New Laboratory 3 – Red-Black Binary Search Trees
Wikipedia
 defines a red-black tree
 as:

A red-black tree is a type of self-balancing binary search tree, a data structure used in computer science, typically used to implement associative arrays. The original structure was invented in 1972 by Rudolf Bayer who called them "symmetric binary B-trees", but acquired its modern name in a paper in 1978 by Leo J. Guibas and Robert Sedgewick. It is complex, but has good worst-case running time for its operations and is efficient in practice: it can search, insert, and delete in O(log n) time, where n is the number of elements in the tree.

A red-black tree is a special type of binary tree, used in computer science to organize pieces of comparable data, such as numbers.

In red-black trees, the leaf nodes are not relevant and do not contain data. To save memory, sometimes a single sentinel node performs the role of all leaf nodes. All references from internal nodes to leaf nodes instead point to the sentinel node.

Red-black trees, like all binary search trees, allow efficient in-order traversal of elements provided that there is a way to locate the parent of any node. The search-time results from the traversal from root to leaf, and therefore a balanced tree, having the least possible tree height, results in O(log n) search time.

A red-black tree is a binary search tree where each node has a color attribute, the value of which is either red or black. In addition to the ordinary requirements imposed on binary search trees, the following additional requirements of any valid red-black tree apply:

1. A node is either red or black.

2. The root is black. (This rule is used in some definitions and not others. Since the root can always be changed from red to black but not necessarily vice-versa this rule has little effect on analysis.)

3. All leaves are black, even when the parent is black (The leaves are the null children.)

4. Both children of every red node are black.

5. Every simple path from a node to a descendant leaf contains the same number of black nodes, either counting or not counting the null black nodes. (Counting or not counting the null black nodes does not affect the structure as long as the choice is used consistently.).

These constraints enforce a critical property of red-black trees: that the longest path from the root to a leaf is no more than twice as long as the shortest path from the root to a leaf in that tree. The result is that the tree is roughly balanced. Since operations such as inserting, deleting, and finding values requires worst-case time proportional to the height of the tree, this theoretical upper bound on the height allows red-black trees to be efficient in the worst-case, unlike ordinary binary search trees
.

The Wikipedia reference, given above, has detailed code fragments which describe the implementation of such trees, and links to several implementations.
In this laboratory you will create a class that represents red-black search trees. You are required to use the tree implementation of the previous laboratory as the starting point for this implement-tation. That means that you cannot simply take one of the implementations referenced above and use that, but may use those implementations as guides for your own.
Your red-black tree class is required to implement insertion, search, and removal, providing the red-black tree’s characteristic O(log n) performance.
As a demonstration of your implementation you will build a dictionary class and use that to store all of the identifiers in the source code of your red-black tree code, along with the number of times they occur. Your test program should display the number of times the indentifiers “class”, “struct”, “for”, and “while” are used.
Implementation notes:
1. You may use C++, C#, or Java to implement this project.[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6]
� www.wikipedia.org

� http://en.wikipedia.org/wiki/Red-black_tree

