tracker reports.

• Checks to make sure that the notification for scheduled integration has been posted (a month

ago).

• Sends notice to Display team leader that there will be a meeting in half hour in manager’s

office.

• After meeting manager posts action items associated with that meeting, assigned to the

Display team leader.

• Note that much of this functionality is fairly close to that supplied with the requirements database

and other tools.

• Project Center tools used:

• Schedule, CVS, Bug Tracker, Schedule Alerts, Action Item Database (Bug Reporter with a

different name?)

Architect’s Use of Project Center

• Reviews all interfaces held by CVS against the OCD.

• Reviews CVS holdings for implementation and test of each interface’s
implementations.

• Extracts a team’s source and NAnt build script, builds executable and
reviews functionality by running NUnit.
• Each team is required to deliver test drivers with their libraries.

• Each obligation of the team’s code is either demonstrated or a message is
stubbed stating its current status.

• All of this runs under NUnit.

• Architect reviews team’s view of its obligations using this process from
the beginning of development.
• Each team is asked to declare its assigned interfaces and provide a fully

stubbed implementation at the beginning. It then replaces each stub as the
real code is developed.

• Each stub announces what it will be delivering.

• Project Center tools used:
• CVS, NAnt, NUnit, Requirements DataBase

Quality Assurance Use

of Project Center

• QA member assigned to Display team extracts source from CVS,
including NAnt build script.

• Uses NUnit to run series of code standards conformance tests on
source.

• Builds executable or library with test drivers, supplied by Display
team.

• Notes warnings.

• Runs QA build and notes functionality supplied.

• Each team is required to supply NUnit tests that display what
works and have stub messages for what does not yet work.

• Writes QA report and stores in CVS, associated with the Display
build.

• Project Center tools used:

• CVS, NAnt, NUnit with special QA tests

Some Observations about Design

• Most of the custom tools are minor variants of a single design

• Requirements Database

• Bug Tracker

• Change Log

• It would be extremely useful to have web service interfaces to add and modify

entries in any of the databases.

• Examples:

• When modified code is committed to CVS it would be simple to have Project Center user

interfaces insert the change record to Change Log using its service interface.

• When Qual Testing, it would be simple to synchronize NUnit test with display of B-Spec

requirement and A-Spec requirement in separate windows using web service access to

Requirements Database to search for requirement by number.

• Meetings and reviews could be scheduled using web service interface to scheduler.

• It may also be useful to provide a command line interface for insertion and

modification of database entries. Will make our tools consistent with the open-

source tools, which all have command line interfaces.

Observations about Design

• Should designate Project Center server

• Users have Project Center WinForms interfaces on their client

machines.

• Users can access most of the Project Center functionality through a

browser, viewing Asp pages from server.

• All persistent data resides on Project Center server

• CVS/RCS code and document storage

• Should support private and public storage for each team

• NAnt build scripts (in CVS)

• Requirements

• Bug Reports, Change Logs

• Schedule and Tracking information

• Tools may reside on client or server. Architect will choose with help of

team leaders.

Prototyping

• The best way to decide how to glue all this

together is to use the open-source tools before

committing to the Project Center structure.

• Suggest we download all of them and use them

with a couple of small example projects,

perhaps CSE784, Project #1 for this year.

• Since the custom tools are entirely under our

control, they can fit into the same structure

needed for CVS, NAnt, and NUnit.

Distributing Workload across Teams

• Database and Security:

• Designs queries for all accesses to any of the databases, providing
interfaces with insertion, update, and extraction

• Open-Source Tools team:

• Prototype use of open-source tools with Project #1

• Responsible for help subsystem design and implementation

• Provides help contents for open-source tools

• Communication team:

• Provides web service message-passing for custom tools

• Provides web service message-passing wrapper for open-source
tools.

• All open-source tools have command line interfaces so this should
be straightforward.

• Tutorial links—later slide—indicate how command line interfaces
work.

Distributing Workload across Teams
• Scheduling and Tracking team

• Design and implement Scheduler, Requirements Database, Bug Tracker,

Change Log.

• Design and implement support for inserting new tools.

• WinForms Interface team

• Will have plenty of work with interface.

• Main problem is getting early access to code to call.

• Asp Interface team

• Plenty of work with interface pages

• Same problem as WinForms team

• Test team—plenty of work already

• To get a quick start, User Interface teams could work out detailed use cases

• Then start hooking up open-source tools using communication stub

• Comm stub is just post-message, get-message interfaces used in the local

process as a stand-in for commlink to another machine until that becomes

available.

Derived Requirements

•User authentication

• Interoperation between tools

• Bug Tracker cites CVS entries

• CVS writes to Change Log

• Project Scheduler reads CVS and/or

Change Log, NUnit log

Open-Source Tool Tutorials

• Tutorial links

• CVS:

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/

• RCS—used by CVS:

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/

• NAnt: http://nant.sourceforge.net/help/index.html

• NUnit: http://www.nunit.org/getStarted.html

• Notes:

• You will find, looking at these links, that all these open-

source tools provide command-line interfaces.

• That means that accessing them through a web service

interface should be straightforward.

http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/cvs/
http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/rcs/
http://nant.sourceforge.net/help/index.html
http://www.nunit.org/getStarted.html

