
SER3093

Abstract — Development of large software systems creates
many, often thousands, of source code files with complex
inter-dependencies. Clusters of mutually dependent files
introduce the possibility of a chain of forced consequential
changes when a single cluster member file is changed. Our
software development risk model shows that density of
dependencies within such clusters plays a crucial role in
this behavior. We develop a file-rank procedure which
orders the entire system’s file set by increasing risk. This
ranking process should prove to be useful while managing
the development of large systems, indicating where attention
should be focused to improve Test Risk. We have applied
this model to a library from the 1.4.1 release of the open
source Mozilla project with interesting results.

Index Terms — Dependency analysis, metrics, open-source,
software quality, risk analysis.

I. INTRODUCTION

Development of large software systems creates many, often
thousands, of source code files with complex inter-
dependencies. We show, in this paper, that clusters of
mutually dependent files introduces the possibility of a chain
of forced consequential changes when a single cluster
member file is changed, perhaps to repair a latent defect or
improve system performance[2]. The model shows that
density of dependencies within such clusters plays a crucial
role in this behavior. Increasing density leads to increased
risk of essentially unending sequences of change, known as
thrashing. Our model is derived from a notion of Test Risk,
based on the work of Jungmayr[1], combined with a measure
of importance, for each file. We develop a file-rank
procedure which orders the entire system’s file set by
increasing risk, the product of importance and test risk, both
defined in the paper. This ranking process should prove to be
useful while managing the development of large systems,
indicating where attention should be focused to improve Test
Risk. We have applied this model to a library from the 1.4.1

release of the open source Mozilla project, composed of 598
files of source code, with interesting results.

The results of this paper will, we believe, be useful for any of
the disciplines that depend on large complex code bases.
Computational Biology, Aerospace Systems, and Medical
Imaging Systems, among many others, depend on large
software toolkits, analysis systems, and display technology.
Because much of the current work in these areas is new
research or advanced product development, the codes that
support those disciplines are continuously evolving and new
software tools appear frequently.

The methods of this paper provide direct support for
management of large developing code bases. Not only are
weakness discovered, but the model provides direct
prescriptive guidance to improve the quality and reduce Test
Risk of these systems.

II. DEPENDENCY ANALYSIS

Dependency among software components is necessary to
provide services from one component to another; on the other
hand, excessive dependencies among components make a
system inflexible and fragile. The project becomes difficult
for developers to understand, test, maintain and reuse. Using
dependency-based and other software metrics, we present a
way of diagnosing potential problems of this type in large
software systems.

As a project gets larger, dependency among its components
gets denser and harder to manage. Therefore it is very
important to provide timely feedback to software engineers
and project management about the state of the software
development project. We focus on file level dependency
information, as files are the unit of testing and configuration
management. File dependency information can be obtained
promptly from source code, using analysis tools, so this
information is always available, unlike project
documentation, which may be out of date or may not exist.

We’ve built a tool, DepAnal, which can be used to constantly
monitor the state of large software systems and provide
guidance about where detailed quality analysis and re-
factoring are needed. The tool uses grammar productions for
the C and C++ languages that are much simpler than that

SOFTWARE DEVELOPMENT RISK MODEL
Applied to Data from Open-Source Mozilla Project

James W. Fawcett, Murat K. Gungor

Manuscript received April 21, 2005.
Dr. James W. Fawcett is with the Electrical Engineering and Computer
Science Department, Syracuse University, Syracuse, NY 13244, USA
(phone: 315- 443-3948; e-mail: jfawcett@twcny.rr.com).
Murat K. Gungor is with the Electrical Engineering and Computer Science
Department, Syracuse University, Syracuse, NY 13244 USA (phone: 315-
443-4003 ; e-mail: mkgungor@ecs.syr.edu).

SER3093
needed for complete code analysis, and uses the dependency
model described below.

Dependency Model [8] - file A depends on file B if:

� A creates and/or uses an instance of a type declared or

defined in B
� A is derived from a type declared or defined in B
� A is using the value of a global variable declared and/or

defined in B
� A defines a non-constant global variable used by B
� A uses a global function declared or defined in B
� A declares a type or global function defined in B
� A defines a type or global function declared in B
� A uses a template parameter declared in B

We also developed three adjunct tools that provide additional
views of the data:

1. Strong Component Analyzer: Builds a dependency graph

from the data provided by DepAnal and analyzes its
strong components, that is, sets of files that are mutually
dependent.

2. Size and Complexity Analyzer: Counts the number of
lines of source code in each function and analyzes each
function’s cyclomatic complexity [6], measured by the
number of regions enclosed by the control flow graph of
the function. Anal also evaluates the total line count and
sum of the complexities of all of the functions in each
file.

3. Dependency Viewer: Generates 2D graphical display of
components and their dependency relationships.

We also use the finance toolbox of Matlab [3] to solve
simultaneous linear equations that result from the risk model
described in this paper.

III. SOFTWARE DEVELOPMENT RISK MODEL

In the Figure 1, an arrow shows the dependency relationship
among two source files, where each square represents a
source file. If the arrow points from file A to file B, then file
B provides services to A and A depends on B.

In this example, files 6 and 7 are the most independent files
since they do not depend on any other files’ services. It is
straightforward to test them, at least in terms of these
structural relationships. However, this does not imply that
these files are unimportant. On the contrary, files 6 and 7
provide services to many files above them, so their
importance in this example is high.

To discover the state of software system, we develop a file-
rank procedure which orders the entire system’s file set by
increasing risk, the product of importance and test risk.

This is leads us to define two things:

1. Importance of a file

2. Test risk of a file

In the following section importance and test risks are
elaborated.

A. File Importance
Here we define importance from the perspective of change

impact. Importance, I, can be greater than or equal to 1. File 1
has importance 1 (11 =I), since no other files depend on
file1, it can be changed without worrying about anything
other than its internal implementation. If we pick a file which
is being used by other files, it will have higher importance,
since any change applied to that file may affect the files
above it.

�+=
AllCallers

jiji II α1

Here we use coefficient alpha (ijα), which shows the risk of

impact on files j caused by change in file i. Thus, if there is
no risk that a change in file i will affect file j, there is no
contribution, from that file, to the importance of file i.

The smaller (closer to 1) the importance value for file i is, the
better, in terms of impact of modifications to this file on the
remaining files in the system.

ijα is impact strength, which indicates the affect on upper

level files of changes in called files. If it is certain that a
change in file 2 will cause a change in file 1, 21α = 1, and the

importance of file 2 is 1 + 21α = 2, e.g. the number of files
changed when file 2 changes.

If ijα evaluates close to 1, it indicates that upper level files

will be affected significantly by changes occurring in lower
level files which provide services, so importance will
increase rapidly.

�

� �

�

� �

�

In this project file 1 has high test
risk, due to its dependence on all
the other files except file 3, either
directly or indirectly. But its
importance is low, in that no other
files depend upon it for services.
The opposite is true of files 6 and
7. Files 2, 3, 4, and 5 are
intermediate cases that we will
analyze below.

Figure 1: Simple dependency between files

SER3093

If ijα is close to 0, it indicates upper level files will not be

affected much by changes occurring in low level files and the
lower level files are not so important.

A. Test Risk of File, T
Test Risk of a software file is an important issue in

assuring that required functionality is implemented without
errors. “A lack of testability contributes to a higher test and
maintenance effort” [1]. Testing a file that uses services of
others is harder than testing a file that performs its required
task without depending on other files. In Figure 2, Test Risk
of file 7 is the lowest rank. The smaller T (close to 1) is, the
more testable the file.

Below, we introduce implementation quality (β), which is
described in section B

�+=
AllCalled

mmnnn TT αβ

Magnitude of Test Risk metric varies according to the
depended upon files’ internal structure and the project’s
dependency structure. nβ is the test risk of file n in

isolation. nT is the test risk accounting for retesting
necessary when one of the file’s dependent files changes and
it must change.

B. Implementation Metric Factor, β

Test Risk of a file depends not only on its internal
implementation quality, but also on the quality of the files
that it depends on. For this reason, metric factor, β , of many
other files in the project may affect the test risk of any
specific file. A number of metrics may be chosen to
evaluate β . For this paper we use average lines of code per
function and average cyclomatic complexity per function.
For our own work we take 50 lines of code and cyclomatic
complexity of 10 as upper bounds of desirable values for
these metrics. We use these bounds to normalize the metric
factor, as follows:

�
∈

+=

++++=

),1(

2

22

2

22

1

1

)(
1

1

)(....)()(
1

1

Nj j

ji
i

N

Niii
i

M

m

N

M
m

M
m

M
m

N

β

β

Lowercase m is the measured metric, uppercase M is
boundary value metric.

C. Case of Circular Dependency
In the case of circular dependency, each member has the

same importance and Test Risk size, since there is a mutual
dependency between each file, and any change can affect any
other files, as shown in Figure 3.

133221

332212211
1

11333222111

33222111

22111

1

))((

)(

ααα
βααβαβ

αβαβαβ
αβαβ

αβ

−
++=

+++=
++=

+=

T

TT

TT

TT

11 =I
212

1212

1

1

α
α

+=
+=

I

II

43642142644264646

4646

1

1

αααααααα
α

++++=
+=

I

II

775544221664422155442214422122111

22111

βααααβαααβαααβααβαβ
αβ

+++++=
+=

T

TT

�

� �

�

� �

�
 7755442664425544244222

44222

βαααβααβααβαβ
αβ

++++=
+=

T

TT
 66 β=T

Figure 2: Example of importance and Test Risk of files.

22111 TT αβ +=

33222 TT αβ +=

11333 TT αβ +=

3131 1 II α+=

1212 1 II α+=

2323 1 II α+=

Figure 3: Circular dependency.

SER3093

213213

321313
1

12132131

232131

3131

1
1

))1(1(1

)1(1

1

ααα
ααα

ααα
αα

α

−
++=

+++=
++=

+=

I

II

II

II

In Figure 3, we see the effect of circular dependency over
Test Risk and importance. As identified, ijα are always less

than 1, dividing importance by 2132131 ααα− or Test Risk

by 1332211 ααα− makes Test Risk and importance increase.
Thus circular dependency increases Test Risk, since a change
in any file may affect every file in the mutual dependency set.

Figure 4 and Figure 5 show the matrix representation of
importance and Test Risk for Figure 3.

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−
−

−

1
1

1

10
01

01

3

2

1

32

21

13

I

I

I

α
α

α

Figure 4 – Matrix representation of importance

�
�
�

�

�

�
�
�

�

�

=
�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

−
−

−

3

2

1

3

2

1

13

32

21

10
10

01

β
β
β

α
α

α

T

T

T

Figure 5 – Matrix representation of Test Risk

When there are more than a single cyclic path there is a
critical value for ijα at which the solution for importance

and Test Risk becomes singular, e.g., the risk becomes
unbounded. This indicates that a change made on a
component with unbounded risk is likely to cause an
unending sequence of changes1.

1212 1 II α+=

11333 TT αβ +=

3132121 1 III αα ++= 33122111 TTT ααβ ++=

11222 TT αβ +=

1313 1 II α+=

Figure 6 – Three mutually depended files.

In Figure 6, if for all i, j, ijα are greater than 0.7071,

behavior becomes undefined, as the change sequence
becomes unbounded.

1 Essentially, our risk model is a Markov process that becomes unstable at

the critical value for ijα .

31132112

1312
1 1

1
αααα

αα
−−
++=I

and

13311221

3312211
1 1 αααα

βαβαβ
−−
++=T

It can be clearly seen in Figure 6 that circular dependency
increases the software system's Test Risk and file importance.
Importance increases since a change in any given file affects
all files in the mutually dependent set, including possibly
itself. A few more simple cases with increasing numbers of
paths show that as density of dependency paths increase the
critical value for ijα decreases.

D. Risk of a File, R
Risk factor is calculated by product of importance and Test

Risk metrics.

iii xTIR =

A file with high Importance and high Test Risk will have a
high risk, while a file with low importance but the same high
Test Risk will have lower Risk Factor.

We develop a file-rank procedure which orders the entire
system’s file set by increasing risk, iR , the product of
Importance and Test Risk. This ranking process should prove
to be useful while managing the development of large
systems, indicating where attention should be focused to
improve Test Risk.

Risk factor provides feedback about individual files and also
provides insight about the global state of a software project.
For instance, if developer needs to test a file, risk factor will
give an idea how much time to allocate for that task. Ranking
files by Test Risk shows project management where to focus
effort to reduce overall risk by redesigning and re-factoring
high risk files.

IV. EMPIRICAL STUDY OF RISK MODEL ON
MOZILLA LIBRARY, GKGFX

We downloaded version 1.4.1 of the Mozilla Win32
configuration [4] [5]. This included the entire build, which
makes many executables and libraries. We were able to build
all the libraries and executables in about a week’s effort,
using the information provided on www.mozilla.org.

We built some simple parsers to find all the files included in a
specific build, based on compiler output. This included all
common code and header files.

The information provided on the Mozilla web site was very
well prepared, easy to digest, considering the size of this

SER3093
large project, and straightforward to use. We chose this
project because of the quality of its tools and the fact that it
has a very large code base.

We applied our risk model to Mozilla GKGFX library and it
gave us important insights about potential problem files, on
which attention should be focused. This information obtained
without diving into implementation details, which is very
important for the software project’s testers, developers, and
managers.

Mozilla GKGFX Library Windows Build 2003/10/10 Ver 1.4.1
Max Importance vs Alpha

61.4189 73.1501 90.152
117.1672

167.0967

291.7933

1181.9407

0

200

400

600

800

1000

1200

1400

0.1 0.1025 0.105 0.1075 0.11 0.1125 0.115

Alpha

M
ax

 Im
po

rt
an

ce

Max Importance

Figure 7 – Max Importance vs. Alpha (α) value for Mozilla

GKGFX Library Version 1.4.1.

First, we explored the variation of maximum importance with

ijα =α , making the simplifying assumption that it is

constant for all files. Essentially we are treating α as the
average probability of a consequential change in a depending
file when we change the depended file. Thus, these results
will be qualitatively useful, but not numerically precise. We
see, from the plot in Figure 7, that Importance grows without
bound above α =0.115. This indicates that changes are very
likely to propagate throughout the system since one might
expect the value of α to be of the order of 0.1.

Next, we calculated Risk factor values using average
cyclomatic complexity2 (AvgCC) and Fan-out3 values for
each file in GKGFX when calculating β ; upper limits were
10 for AvgCC and 5 for Fan-out. We took these values since
it becomes harder to manage a file which uses several other
files’ services, accordingly, it is hard to understand and test a
file with high complexity functions.

Figure 8 shows the risk rate of all the files in Mozilla library,
GKGFX, in increasing order. Note that about %10 of the files
have most of the Risk in the library code. Interestingly, the
file with the highest risk is part of the second largest
component (with 56 files in Figure 9). This shows that the
high risk files are not guaranteed to be part of largest strong
component.

2 AvgCC = Sum of CC of each functions in a file divided by number of

functions in that file.
3 Fan-out is a number of depended files whose services are employed by a

file.

Risk Values for Mozilla GKGFX Library Files, Version 1.4.1
Alpha = 0.1

1

10

100

1000

10000

1 24 47 70 93 116 139 162 185 208 231 254 277 300 323 346 369 392 415 438 461 484 507 530 553 576 599

File Sequence Increasing Risk Order

R
is

k
V

al
ue

s
(lo

ga
ri

th
m

ic
 s

ca
le

)

Figure 8 – Risk values for files in GKGFX Library

Each circle
represents a
strong
component;
number on the
circle shows
how many files
are in that
strong
component.

Figure 9 – Components of GKGFX Library

Not surprisingly, all the files with high risk are members of
strong components [9]. This also proves that risk analysis is
providing dependable information.

V. CONCLUSIONS

In this paper we present a new software development Risk
Model and have shown that the model can be used to predict
problem areas, as concentrations of high risk files. The model
predicts that, as the density of dependency relations increases
in strong components of the dependency graph, Risk factor
grows and becomes unbounded at critical densities. We’ve
applied the model to a library from a real open-source project
where the model predicted that most of the development risk
is in about 10% of the library files.

REFERENCES

[1] Stefan Jungmayr, “Identifying Test-Critical

Dependencies”, Proceedings of the International
Conference on Software Maintenance (ICSM'02), IEEE,
2001.

[2] M.M. Lehman and L.A. Belady, Program Evolution:
Processes of Software Change. Academic Press, 1985.

[3] http://www.mathworks.com/
Documentation > Financial Toolbox > Solving
Simultaneous Linear Equations

SER3093
[4] Mozilla the Configurator,

http://webtools.mozilla.org/build/config.cgi
[5] Mozilla on Microsoft Windows 32-bit Platforms,

www.mozilla.org/build/win32.html
[6] Tom McCabe, “A complexity measure”, IEEE

Transactions on Software Engineering, 2(4), pp. 308-
320, 1976

[7] Katsuro Inoue, Reishi Yokomori, Hikaru Fajiware,
Tetsuo Yamamoto, Makoto Matsushita, Shinji
Kusumoto, “Component Rank: Relative Significance
Rank for Software Component Search”, 25th
International Conference on Software Engineering, 2003.

[8] James Fawcett, Murat Gungor, Arun Iyer, "Analyzing
static structure of large software systems", SERP'05 The
2005 International Conference on Software Engineering
Research and Practice, Nevada, USA 2005.

[9] J. Lakos. Large-scale C++ software design. Addison-
Wesley, 1996.

James W. Fawcett (M’61–LM’04) received his PhD degree in Electrical
Engineering from Syracuse University. His research interests include
software complexity and developing infrastructure to re-engineer software
reuse processes and make accessible, for reuse, not only code, but also
documentation and test products.

Murat K. Gungor received his BS degree in industrial engineering from
Sakarya University in Turkey, and received his MS degree in computer
science from Syracuse University. Currently (2005) he is continuing his PhD
study at Syracuse University. His research interests include static software
analysis, software change and using software metrics to understand and
improve static structure of large software systems.

