	Guy Pascarella

Requirements Database OCD
	27 May 2003

Revision 1.0

Distributed Requirements Database

Operational Concept Document
Guy Pascarella

Syracuse University

CSE 681 – Software Modeling and Analysis

Revision 1.0

20 June 2003

Table of Contents
41 Introduction

41.1 Executive Summary

51.2 Requirements

61.3 Principle Users

61.4 Load Analysis

72 High Level Architecture

72.1 Introduction

82.2 Client

82.2.1 User Interface

92.2.2 Client Controller

92.2.3 Proxy (Network Communication)

92.3 Server

102.3.1 Graphical User Interface

102.3.2 Controller

102.3.3 Network Communication

102.3.4 Database (Persistence)

113 Use Cases

113.1 Introduction

113.2 Client User: Modifying a Remote Database

123.2 Server Administrator: Creating New Database

124 Modular Architecture

124.1 Introduction

124.2 Client

134.2.1 Requirements Database Client

134.2.2 Initial Display Form

144.2.3 Main Display Form

144.2.4 Client Controller

144.2.5 Requirement Create Form

144.2.6 Requirement Edit Form

144.2.7 Requirement View Form

154.3 Server

154.2.1 Requirements Database Server

154.2.2 Server Display Form

164.2.3 Remoting Interface

164.2.4 Server Controller

164.2.5 User Manager

174.2.6 Database Manager

174.2.7 XML Database

175 Activities

175.1 Client

195.2 Server

226 Design Issues

226.1 Introduction

226.2 Loading Issues

236.3 Security

246.4 Timing

246.5 XML Data Format

25Appendix A Example XML Format

1 Introduction
1.1 Executive Summary
The Distributed Requirements Database system will be used to maintain collections of both client and developer requirements for software projects. These databases will be accessible remotely by any number of users through an intranet or possibly the internet. This system will allow users to create, modify, delete, and view previously created requirements through an intuitive graphical user interface. The Distributed Requirements Database application focuses on providing a simple, effective means for describing, and disclosing on demand, the captured customer and developer requirements for a given project.
The Distributed Requirements Database system is composed of a multi-threaded .NET Remoting server and a corresponding Remoting, graphical client. Many clients will be allowed to connect to the server concurrently. Once connected these clients will have their local reflections of the complete database updated automatically by the server. This ensures users don’t have to manually refresh their local reflections.

After analyzing the critical issues surrounding the system the following decisions were made concerning the system architecture.

· Client-side reflection of a “light” database (a.k.a. caching)

· No client-side persistent caching

· Server-side singleton server object

· In-memory databases on the server
· Graphical interface for managing the server

The following subsystems have been identified on the client application.
· Main Display Form
· Initial Display Form

· Client Controller

· Proxy

· Requirement Edit Form

· Requirement Create Form

· Requirement View Form
The following subsystems have been identified on the server application.

· Server Display Form
· Remoting Interface

· Server Controller

· User Manager

· Database Manager

· XML Database
Both usage and loading models were developed and used to drive the design decisions of the overall system. There were few critical issues that can’t be addressed through the design and architecture of the system. In these cases, suggestions were made to avoid these issues or abate their impact on the system.
1.2 Requirements

The following requirements were dictated by the customer:

· Each requirement will consist of at least the following information

· Number

· Type

· Title

· Date of creation

· Date of last modification

· Responsible individual

· Description

· A user interface consisting of at least the three following user interfaces

· A list (possibly hundreds) of requirements, showing each requirement on a single line of the display, omitting the text description

· A display of a single requirement selection from the previous requirement, showing information presented there along with the text description of the requirement

· A form used to create a new requirement or edit an existing requirement

· Allow the user to specify at startup the name of a remote database to use

· Support the capture, editing, display, and deletion of a requirement

· Save the displayed information in a remote file, using XML representation. This representation shall be read at startup, if it exists, and saved at shutdown

· Provide a button or menu item to bring up a new or edit form

· Also support access to the form via a click or double click on a specific requirement line from the list view

· A possible future way of mapping between customer and developer specifications

· Support a distributed client base through the employment of .NET Remoting

· Any user will be capable of creating a new requirement
· The server shall provide a requirement number for a newly created requirement

1.3 Principle Users
The following is a list of possible system users accompanied by their possible uses of the system.

Clients

· Initial capture of clients intended requirements.

· Generate a contractual relationship with the developers.

· Officially modify, add or delete agreed upon requirements.

· Generate reports for archives, case files, contract…

Developers

· Generate developer requirements based upon client requirements.

· Generate an architecture based upon client requirements.

· Generate functional and unit tests for agreed upon requirements.

· Used as a checklist of functionality or features to add.

· Generate reports for Program Managers without access to the system.

Software Architect
· Generate developer requirements based upon client requirements.

· Generate an architecture based upon Client requirements.

· Refine architecture based upon Developer requirements.

Program Managers
· Read reports generated by the system.

· “Bargain” functional requirements with clients.

· Generate Developer courses of action based on architecture.

· Generate reports for Clients without access to the system.

Some users and uses are unknown until the system is in a working environment. Being as general as it is the system may not even be used for software system requirements but something unforeseen.

1.4 Load Analysis

Usage Model
It is expected the following number of users will be accessing a database of requirements:

· Developers: 10

· Customers: 2

· Program Managers: 1

· Administrators: 1

· Total Users For Single Database: 14

It is also assumed that these users (in an unpredictable distribution) will be accessing the database in a burst mode between the hours of 0800 and 1800. However, an average user will logon in the morning (0800) and stay connected for the entire day, incurring a one time burst from the server to the client where a “light” version of the database is downloaded to the client.
Loading Model
Over the course of the 10 hour span very little communication between the server and clients will actually take place. The bulk of communication occurs when each user logs on to the system. In these logon sessions a “light” (requirements without the description text) copy of the database records are sent to the client application. Most communications are clients requesting a single full requirement record from the database with an average viewing of 10 requirements per hour. On average the clients will submit, through creation or modification, 1 to 2 requirements per hour.
It is assumed that there will be, on average, 4 to 6 databases of requirements hosted on one server. Each record will average a “light” transmission of 300 bytes. A full record will average an additional 700 bytes, bringing the total to 1000 bytes or 1 KB. Each database is modeled as having on average 100 requirement records. This will lead to the following load statistics.
Single User Logging On
 = Total records * Light record size
 = 100 * 300 bytes

 = 30 KB
All Users Logging On One Database

 = Single User Logging On * Total Users For Single DB

 = 30 KB * 14
 = 420 KB

All Users For All Databases

 = All Users Logging On One Database * Number Hosted Databases

 = 420 KB * 5

 = 2.1 MB
Based upon these results other loading cases will not be assessed. For comparison, a typical web page with images being transmitted over HTTP is approximately 100 KB. A single user logging on, thus downloading a “light” version of the database receives less than one-third of this common transaction.
2 High Level Architecture
2.1 Introduction
The following diagram illustrates the Context Diagram for the Distributed Requirements Database system. The system is broken into two communicating systems, a client and server. Each of these systems has similar characteristics, such as Graphical User Interfaces (GUIs) for the display and modification of relevant settings and data.

Context Diagram for the Distributed Requirements Database
2.2 Client

The Client is split into a non-traditional three layer architecture. The system is composed of the presentation, processing and network (in lieu of persistence) layers. The presentation layer is represented by the User Interface, the processing by the Client Controller and the network by the Proxy. The system is designed such that the Server may support many Clients, each viewing and modifying databases under the Servers control.
2.2.1 User Interface

Following the user requirements the User Interface will present a way to display requirements and an interactive process for creating or editing requirements. The User Interface will contain a main Windows™ form displaying all requirements contained within the database as a list. This list will be sorted by requirement number and will omit the text descriptions of all requirements. The main form will also contain a menu and toolbar used to perform actions regarding the manipulation of the database and requirements. These actions will include, but are not limited to opening and closing a remote database; creating, deleting, undeleting, viewing, and editing requirements. Deleted requirements will be denoted by a strikeout through the list item representing said requirement. A blank entry with the indicator “New*” in place of the requirement number shall be appended to the main list. Double-clicking on any list item will display this requirement, including the text description, in the requirement view form. A new requirement will be created, indicated through the display of a “blank” requirement edit form, by double-clicking on the “New*” list item.

The requirement view form will contain all information about a single requirement as directed by the Client Controller through interaction with the main display. This form will contain a “Cancel” button to dismiss the form. This form will also contain a button to change itself from a requirement view form to a requirement edit form for editing of the requirement currently being viewed. The requirement edit form shall be exactly the same format as the requirement view form except the fields will be editable and a “Save” button will also be present for saving the changes made. The user may cancel any changes made and dismiss the form by clicking the “Cancel” button.

The requirement create form will be the same as the requirement edit form. The non-editable requirement attributes will be filled in with the remaining attributes blank. The requirement number is represented by a ‘*’ until the requirement is submitted through the Proxy to the Server at which time it will be assigned the next available requirement number.
2.2.2 Client Controller

The Client Controller performs all logic for the Distributed Requirements Database Client application. It provides a linking of the User Interface to the Proxy. It will perform cursory data validation, submit requirement addition and modification and synchronize client-side updating and retrieval of requirement records from the Server. It will also direct the User Interface what to display and the current form to display. The Client Controller is what the server notifies of a database update so that it may update the Clients User Interface.
2.2.3 Proxy (Network Communication)
Instead of the Client having a persistence layer for loading and storing databases, the data storage takes place on the application Server. The Server is connected to through a .NET Remoting Proxy. The Proxy is simply a client-side view of the server-side Controller. This interface communicates with the server’s Controller in order to submit requests to create or modify requirements or to open a database for client-side viewing.
2.3 Server

The Server is separated into a traditional presentation, processing, and persistence layered system with its network interface being the presentation layer. The Server also provides a GUI for administrative tasks, such as the addition of a server-side physical file database or the addition of security measures. In this sense the Server may be thought of as a classical server application with a specialized client used for administration.
The Server maintains a collection of in-memory Databases and their associated physical files. This is so the Server may offer many clients different Databases to view or modify instead of allowing only one Database accessible to all Clients at one time. This concept is further elaborated upon in the Detailed Architecture.

2.3.1 Graphical User Interface

The Graphical User Interface of the Server consists mainly of a single Windows™ form displaying the currently loaded databases and known users. This interface will allow the addition or creation of local (server-side) database files. It will also allow the addition of users that have access to this system.
2.3.2 Controller

The Controller performs all logic for the Distributed Requirements Database application. It provides a linking of the Network Communication to multiple Databases. It will perform data validation and will direct the actual addition, updating and retrieval of requirement records from the Database. It will also direct the Network Communication which records to transmit to each client and which requirement record updates to accept.

All synchronization between Clients and the Server is also performed within the Controller. If a record is requested for modification the Controller will mark it as “checked out” and not allow any other Client to request the same record for modification until it is “checked in”.

Note in the context diagram the Controller will not direct the database to delete a requirement record; this is because once a record is added it cannot be totally destroyed only marked as deleted. In this revision of the system every user will have the ability to create or modify any record.
2.3.3 Network Communication

The Network Communication portion of the Server’s High Level Architecture is nothing more than a networked interface of the Controller. This will provide a way for Clients to associate their Proxy interfaces with a particular server. Clients send all system requests through this Network Communication. It is the role of the Server to provide responses to these requests through the same Network Communication, in this way we can think of this as the user interface of the Server.
2.3.4 Database (Persistence)

The Database layer is responsible for the persistence of requirements in a retrievable manner and providing an interface to the Controller for manipulation of these requirement records. This component will store the physical database in an eXtensible Markup Language (XML) format. An example format of this encoding is demonstrated in Appendix A. This will require the use of either third-party libraries or operating system services. The Database will allow either the specification of an XML file to load or a new file to create. It will use the filename that was used to create or open the database from to save the physical database to. Once a physical database is either created or loaded the Database will allow the retrieval of a single record or all records. A Database will also indicate whether a record is “checked out” for modification or not.
3 Use Cases

3.1 Introduction
When describing the High Level Architecture it is good to describe how the user will interact with the system to perform certain functions. Two use cases will be presented. The first use case will describe how the client-user would open a remote database, create a requirement, modify a second, and then delete a third. The second will illustrate a server administrator creating and adding a new database and a new user to the server system.
3.2 Client User: Modifying a Remote Database
Upon starting the application the user will be presented with a dialog asking their username and the server to connect to. If the username is accepted by the server being contacted the user is presented with a list of databases accessible through that server. The user selects one of the databases as indicated by the server. The requirements contained in this database are shown in the clients main list display. The user double-clicks on the last entry of the list display (the one with “New*” as the number). The requirement number (unassigned by the server at this point, shown as X), date created and date modified [current date] fields are already filled in. Deciding to test the system the user clicks the “Cancel” button. The requirement create form is dismissed and the main display is unchanged. The user clicks the “Create Requirement” button on the toolbar and is again presented with the requirement create form. Again, the requirement number (unassigned by the server at this point, shown as X), date created and date modified [current date] fields are already filled in. This time the user fills in the rest of the data fields and clicks the “Submit” button. The form is dismissed, the create requirement request is sent to the server, the server sends back an updated record response, and the main display list (and the main display lists of all other clients subscribed to this database) now contains the newly created requirement as a list item and blank list item beneath it.
The user double-clicks on the first requirement. This brings up the requirement view form. Deciding that they don’t like the wording of the requirement description, the user clicks the “Modify” button. The requirement edit form is populated with the requirement the user was just viewing. They change the description text and click the “Submit” button. The requirements date modification and description text fields are updated, the requirement edit form is dismissed and the main list display is shown with the requirement’s updated date modification (as assigned by the server). The user then selects the second requirement by single-clicking on it. The user clicks the “Delete Requirement” button from the toolbar. A strikeout appears through the list item representing the second requirement record. The user clicks the “X” button on the title bar of the window indicating they want to close the application. The application asks them if they are sure they want to exit the application. The user selects “Yes” and the application exits.
3.2 Server Administrator: Creating New Database
Assuming the server is already running on a machine the administrator has access to, the graphical user interface will be present on this machine’s display. The administrator selects the menu item associated with the Database Creation activity. An open file dialog is displayed where the administrator then selects a new physical file to create. The server system creates this file and asks the administrator if they would like to make it available to clients. The administrator selects yes and the list of available databases is updated with the new path and filename.
The administrator then remembers that they must also create a new user. The administrator selects the menu item associated with the User Creation activity. They are presented with an input box asking for the name of the user. They enter the name and select the “OK” button. The list of users is updated with the new username.
4 Modular Architecture
4.1 Introduction
Modular decomposition of the entire system yields two distinct systems, a client and server. Each modular system will be explained in detail following their respective diagrams.
4.2 Client

Modular decomposition of the three layers (User Interface, Processing, and Database) yields the following module diagram.

[image: image1]
Module Diagram of the Distributed Requirements Database Client
4.2.1 Requirements Database Client
This is the executive of the system. Its main function is to create the Main Display Form and Client Controller modules. It then attributes the Client Controller to the Main Display Form. This executive uses the Initial Display Form module to gather startup information from the user. Finally it transfers control of the application to the Main Display Form.
4.2.2 Initial Display Form

This form is what the user first sees. It contains a list of servers used in the past that the user may select from. Once a server has been selected or manually entered the user is presented with a list of databases that are hosted on the selected server. Once a server and database pair are selected these values will be used to initially populate the Main Display Form.
The Initial Display Form module is a simple dialog form that contains two list boxes, one for the display of previously used servers and the other for display of the databases hosted on a selected server. There is also a text field where the user may enter a new server to connect to. A button (“Connect”) used to select and query the selected server is strategically placed next to the text field. The form contains two additional buttons, one to exit the application (“Exit”), the other to accept the server / database pair and start the Main Display Form (“OK”).

[image: image2.png]elect Requirements Database

Recently Accessed Servers

flocahost
lemersid

Connected Server

[evsenver

Hosted Database(s)

Proect6s
RequiementsDatzbase

DiirbuiedHequremertsDaizbase

§

Initial Display Form User Interface
4.2.3 Main Display Form

The purpose of this form is to be the main access of user input and system feedback. It presents the main list of requirements and signals the controller when a user requests any action. This is a “dumb” module in that it performs no system logic; it only informs the Client Controller of a user requested action, provides user entered data to the Client Controller, and displays the contents of a remote database.
[image: image3.png]~=lolx|

Fle Requrement telp

D@ | ?

Number | Type | Ttle [Crested [Last Modified | Responsible Indvidual

Main Display Form User Interface
4.2.4 Client Controller

It is the Client Controllers job to react to user requests. These requests may take the form of requirement requests or database requests. The requirement requests may be to view, add, delete or modify a requirement whereas the database requests can be to load or close a remote database. It also relies upon Requirement View Form, Requirement Edit Form, and Requirement Create Form modules for the viewing, manipulation, and creation of requirement records, respectively. Finally the Client Controller depends on the Proxy module for retrieval and storage of remote requirement records.
4.2.5 Requirement Create Form

This form module is the user interface utilized in the creation of a requirement record. When invoked it will only fill in non-editable fields, which are consisted of number and creation and modification dates. These fields will contain “placeholders” that the server will fill in when the requirement is submitted. The number will be held with “X” and the date fields will contain the moniker “Server”.
[image: image4.png]Creating Requirement:

Tite |]

- Non Modifable Attrbutes. Type
Number) Clieat

o G e
Mot
Deleted [] Checked Out []

e —
5]

Requirement Create Form User Interface
4.2.6 Requirement Edit Form

This form module is the user interface utilized in the modification of a requirement record. When invoked it will reflect a modification date of “Server” with the rest of the form showing the requirement’s data fields.

[image: image5.png]Editing Requirement

Titl [Fesing needs o be pefomed]
I e =
() Client
o © b
Mot

Deleted [] Checked Out /]

Desciin Respostiy s]

(esing noeds b dore o s e vl o s st =

Requirement Edit Form User Interface
4.2.7 Requirement View Form

The Requirement View Form module constitutes the final user interface module. It is used for viewing a selected requirement in a non-editable manner. All data fields of a requirement object are displayed in non-modifiable graphical components. The module contains a button which represents a request to modify the currently viewed requirement object. The only additional graphical component on this form is a “Cancel” button used to dismiss the form.

[image: image6.png]Viewing Requirement:

Title [Testng

[~ Non Modifiable Attributes Type
= @ Client
Croses O Devetaer

oated [0 |

Deleted (] Checked Out I

Descripion Responsibility GuyPascarcla

e st e dore o e o vkl f e e =

Requirement View Form User Interface
4.3 Server

Modular decomposition of the three layers (User Interface, Processing, and Database) yields the following module diagram.

[image: image7]
Module Diagram of the Distributed Requirements Database Server
4.2.1 Requirements Database Server

This is the executive of the system. Its main function is to create the Main Display Form and Client Controller modules. It then attributes the Client Controller to the Main Display Form. This executive uses the Initial Display Form module to gather startup information from the user. Finally it transfers control of the application to the Main Display Form.

4.2.2 Server Display Form

This module is responsible for managing all graphical user interface aspects of the server system. The Server Display Form contains a main Windows™ Form with two list views. The first list view contains the list of physical file databases that this server allows its clients to access along with and indexed by the labels that clients would use to indicate the referenced database.

The second list view contains a list of the usernames that are allowed to connect to this server and access its databases. If a username is contained within this list then that user can access any database that this server hosts. They also have full control over the creation and modification of requirement records for these databases.
The user (server administrator) can manipulate these lists through the menu bar. The menu bar contains commands to create, load or remove a database from the list of hosted databases through the Database Manager. It also contains commands to add or remove users from the user list view through the User Manager.

4.2.3 Remoting Interface

The Remoting Interface module is the most important module of the server for clients. This module provides network access of the Server Controller (thus the XML Databases) for clients. The main component of this module should be a server contained .NET Remoting MarshalByRefObject that is represented by the client’s Proxy module. This module also contains a Remoting MarshalByRefObject callback class that Clients will inherit from in order to be notified of updates to the requirement records.
4.2.4 Server Controller

It is the Server Controllers job to coordinate access of the Remoting Interface (Clients) module with the Database Manager and User Manager modules. This module receives connection requests from clients and verifies them using the User Manager. Database connection, inspection, and modification requests are also received and routed through the Database Manager. This modules serves as a single focal point for clients and provides a single interface for “under the cover” access to the User Manager and Database Manager.
4.2.5 User Manager

The User Manager module provides the server a way to add and remove users that are given access to the system. A simple list of users is maintained in-memory and is modifiable by the server through the simple API of this module. This API allows a client of this module to query for the list of current users, add a user and delete a user. It is assumed that all users have full access to all aspects of the system. This manager is not exposed as a remote interface, therefore it can only be accessed on the server where the Requirements Database Server is running.
This module also provides verification of users for the Remoting Interface. It will only allow one username logged on at one time. If for an unknown reason such as a computer crash the user is unable to logout, thus freeing the username for future logons, the Remoting Interface can be invoked to “ping” the currently logged on client. If the “ping” succeeds then the second user is denied access.
4.2.6 Database Manager

The Database Manager manages all the XML Databases that are loaded in memory. This module maps the interface of the XML Database module to a specific instance of an XML Database. Database synchronization is also handled by this module. For example, when a requirement creation or modification is taking place all reads on the database being modified will be blocked until after the operation completes.
4.2.7 XML Database

The final module of the Distributed Requirements Database server system is the XML Database module. This module is depended upon by the Database Manager and provides access to an in-memory database of requirement objects. This module supplies a simple application programming interface (API) that the Database Manager module will use to access the data contained. The client of this API has the ability to specify a physical file to load a database from and save to. They will also have the ability to add, modify and retrieve the requirement objects held within the database.
5 Activities

5.1 Client
The following diagram illustrates the activities for the Distributed Requirements Database Client system.

[image: image8.emf]Connect to

Server

Initial Display

Query

Databases

Exit?

Main Display

User Action

View

Requirement

Edit

Requirement

Create

Requirement

Open

Database

Submit to

Server

Request from

Server

Exit?

Open Server

Refresh

Requirements

No

Yes

Yes

No

Activity Diagram for the Distributed Requirements Database Client
This diagram is describing the high level activity of the Distribute Requirements Database system. The system starts by displaying the Initial Display Form. This form displays a list of servers for the user to choose from. Once the user either chooses a server to connect to from the list of previously accessed servers or enters a new server the application connects to this server and queries for the list of hosted databases. The user is presented with this list of databases. Upon selection of one of these databases the Main Display Form will be displayed, the main list populated with the requirement records contained within the chosen database. The user may exit from the Initial Display Form at any time which would terminate the application.
Once the Main Display Form is shown the user has many courses of action they may take. These actions are categorized as requirement related or database related. The first four activities are requirement related; the last two are database related. First is the simple activity of viewing a full requirement record. The user selects a requirement to view, the application queries the server hosted database for the full requirement record and displays this information in a Requirement View Form. The second activity is the modification of a requirement. Much the same as viewing a requirement, the application requests the full requirement from the database, allows the user to modify it utilizing a Requirement Edit Form then submits the modified requirement to the database for replacement of the old requirement. The third activity focuses on the creation of a new requirement. The application displays a Requirement Create Form with the server assigned fields (Number, Creation Date, and Modification Date) containing placeholders (“X”, “Server”, and “Server”, respectively). Once the user finishes the requirement is submitted to the server for insertion into the database. The fourth, and final requirement related activity, is the requirement refresh. This activity results in the server resending all requirements to the client.

Activity number five consists of the user opening a remote database from the server that the client is currently connected to. This would result in all requirements in the main list being refreshed. The final activity that the client may perform is connecting to a new server. If this occurs the user must select a new database that is hosted on this new server. This action would also result in the main list being refreshed.
5.2 Server
The following diagram illustrates the activities for the Distributed Requirements Database server system.

[image: image9.emf]Load

Database Mgr

Load User

Manager

Main Display

User Action

Add Database Add User Terminate

Load Server

Component

Client

Request

Request

Requirement

Request All

Requirements

Modify

Requirement

Create

Requirement

Request

Databases

Logon

Connect

Database

Query

Database Mgr

Assoc. Client

to Database

Get Req. from

Database

Get All Reqs

from DB

Replace Req.

in Database

Insert Req. in

Database

Verify with

User Manager

Verified

?

Terminate

Client

Logoff

Logof f from

User Manager

Flush DB to

Disk

Notify Clients

of Update

Send to Client

Send to Client

Notify Clients

of Terminate

Activity Diagram for the Distributed Requirements Database Server
This diagram is describing the high level activity of the Distribute Requirements Database server system. The system starts by creating both the User Manager and the Database Manager. Once the managers are instantiated the server creates the MarshalByRefObject Server Component (that the clients proxy), also known as the Server Controller and the Graphical User Interface. These activities represent different threads of execution.

The GUI (through the Main Display) allows an administrator to add (or remove) a user, add (or remove or create) a database or terminate the server application. If the server is terminated it notifies all clients through their callback mechanism that the server is terminating.
The Server Controller is a Remoting Singleton that clients would proxy and provide a callback to. The client can make any number of calls to this Singleton as shown in the previous activity diagram. The following blocks of text illustrate what happens when a client makes a particular call.

Logon
The username provided by the client is verified by the User Manager. If the manager accepts the username it adds the provided callback to the array of user callbacks and returns a positive response. Upon failure the manager ignores the callback provided and returns a negative response.
Request Databases
The client requests a list of databases hosted on this server. The Server Controller queries the Database Manager for databases that it manages. This array of string objects is sent back to the requesting client.
Connect Database
When a client elects to connect to a database the Server Controller associates the client with the requested database. The activity then returns to waiting for client requests.
Request Requirement
The server will request a single requirement from the Database Manager as requested by the client. The Server Controller knows which database to query based upon the connection previously made through the Connect Database activity. If the client is not associated with any database then a negative response is sent. If the requirement requested is not found then a negative response will be sent. Otherwise the requested requirement is returned.
Request All Requirements
The Request Requirement activity is performed for all requirement records as defined by the previous activity.
Modify Requirement
When a client requests the ability to modify a requirement a fresh copy is retrieved from the database and marked as “checked out”. However, only the user marked as the responsible individual may check out a requirement for modification. Once the requirement is sent to the client it is modified on the client side and the client sends it back to the Server Controller. When the requirement is received from the client it first has its modification date updated and second is used to replace the original requirement record. Upon completion of the replacement operation the updated database is flushed to its related physical file. This operation is performed so that any changes accepted into the database are not lost on a system failure. All registered clients are notified that a requirement record was updated.
Create Requirement
A client requests the creation of a new requirement by submitting a requirement object to the Server Controller. When the requirement is received from the client a new Number, Creation Date, and Modification Date are assigned. This modified requirement is then inserted into the appropriate database. Upon completion of the insertion operation the updated database is flushed to its related physical file. This operation is performed so that any changes accepted into the database are not lost on a system failure. All registered clients are notified that a requirement record was updated.
Logoff
The Server Controller notifies the User Manager that the user associated with the client intends to logoff. The User Manager marks the user a logged off so that they can logon again later.

6 Design Issues

6.1 Introduction
The Operational Concept Document (OCD) is used to model a proposed concept of how a system would work. This document is not all inclusive, meaning that it does not account for specific implementation details. It also cannot account for every performance, user, implementation, or administration issue that may arise from the development, usage, or maintenance of this system. This section of the OCD is used to alert developers implementing the system to these possible issues. This will encourage the abatement of problems that may impact the success of the proposed system at an early stage of development.
6.2 Loading Issues

Section 1.5 of this document illustrated an average load scenario of a typical server. However, the system may grow beyond its intended usage and load models. Efforts in excess of the design and architecture may have to be performed at the development level to foster the scalability of the system.
For example the number of users on a major project may have been vastly underestimated. The number of users may actually be 10 to 100 times the predicted usage. Also, the number of requirement records may analogously be 10 to 100 times greater than the predicted load. Finally, an administrator may decide that a server can accommodate more than an average of 5 databases, perhaps they feel their server may accommodate 50 databases. Using a worst-case scenario the following load maybe a reality:

Single User Logging On
 = Total records * Light record size
 = 10000 * 300 bytes

 = 3 MB

All Users Logging On One Database

 = Single User Logging On * Total Users For Single DB

 = 3 MB * 1400
 = 4200 MB = 4.2 GB
All Users For All Databases

 = All Users Logging On One Database * Number Hosted Databases

 = 4.2 GB * 50
 = 210 GB
If these predictions are ever realized the server will have to be hosted on a non-standard server utilizing network interfaces such as fiber-optic connections. Irregardless of the network bandwidth limitation, there is a memory limitation. The Database Manager holds all databases in-memory. Depending upon the technology used to load and store (in-memory) the XML database files it may prove impossible to fit 50 databases in the 4 GB memory limit imposed by the current 32-bit processor architecture. A solution as simple as migrating the system to a 64-bit platform would alleviate this problem. However, a clustered or load-balanced solution would alleviate more loading issues than the memory limitation and might prove to be better alternatives.
6.3 Security

As proposed by this OCD the security is fairly weak. The User Manager only requires a user to enter a username, no other credentials. Therefore any person, upon knowing a username, has access to the system. Another possible problem is that all users have the ability to create requirements, while only the responsible individual has the right to modify a requirement. With a role-based system users could be have their rights limited or enhanced in any number of ways. For example Program Managers could have full access to create and modify requirements while Customers would have only view access.
The current system assumes that the server is hosted on a trusted, secured system. If it is not or if it is easily accessible in an anonymous manner then it would make sense to encrypt the physical file representing a database. Or at the very least digitally sign it so that tampering may be detected.
The use of .NET Remoting also introduces a security failure. The links established between clients and servers are, by default, not encrypted. Any user on the network running a packet sniffer may have the ability to determine any data transmitted that may lead to the discovery of a username. If a rogue user accessed the system then they could create requirements that could not be removed from the database, only deleted (strikeout).
6.4 Timing

The response time for a clients request depends upon the current network saturation, the server processing load and the client load of the Requirement Server process. Specifying a range of response times would be acceptable. However, on a full load the server may not be able to meet the specified maximum of the timing range. In this case perhaps another transport technology besides Remoting would yield better timing results. Changing the way information is transmitted, i.e. a more compact format, could also lead to better response times. Currently this is a pseudo-issue because the customer never required range of transmission times or even the requirement of “reasonable” response time.
6.5 XML Data Format

A proposed XML format for the physical in-file layout of the database is given in Appendix A. However, there is no Schema or DTD given to constrain the developer. The developer(s) may choose to enhance the format or rearrange the way things are laid out (i.e. making an element an attribute or vice-versa). There may be unforeseen complications with the proposed format or the customer may request an enhancement that is not easily inserted into this format. The reference format includes a mapping of requirements to other requirements. This satisfies the customer requirement of a future mapping of client to developer requirements in a more general way. As previously stated, this is a proposed format.
Appendix A Example XML Format
The following is an example XML format for the physical file. It is “open” enough to allow a developer to enhance or modify. The developer will also need to decide on an exact date encoding for the Creation and Modification elements. Here they are represented as MM/DD/YYYY. The MapsTo element is not described anywhere else within this OCD. It is included here to satisfy the future requirement of mapping two requirements (normally client to/from developer) together.
	<RequirementsDatabase version=”1.0”>

<Requirement number=”1”>

<Title>Requirement 1</Title>

<Type>Client</Type>

<Creation>05/21/2003</Creation>

<Modification>05/21/2003</Creation>

<Responsibility>Joe Client</Responsibility>

<Description>

This is the first requirement of the client...

</Description>

<MapsTo>

<RequirementReference>2</RequirementReference>

</MapsTo>

</Requirement>

<Requirement number=”2”>

...

</Requirement>

</RequirementsDatabase>

Proxy

Server Components

Data

Add a Server Database

View, Modify or Create a Users

GUI input and output

Open, Close or Save a Server Database

View, Modify or Create a Requirement

Refresh all Requirements

File Name

File Handle

Requirements

Key

Registry Services

Data

Key

Database

File System Services

Server

Communication Conduit for Remote Invocation

Marshal-by-Ref Object

Proxy

Registry Services

GUI input and output

Client

Client Controller

Requirement Edit Form

Requirement View Form

Main Display Form

Requirements Database Client

Requirement Create Form

Initial Display Form

Requirements Database Server

Server Display Form

XML Database

Server Controller

Remoting Interface

Database Manager

User Manager

� Either Customer of Developer

PAGE
16

_1117908667.vsd

_1117974635.vsd

