CSE382 – Algorithms and Data Structures
Fall 2008

Project #1 – Graphs and File Dependencies due Wed, Oct 01
Version 2
Purpose:

This project requires you to develop a graph class in C#. This class represents finite directed graphs where vertices hold references to a finite number of edges and to an instance of a generic type V. Edges each hold a reference to one vertex and to an instance of a generic type E. You will also develop means to find strong components
 of the graph.
Using the graph class, develop a program that evaluates the direct file dependencies among a set of C# source code files. Use source code parsing to determine the dependency of each file on other files in the set. You will encode that information in an instance of the graph you’ve developed and use a strong component algorithm
 to determine mutual dependencies. You may use Project1HelpF08 to help you get started.
Requirements:
1. The Graph<V,E> class shall use instances of a generic Vertex<V,E> class and a generic Edge<V,E> class.

2. The Vertex<V,E> class shall hold references to a finite number of instances of the Edge<V,E> class and to an instance of a generic type V.
3. The Edge<V,E> class shall hold a reference to an instance of the Vertex<V,E> class and to a generic type E.
4. Means to evaluate the transitive closure of an instance of the Graph<V,E> class shall be provided.
5. A program shall be provided that accepts a path and set of file patterns and evaluates the dependency graph of all files in the set, by parsing their source code.
6. The output of this program shall consist of a list of all the files and for each file a list of all the files on which it depends either directly or indirectly.
Parsing C# source code for file dependency information is relatively easy, as demonstrated by Handouts/CSE382/code/Project1HelpF08.doc. Doing so is much more difficult with C++ code, as will be discussed in class.
In order to find these dependencies you need to discover type definitions and associate them with the file that defines them. Then you need to find files that use them. This requires looking up each token in the analyzed file to see if it resides in your type collection. How will you support this lookup efficiently?

What is the computational complexity of your strong component algorithm?
� A strong component is a set of vertices in which any vertex is reachable from any other vertex.

� � HYPERLINK "http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-strong-components.pdf" �http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-strong-components.pdf�

� HYPERLINK "http://www.cs.fsu.edu/~cop4531/slideshow/chapter23/toc.html" ��http://www.cs.fsu.edu/~cop4531/slideshow/chapter23/toc.html��� HYPERLINK "http://www.cs.duke.edu/education/courses/cps130/fall98/lectures/lect16/" ��http://www.cs.duke.edu/education/courses/cps130/fall98/lectures/lect16/�

�HYPERLINK "http://www.classes.cs.uchicago.edu/classes/archive/2001/spring/CS117/Lectures/HTML/0521"��www.classes.cs.uchicago.edu/classes/archive/2001/spring/CS117/Lectures/HTML/0521/�

� HYPERLINK "http://www.cs.virginia.edu/~luebke/cs332/" ��http://www.cs.virginia.edu/~luebke/cs332/�

