New Laboratory 2 – Trees
Wikipedia
 defines a tree as:

In graph theory, a tree is a graph in which any two vertices are connected by exactly one path. Alternatively, any connected graph with no cycles is a tree. A forest is a disjoint union of trees. Trees are widely used in computer science data structures such as binary search trees, heaps, tries, Huffman trees for data compression, etc.

A tree is an undirected simple graph G that satisfies any of the following equivalent conditions:

· G is connected and has no cycles.

· G has no cycles, and a simple cycle is formed if any edge is added to G.

· G is connected, and it is not connected anymore if any edge is removed from G.

· G is connected and the 3-vertex complete graph K3 is not a minor of G.

· Any two vertices in G can be connected by a unique simple path.

If G has finitely many vertices, say n of them, then the above statements are also equivalent to any of the following conditions:

· G is connected and has n − 1 edges.

· G has no simple cycles and has n − 1 edges.

An undirected simple graph G is called a forest if it has no simple cycles.

A directed tree is a directed graph which would be a tree if the directions on the edges were ignored. Some authors restrict the phrase to the case where the edges are all directed towards a particular vertex, or all directed away from a particular vertex.

A tree is called a rooted tree if one vertex has been designated the root, in which case the edges have a natural orientation, towards or away from the root. The tree-order is the partial ordering on the vertices of a tree with u ≤ v if and only if the unique path from the root to v passes through u. Rooted trees, often with additional structure such as ordering of the neighbors at each vertex, are a key data structure in computer science; see tree data structure.

In this laboratory you will create classes that represent vertices, directed edges, and use those to implement a directed tree class.
 Vertices and edges are required to store information represented as strings
. The tree class must support depth-first search
:
Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure, or graph. One starts at the root (selecting some node as the root in the graph case) and explores as far as possible along each branch before backtracking.

Formally, DFS is an uninformed search that progresses by expanding the first child node of the search tree that appears and thus going deeper and deeper until a goal node is found, or until it hits a node that has no children. Then the search backtracks, returning to the most recent node it hadn't finished exploring.

Your tree class is required to implement depth-first search without recursion using a stack to keep track of visited vertices.

As a demonstration of your implementation you will build an XML
 parser that extracts tag names and stores them in their respective vertices. You are not required to store attributes or text bodies, but may do so if you wish.
You will provide a test program that uses depth-first search to list all of the tags in a well formed XML file that represents books in the Object Oriented Design section of http://www.ecs.syr.edu/faculty/fawcett/handouts/webpages/Books.htm/. Please provide tags for title, authors, publisher, date, and ISBN.
Implementation notes:
1. You may use C++, C#, or Java to implement this project.[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6]
� www.wikipedia.org

� You are welcome to use the graph class, developed in New Laboratory 1, as the basis for this implementation.

� You may create the classes using templates so that they can hold arbitrary types, but are not required to do so.

� www.wikipedia.org

� http://en.wikipedia.org/wiki/Xml

