CSE382 – Algorithms and Data Structures
Fall 2008

Lab #5 –
Balanced BTree<T> class
 2 Week Project

Prologue:

This lab is concerned with building a balanced tree class, BTree<T>, using a BNode<T> class you will also develop in this lab. Please do this using C++.

Starting Condition:
Please use only the ECS computers provided in this computer lab (CST 3-201) to implement code for this lab
. Please write all of this yourself during class for the first part and for the second part outside of class. Do not use any code from the college server, nor any code from the web, except as directed below.
Tasks to be completed in class:

You may ask questions about the implementations in class.
1. Build a new C++ console application project that holds BTree.h and BTree.cpp files and BNode.h and BNode.cpp files.

2. To the BTree.h source add prologue, and maintenance information. In the Manual Page part add comments that describe briefly, but completely, the interface you expect to use for the BTree<T> class.
3. In the BNode.cs file, define a template BNode<T> that holds two child references, left, and right, and a parent reference, needed to implement Red-Black trees.
4. In the BTree.h and BTree.cpp files define a template BTree<T> class that holds a reference to a BNode<T> that represents the tree root. Each reference added to a BNode<T> instance represents a child node of that instance. You need to ensure that each BNode<T> instance has only one parent node.
5. Add member functions that insert and search for instances of the T class.

6. Implement a test stub to test instances of your BTree<T> class.

Tasks to be completed outside of class:

7. Add a facility to balance a BTree<T> instance on insertion of a new node. You are asked to use the Red-Black algorithm
. You will be awarded bonus points if you also implement node deletion (correctly).
a. You may use code from Sedgewick or Wikipedia, as cited below, for the balancing algorithms. However, you are expected to know exactly what this code is doing, and can be expected to be questioned about this during the oral examination.

8. Add a function to perform an inorder traversal of the tree.

9. Add code to your test stub to test instances of the balanced BTree<T> class.

Note:

You must hand in whatever you have completed in class at the end of that class.

You must upload the results of Tasks #7 - #9 before you come to class on the next Wednesday.

� This explicitly forbids you from using your personal laptop.

� Algorithms in C++, Section 13.4, Sedgewick, Addison-Wesley, 1998�� HYPERLINK "http://en.wikipedia.org/wiki/Red_black_tree" �http://en.wikipedia.org/wiki/Red_black_tree�	

