CSE382 – Algorithms and Data Structures
Fall 2008

Lab #6 - Priority Heaps

Prologue:

This lab is concerned with understanding Priority Heaps.

Starting Condition:

Please use only the ECS computers provided in this computer lab (CST 3-201) to implement code for this lab
. Please write all of this yourself during class for the first part and for the second part outside of class. Do not use any code from the college server, nor any code from the web, except as directed below.

Tasks to be completed in class:

You may ask questions about the implementations in class.
1. Build a new C# console application project that holds a PriorityHeap.cs file.

2. To the PriorityHeap.cs source add prologue, and maintenance information. In the Manual Page part add comments that describe briefly, but completely, the interface you expect to use for a PriorityHeap class.
3. Define a generic PriorityHeap<T> class that holds a reference to an instance of the Array<T> class.
4. Implement an Insert(T t) method
 that adds an instance t, of T, while maintaining the Priority Heap order.

5. Implement a test stub to demonstrate that instances of PriorityHeap<T> class behave as expected.

Tasks to be completed outside of class:

6. Add a Remove() method that removes the top priority element from the heap in a way that preserves the Priority Heap order.

7. Build a PriorityHeapSort<T> class that accepts an unsorted array and sorts it by building a Priority Heap in an auxiliary array, using the PriorityHeap<T> class and inserting the values into an auxiliary array that holds the Priority Heap, and then Removing each item from the auxiliary array and overwriting elements in the original array
.

8. Add code to your test stub to test instances of the PriorityHeapSort<T> class.

Note:

You must hand in whatever you have completed in class at the end of that class.

You must upload the results of Tasks #6 - #8 before you come to class on the next Wednesday.

� This explicitly forbids you from using your personal laptop.

� If you use Sedgewick (recommended) as a reference for this lab, please note that his code uses a one-based array indexing scheme rather than zero-based. If you do wish to follow his example, please convert that to zero-based (that is a requirement, even if I did say please).

� You may, alternately, implement the process described in this item in place, which is just what Heap Sort does.

