Ultimate Extensible Distributed System

Jim Fawcett

Software Modeling

Copyright © 1999-2017

Your Assignment

- Your supervisor just handed you a spec for implementation of a distributed system with universal connectability using sockets that:
 - Can process an open-ended variety of documents
 - Is expandable by five orders of magnitude in 10 years
 - Can add new tools easily
 - Supports 50 million users a day without gridlock
- You say NO WAY!
- Well, maybe.

Introduction to Internet and Web

- This presentation addresses two questions:
 - Is that possible?
 - Well yes—look over there—the web!
 - How was it accomplished?
 - Processing structure and protocols
 - Programming tools
 - Web servers and browsers that host:
 - Script languages, e.g., Javascript, VBScript, Perl, Ruby, ...
 - Programming languages:
 Visual Basic, Java, C++, C#, ...
 - And, of course, some very smart people

Goals

- Build distributed system to share documents
- Support expansion by five orders of magnitude in 10 years—200 hosts to 500 million hosts
- Manage communication between hundreds of millions of machines every day without collapsing from congestion
- Provide for arbitrary extensions:
 - From static text documents to graphics, dynamic content, streaming video, programmable interfaces, voice, ...

Original Goals of the Web

- Universal readership
 - When content is available, it should be accessible from any type of computer, anywhere.
- Interconnecting all things
 - Hypertext links everywhere
 - Simple authoring

Internet Design Principles

- Goal is connectivity
- Achieved with Internet Protocol (IP)
 - Stateless so survives failures—no need to backup
- Made scalable with end-to-end intelligence
 - Transport Control Protocol (TCP)
 - Sender does not send until receipt is acknowledged.
 - Amount sent is based on receiver's current available buffer size, so receiver won't be flooded.
 - Be strict when sending and tolerant when receiving
- Protocol Specific Packet Headers
- Internet Design
- Robustness and the Internet

Web Design Principles

- Universal
- Decentralized
- Modular
- Extensible
- Scalable
- Accessible
- Forward/backwards compatibility
- Architecture of World Wide Web

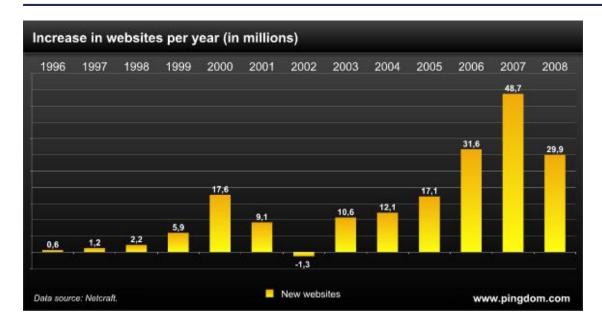
Basic Concepts

- Client/server model
- Universal addressing
 - TCP/ IP, DNS
- Search engines
- Universal protocols
 - HTTP, URLs, HTML, FTP
- Format negotiation through HTTP
- Hypertext → Hypermedia via HTML → XHTML
 - Support for text, images, sound, and scripting

Internet and Web History

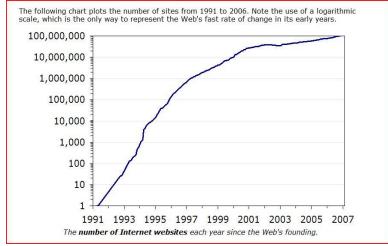
Internet History

- 1961 First paper on packet-switching theory, Kleinrock, MIT
- 1969 ARPANet goes online
 - Four hosts, each connected to at least two others
- 1974 TCP/IP, Berkeley Sockets invented
- 1983 TCP/IP becomes only official protocol
- 1983 Name server developed at University of Wisconsin
- 1984 Work begins on NSFNET
- 1990 ARPANET shutdown and dismantled
- 1990 ANSNET takes over NSFNET
 - Nonprofit organization—MERIT, MCI, IBM
 - Starts commercialization of the Internet
- 1995 NSFNET backbone retired
- 1998 DNS transferred from Dept of Commerce to ICANN
- 2000 Web size estimates surpass 1 billion indexable pages


Web History

- 1990 World Wide Web project
 - Tim Berners-Lee starts project at CERN
 - Demonstrates browser/editor accessing hypertext files
 - HTTP 0.9 defined, supports only hypertext, linked to port 80
- 1991 first web server outside Europe
 - CERN releases WWW, installed at SLAC
- 1992 HTTP 1.0, supports images, scripts as well
- 1993 Growth phase
- 1994 CERN and MIT agree to set up WWW Consortium
- 1999 HTTP 1.1, supports open-ended extensions

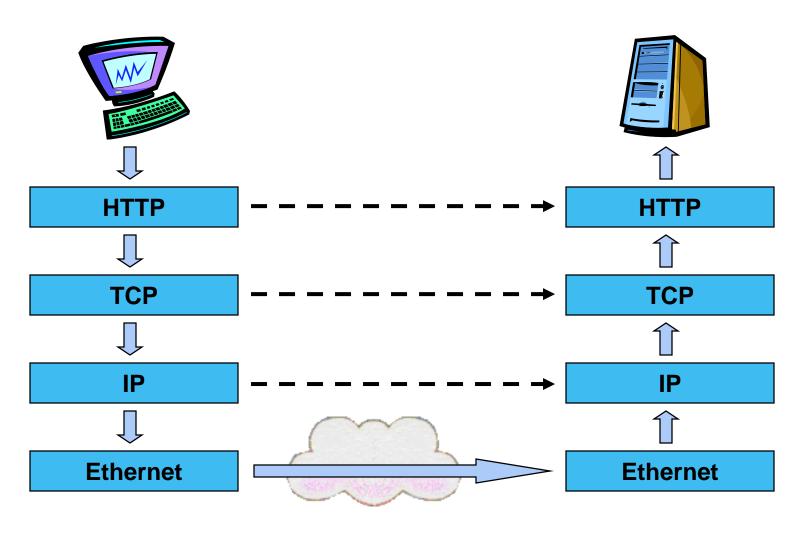
Web Growth Phase: 1993


- InterNIC created to provide registration services
- WWW (port 80 HTTP) traffic is 1% of NSFNET traffic
- 200 known HTTP servers
- Article on WWW in New York Times
- Mosaic first release

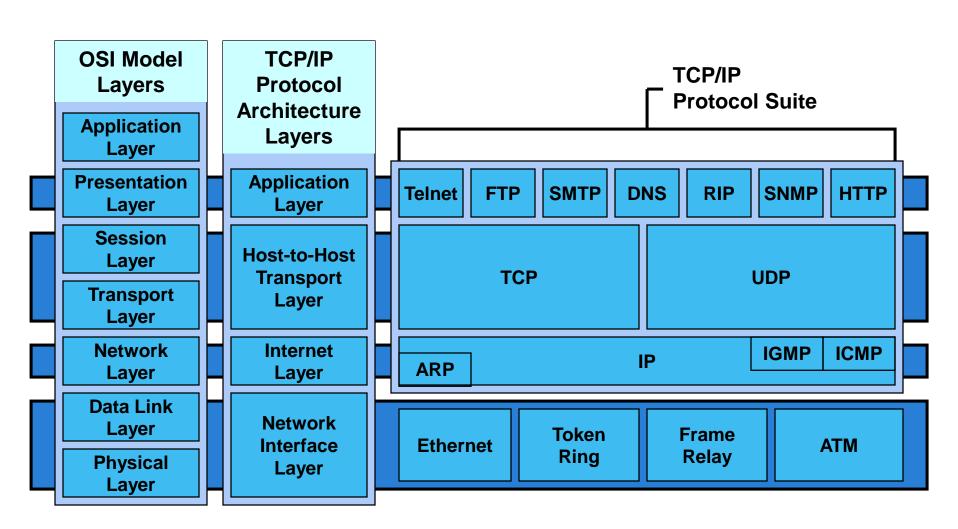
Web Growth

http://www.techcrunch.co m/2009/05/08/is-thegrowth-of-the-webslowing-down-or-justtaking-a-breather/

http://www.useit.com/alertbox/web-growth.html

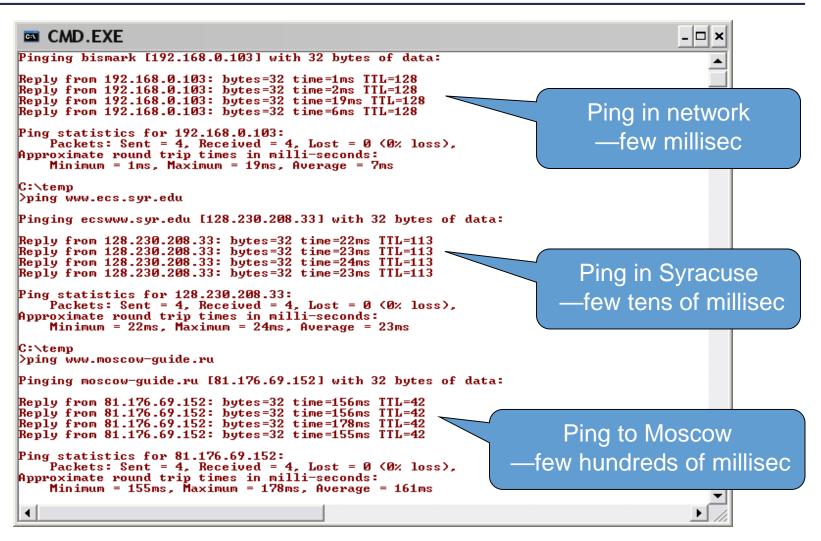


Web Technologies


Tools: Servers on the Internet

- HTTP: Hypertext Transport Protocol
 - JSP and ASP add dynamic content
 - Web services add RPC program interface
- FTP: File Transport Protocol
- Gopher: Text and menus
- NNTP: Network News Transfer Protocol
- DNS: Distributed Name Service
- Telnet: Log into a remote computer
- New tools: If they use TCP/IP, just add them

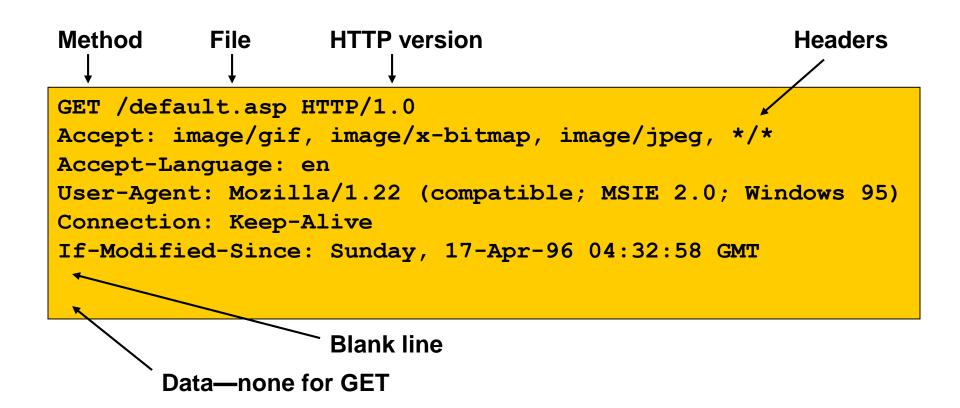
Network Protocol Stack


Network Protocols

Communication between Networks

- Internet Protocol (IP)
 - Routable, connectionless datagram delivery
 - Specifies source and destination
 - Does not guarantee reliable delivery
 - Large message may be broken into many datagrams, not guaranteed to arrive in the order sent
- Transport Control Protocol (TCP)
 - Reliable stream transport service
 - Datagrams are delivered to the receiving application in the order sent
 - Error control is provided to improve reliability

Pinging Various URLs

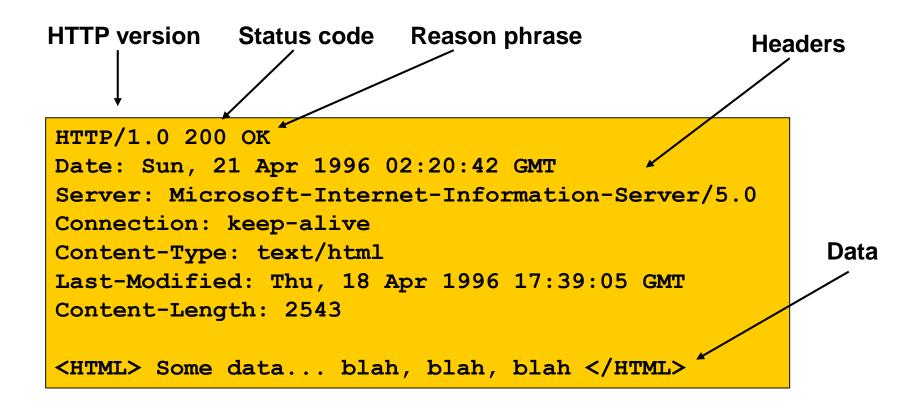

Tracing HTTP Message with Tracert

```
CMD.EXE
>tracert www.moscow-guide.ru
Tracing route to moscow-guide.ru [81.176.69.152]
over a maximum of 30 hops:
                                 192.168.0.1
        1 ms
                           1 ms
  234567
                 7 ms
                                 10.101.208.1
                                 fas3-2.syrcnybsh-rtr01.nyroc.rr.com [24.92.227.138]
          ms
                10 ms
                                 srp2-0.syrcnyspp-rtr04.nyroc.rr.com [24.92.227.217]
          ms
                           7 ms
                   ms
                                 srp10-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.224.137]
          ms
                   ms
                            ms
                                 srp8-0.syrcnyspp-rtr02.nyroc.rr.com [24.92.224.138]
          ms
                                 son0-1-1.albynywav-rtr03.nyroc.rr.com [24.92.224.170]
          ms
                   ms
          ms
                12 ms
                          11 ms
                                 pop1-alb-P7-0.atdn.net [66.185.133.229]
  9
                                 bb1-alb-P0-1.atdn.net [66.185.148.100]
          ms
 10
                                 bb2-nye-P3-0.atdn.net [66.185.152.71]
          ms
                   ms
 11
                                 pop1-nye-P1-0.atdn.net [66.185.151.51]
                                 0.so-2-0-0.BR1.NYC4.ALTER.NET [204.255.173.33]
 12
          ms
                          15 ms
                   ms
                                 0.so-6-0-0.XL1.NYC4.ALTER.NET
 13
                   ms
                                 0.so-4-0-0.TL1.NYC9.ALTER.NET [152.63.0.173]
 14
 15
                                 0.so-7-0-0.IL1.NYC9.ALTER.NET [152.63.9.245]
 16
       15 ms
                 40 ms
                          15 ms
                                 0.so-1-0-0.IR1.NYC12.ALTER.NET [152.63.23.62]
                                 so-0-0-0.TR2.LND9.ALTER.NET [146.188.15.26]
 17
                 94 ms
                          94 ms
                                 so-6-0-0.XR1.LND9.ALTER.NET [146.188.15.42]
 18
          ms
                97 ms
 19
                                 POS3-0.cr1.lnd10.gbb.uk.uu.net [158.43.150.97]
          ms
                94 ms
                          94 ms
 20
                98 ms
                          99 ms
                                 pos3-0.cr1.lnd8.gbb.uk.uu.net [158.43.253.142]
          ms
 21
      104
                98 ms
                                 ge0-0.gw1.lnd8.gbb.uk.uu.net [158.43.188.25]
          ms
 22
      149
                         150 ms
                                 rtcomm-gw.customer.ALTER.NET [146.188.66.50]
          ms
                   ms
 23
      156 ms
               156 ms
                                 msk-dsr7-ge1-0-0-0.rt-comm.ru [217.106.7.200]
                         156 ms
 24
      156 ms
               159 ms
                         155 ms
                                 81.176.69.152
Trace complete.
```

HTTP Methods

- GET request-URI HTTP/1.1
 - Retrieves entity specified in request-URI as body of response message
- POST request-URI HTTP/1.1
 - Sends data in message body to the entity specified in request-URI
- PUT request-URI HTTP/1.1
 - Sends entity in message body to become newly created entity specified by request-URI
- HEAD request-URI HTTP/1.1
 - Same as GET except the server does not send specified entity in response message
- DELETE request-URI HTTP/1.1
 - Request to delete entity specified in request-URI.
- TRACE request-URI HTTP/1.1
 - Request for each host node to report back

HTTP Request



Multipurpose Internet Mail Extensions (MIME)

skip to HTTP Response

- Defines types of data/documents
 - text/plain
 - text/html
 - image/gif
 - image/jpeg
 - audio/x-pn-realaudio
 - audio/x-ms-wma
 - video/x-ms-asf
 - application/octet-stream

HTTP Response skip to Programming the Web

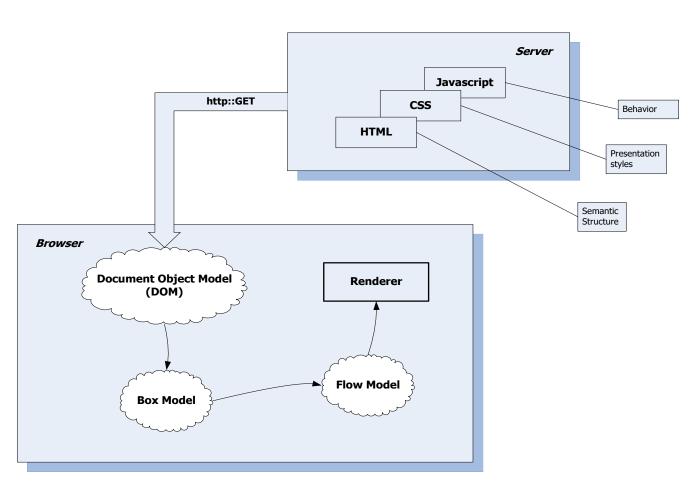
Status Codes

200	OK		
201	Created		
202	Accepted		
204	No Content	Classes:	
301	Moved Permanently		
302	Moved Temporarily	1xx: Informational	- not used, reserved for future
304	Not Modified	Over Cuasass	
400	Bad Request	2xx: Success	 action was successfully received, understood, and accepted
401	Unauthorized		and decepted
403	Forbidden	3xx: Redirection	- further action needed to complete request
404	Not Found		
500	Internal Server Error	4xx: Client Error	- request contains bad syntax or cannot be fulfilled
501	Not Implemented	5xx: Server Error	- server failed to fulfill an apparently valid request
502	Bad Gateway		
503	Service Unavailable		

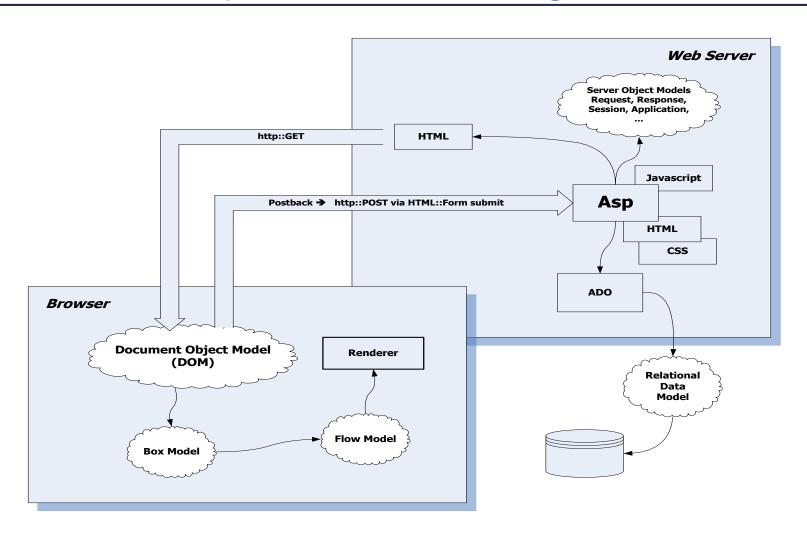
Programming the Web

Web Programming Model

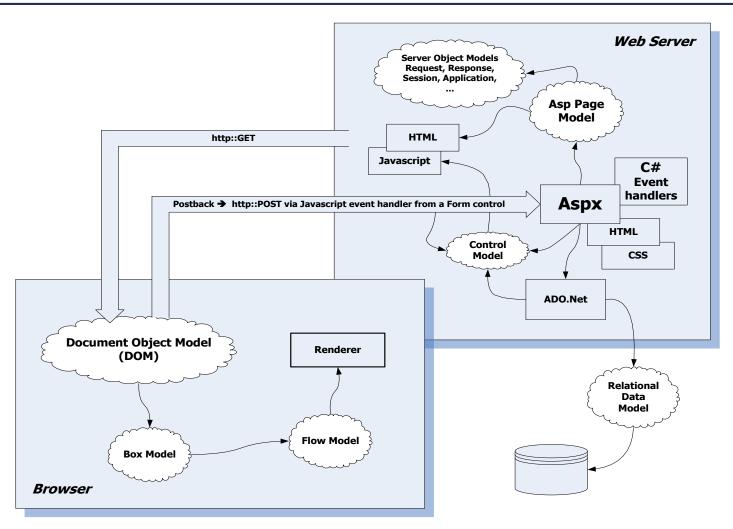
- Packaged functionality
 - Web server supports default and user supplied controls
- Dynamic content display
 - ASP, JSP generates HTML using server data
 - Browser interprets client side scripts
- Machine-to-machine
 - Web services provide RPC interface

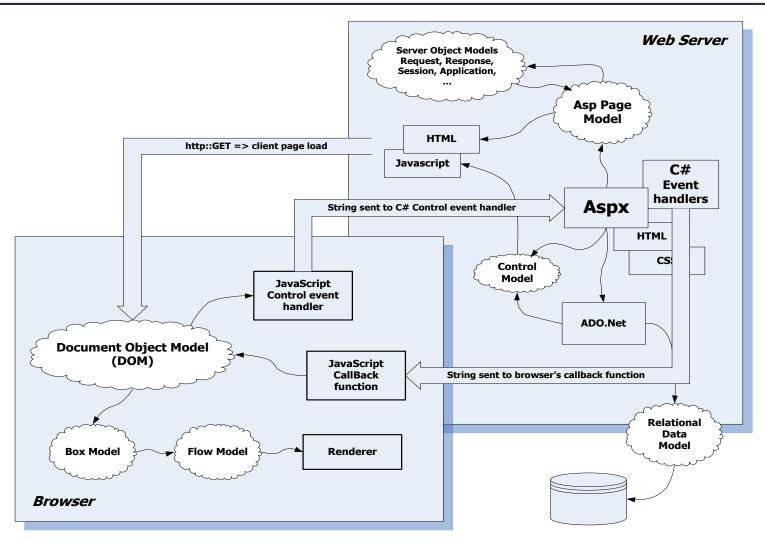

Programming the Web

- Client-side programming
 - JavaScript
 - Can modify HTML document using scripts sent from server and interpreted by client.
 - Silverlight uses C# in embedded CLR in browser plug-in
 - .Net controls, Java applets—need permissions
- Server-side programming
 - ASP script, C# code-behind
 - Server components
 - Session, application, ADO, FileSystem, ...
 - Web controls used on ASPX pages
 - Web services

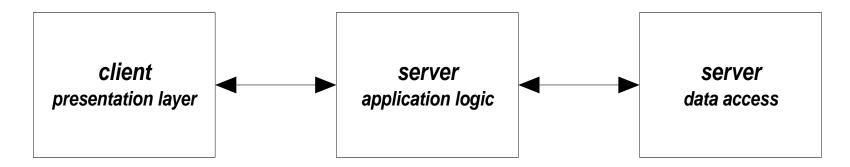

Programming the Web Server-Side Code

- What is server-side code?
 - Software that runs on the server, not the client
 - Receives input from
 - URL parameters
 - HTML form data
 - Cookies
 - HTTP headers
 - Can access server-side databases, e-mail servers, files, web services, etc.
 - Dynamically builds a custom HTML response for a client


Traditional HTML Serving Model


ASP Dynamic Serving Model

Asp.Net Serving Model



Asp.Net Ajax Serving Model

Three-Tier Architecture

- Client tier
 - Presentation layer
 - Client UI, client-side scripts, client specific application logic
- Server tier
 - Application logic, server-side scripts, form handling, data requests
- Data tier
 - Data storage and access

Some Examples

- Basic HTML pages
 - Example 1

Server Object Model

- Application object
 - Data sharing and locking across clients
- Request object
 - Extracts client data and cookies from HTTP request
- Response object
 - Send cookies or call Write method to place string in HTML output
- Server object
 - Provides utility methods
- Session object
 - If browser supports cookies, will maintain data between page loads, as long as session lasts

Security Issues

- Threats
 - Data integrity
 - Code that deletes or modifies data
 - Privacy
 - Code that copies confidential data and makes it available to others
 - Denial of service
 - Code that consumes all of CPU time or disk memory
 - Elevation of privilege
 - Code that attempts to gain administrative access

Protections

- Least-privilege rule:
 - Use the technology with the fewest capabilities that gets the job done.
- Digital signing
 - Who are you?
- Security zones
 - Trusted and untrusted sites
- Secure sockets layer (SSL)
- Transport layer security (TLS)
- Encryption

Extending the Web

Current Extensions

- Describe data with XML
- Extend HTML into XHTML
- Separate style from content with CSS
 - Cascading style sheets
 - Can be included from a file to give uniform style of pages and documents
- Document Object Model (DOM)
 - Defines a scripting interface

Areas of Exploration

- XML
- TVWeb
- MathML
- RDF
- Accessibility
- SMIL Language
- Internationalization
- Speech

- Universal Data Services
- Merger of features
- Mathematical Markup Language
- Resource Description Framework
- For the handicapped
- Synchronized Multimedia Integration

People in the Web

- Web development
 - Web server, HTTP
 - Tim Berners-Lee, Robert Cailiau
 - Mosaic web browser
 - Marc Andreessen
- Internet
 - TCP/IP protocol
 - Vinton Cerf, Robert Kahn
 - Internet flow control
 - Larry Roberts

References

- World Wide Web Consortium
 - Excellent Tutorial Papers, standards
- Source of several slides used here
 - Mark Sapposnek
- webdev.htm
 - Tutorials
 - Web developer's links
 - Web designer's links
 - Tech details links
- XHTML Black Book, Steven Holzner, Coriolis, 2000
 - Aging but comprehensive treatment of HTML, XHTML, JavaScript
- Web Developers Virtual Library
 - More tutorials

ENGINEERING@SYRACUSE