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Abstract 
 

The Process of developing large software 
systems creates many source code files with 
complex inter-dependencies. Clusters of mutually 
dependent files introduce the possibility of a chain 
of forced consequential changes when a single 
cluster member file is changed.  The software 
development risk model, developed here, shows 
that the density of dependencies within such 
clusters plays a crucial role in this behavior.  We 
develop a file-rank procedure which orders the 
entire system’s file set by increasing risk.  

 
This ranking process should prove to be useful 

while managing the development of large systems, 
indicating where attention should be focused to 
reduce development risk.  We have applied this 
model to code from several projects with 
interesting results.  
 

Index Terms: Dependency analysis, software 
quality, risk analysis, file ranking. 

1. INTRODUCTION 
evelopment of large software systems 
creates many, often thousands, of source 
code files with complex inter-dependencies.  

We develop, in this paper, a software 
development risk model.  It shows that clusters of 
mutually dependent files introduce the possibility 
of a chain of forced consequential changes when 
a single cluster member file is changed, perhaps 
to repair a latent defect or improve system 
performance [2].  The model shows that density 
of dependencies within such clusters plays a 
crucial role in this behavior.  Increasing density 
leads to increased risk of essentially unending 
sequences of change.   
 
Our model is derived from a notion of Test Risk, 
based on the work of Jungmayr[1], combined 
with a measure of importance, for each file.  We 
develop a file-rank procedure which orders the 
entire system’s file set by increasing risk, the 
product of importance and test risk, both defined 
in the paper.  This ranking process should prove 
to be useful while managing the development of 

large systems, indicating where attention should 
be focused to improve development risk.  We 
have applied this model to a library from the 1.4.1 
release of the open source Mozilla project, 
composed of 598 files of source code, to the well 
known MFC library, used to develop windows 
applications, and to our own analysis software, 
all  with interesting results.  
 
The results of this paper will, we believe, be 
useful for any of the disciplines that depend on 
large complex code bases.  Computational 
Biology, Aerospace Systems, and Medical 
Imaging Systems, among many others, depend 
on large software toolkits, analysis systems, and 
display technology.  Because much of the current 
work in these areas is new research or advanced 
product development, the codes that support 
those disciplines are continuously evolving and 
new software tools appear frequently.  
 
The methods of this paper provide direct support 
for management of large developing code bases.  
Not only are weakness discovered, but the model 
provides direct prescriptive guidance to improve 
quality and reduce Test Risk of these systems. 

2. PROBLEM WITH LARGE SOFTWARE SYSTEMS  
 
It is a natural consequence of development that, 
as a project gets larger, dependency among its 
components gets denser and grows more 
complex. This dependency is necessary to 
provide services from one component to another; 
on the other hand, excessive dependencies 
make a system inflexible and fragile.  The project 
becomes difficult for developers to understand, 
test, maintain and reuse. 
 
Therefore it is very important to provide timely 
feedback to software engineers and project 
management about the state of the software 
development project. Early detection of quality 
defects will avoid delays, difficulties and costs 
associated with development later in the project 
lifecycle. Higuera and Haimes reported that 
“Many of the most serious issues encountered in 
system acquisition are the result of risks that 
either remain unrecognized and/or are ignored 
until they have already created serious 
consequences” [15]. 
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Source code itself carries valuable information 
relevant for monitoring development projects. 
Furthermore software source is always 
accessible to the project and carries up-to-date 
information, unlike project documentation, which 
may be out of date or may not exist.  Source 
code provides quantitative information that can 
be turned into qualitative assessments of the 
state of development to provide timely feedback 
to software engineers and project management 
about the state of the software project [14].   
 
Software systems can be extremely complex.  
Here is what Frederick Brooks; Kenan Professor 
of Computer Science, University of North 
Carolina, Chapel Hill [5] has to say about 
software complexity: 
 
“Software entities are more complex for their size 
than perhaps any other human construct, 
because no two parts are alike (at least above 
the statement level).  If they are, we make the 
two similar parts into one, a subroutine, open or 
closed.  In this respect software systems differ 
profoundly from computers, buildings, or 
automobiles, where repeated elements abound.” 
 
And later in the same reference [5], he says: 
 
“Much of the complexity in a software construct 
is, however, not due to conformity to the external 
world but rather to the implementation itself – its 
data structures, its algorithms, its connectivity.” 
 
This complexity, coupled with organizational 
factors, has been responsible for a number of 
noted software disasters: Therac-25 X-Ray 
machine malfunction due to race condition1, 
1985-87 [6], Denver Airport Baggage System 
failure2, 1995 [7], Ariane 5 crash, arithmetic 
errors coupled with specification and design 
errors3, 1996 [8], and Mars climate orbiters4, 
1999 [9], to cite a few. 
 
Complexity causes not only malfunctions in 
operational systems, but problems with the 
development process resulting in cost and 
schedule overruns and project cancellations.  
The Standish Group published a widely cited 
report claiming these survey5 results, 1995 [10]: 
 
1. 15.5% of responders reported cost overruns 

of under 20%.  The rest were higher. 
2. 13.9% reported time overruns of under 20%.  

The rest were higher. 
 

1 This system is complex 
2 Problems with both mechanical and software complexity. 
3 “Very tiny details can have terrible consequences,” says 

Jacques Durand, head of the project, in Paris.  “That’s not 
surprising, especially in a complex software system such as 
this is.” [7]  

4 Data in English units instead of metric in software 
application code. 

5 Sample size of 365 respondents, representing 8,380 
applications [9]. 

3. 31.1% of all projects were cancelled. 
 
The goal of this research is to provide tools – 
metrics and the programs needed to employ 
them, to detect when large projects are getting 
into trouble, based on examinations of their code 
bases.  Our primary concern is for systems that 
are so large that no one person can understand 
the entire semantics of the project.  That drives 
us to use methods that don’t require semantic 
analysis6.  A secondary goal is to devise concrete 
procedures for making improvements to 
observed defects and quantizing the 
improvement with the same metrics used for 
analysis. 
 
We have been examining several large systems: 
the open-source Mozilla and KHTML projects, 
and the libraries MFC7, STL8, and some of the 
Boost Libraries9.  This gives us a mix of open-
source, commercial, and Expert developed code.  
As you will see, the results are, so far, quite 
interesting.  
 
The figures, Figure 1 and  
Figure 2, below10, represent dependency 
relationships within the GKGFX library 
(NGLayout Project [16]) from the Mozilla project 
version 1.4.1.  The large disk in the figure 
represents a collection of mutually dependent 
files - a strong component in graph terminology - 
119 files in all.   
 

 
Figure 1 – Internal dependencies of component 

#52 consist of 119 files. 
 

Every one of these files depends, either directly 
or indirectly on every other.  The dependency 
relationships are shown by the dense lines within 
the disk.  Each dot around the circle is one of the 
119 files.  The plot, below,  
Figure 2, adds dependencies of files outside the 
same strong component on files inside.  If any file 
inside the strong component is changed, it may 
break the operation or design of any other file in 
 

6 Most of our analysis to-date is based on static type-based 
dependencies. 

7 Microsoft Foundation Class library, part of the Visual 
Studio Software Developers Kit. 

8 Standard Template Library, part of the C++ standard 
library. 

9 C++ libraries supplied by participants in the last C++ 
standardization process. 

10 These figures were generated by our visualization tool, 
DepView. 



PAPER IDENTIFICATION NUMBER: N/A 4

the component and any of the external files using 
services of this component, as shown by all 
these dependency relationships. 
 

 
Figure 2 – Internal & external Fan-In 

dependencies of component#52 consist of 119 
files. 

 
The density and complexity of these relationships 
demonstrates that this component has extremely 
poor testability characteristics.  Should a 
developer find a defect in one of these files and 
fixes it, a huge number of files – more than 119, 
need to be retested to demonstrate that the 
change caused no other breakage. 
 
The number of source files is too large to pay 
attention to the semantics of each file that may 
negatively affect quality of the software project. 
We need a way to rank files based on their 
impact on system quality. We have several 
questions, answers for which will help us to 
identify those files or groups of files that present 
the greatest development risk.  Which files are 
contributing the most to large strong component 
size?  Can we order the risk of files by using 
each file’s interrelation with other files in the 
system?  How does internal quality of a file and 
the files on which it depends affect overall system 
quality?   
 
These questions led us to consider ranking files 
by their risk level. This way, important files will be 
ranked high, according to their risk contribution to 
the software system.  These files become the 
target on which developers focus first in order to 
alleviate structural problems. Below, we develop 
a software risk model by considering dependency 
relations among files and files’ internal metric 
information. 
 
Our goal is to enable a Project Manager to 
visualize his large (thousands of files) code base 
and determine where corrective action is needed 
and to continuously monitor development 
progress of the system.  The static dependencies 
we have been discussing are visible on a micro 
scale.  Each developer knows what other files 
her code depends on.  However, the 

dependencies on a macro scale are invisible to 
humans, due to the overwhelming complexity of 
real large projects11, in the large.  
 
The results to-date have shown that analysis of 
the dependency structure of a large project is 
attainable, useful, and potentially provides a 
basis for corrective action.  Exploring means for 
corrective action is the major area for the 
remainder of this research.  Inspired by a 
discussion by Jungmayr [11] on testability, we 
are working on a file rank algorithm that ranks 
each file based on its testability – a function of its 
internal quality and the testability of the files it 
depends upon, and its importance – a measure 
of the number of files that depend on it.  Although 
the work of Jungmayr inspired this approach, our 
algorithm differs in its measures of dependency, 
in its quality assessment, and in the use of 
importance.  Furthermore, unlike Jungmayr, we 
classify and treat differently dependency types, 
e.g., mutual, global, call-back and simple type 
usage dependencies.  One reason for doing this 
is that only dependencies based on simple type 
usage can be manipulated without breaking 
code, simply by rearranging code packages – an 
interesting partitioning problem that is being 
worked on by another student.  All the other 
types are breaking changes.  That is, we must 
change some aspect of the design to modify the 
dependency structure for these types. 
 
After identifying potential dependency problems, 
we also expect to develop some concrete ways 
to improve the dependency structure of a large 
system without a detailed understanding of its 
semantics.  We present some initial findings 
about that here.  

3. RISK-BASED FILE RANKING ALGORITHM 
 
In order to narrow down those files which need 
close attention, we rank files according to internal 
implementation metrics and external interaction 
with other files in the project, we call this ranking 
the Software Development Risk Model. Files with 
high ranks are targets for software engineers to 
use care while re-using, enhancing functionality 
or fixing latent errors, since any change to that 
file may force a chain of new (consequential) 
changes. 
 
In the Figure 3, an arrow shows the dependency 
relationship between two source files, where 
each square represents a source file. If the arrow 
points from file A to file B, then file B provides 
services to A, therefore A depends on B. In this 
example, files 6 and 7 are the most independent 
files since they do not depend on any other files’ 
services.  It is straightforward to test them, at 
least in terms of these structural relationships. 
 

11 A project developing 5 million lines of code in two and a 
half years needs about 350 developers. 



PAPER IDENTIFICATION NUMBER: N/A 5

However, this does not imply that these files are 
unimportant. On the contrary, files 6 and 7 
provide services to many files above them, so 
their importance in this example is high. 
 

1

2 3

4

5 6

7
 

In this project file 1 has high 
test risk, due to its depen-
dence on all the other files 
except file 3, either directly or 
indirectly.  But its importance 
is low, in that no other files 
depend upon it for services.  
The opposite is true of files 6 
and 7.  Files 2, 3, 4, and 5 are 
intermediate cases that we will 
analyze below. 

Figure 3: Simple dependency between files 
 
To discover the state of a software system, we 
develop a file-rank [3] procedure which orders 
the entire system’s file set by increasing risk, the 
product of importance and test risk.  
 
This is leads us to define two things: 
 

 Importance of a file 
 Test risk of a file 

 
In the following section importance and test risks 
are elaborated.  

A. File Importance, I 
 
Here we define importance from the perspective 
of change impact. Importance, I, can be greater 
than or equal to 1. File 1 has importance 1 
( 11 =I ), since no other files depend on file 1, it 
can be changed without worrying about anything 
other than its internal implementation.  If we pick 
a file which is being used by other files, it will 
have higher importance, since any change 
applied to that file may affect the files above it.  

∑+=
AllCallers

jiji II α1  

Here we use coefficient alpha ( ijα ), which shows 
the risk of impact on files j caused by change in 
file i.   Thus, if there is no risk that a change in file 
i will affect file j, there is no contribution, from that 
file, to the importance of file i. 
 
The smaller (closer to 1) the importance value for 
file i is, the better, in terms of impact of 
modifications to this file on the remaining files in 
the system. 
 

ijα is impact strength, which indicates the affect 
on upper level files of changes in called files.  If it 
is certain that a change in file 2 will cause a 

change in file 1, 21α = 1, and the importance of 

file 2 is 1 + 21α = 2, e.g. the number of files 
changed when file 2 changes. 
 

11 =I  

212

1212

1
1

α
α

+=
+=

I
II

 

43642142644264646

4646

1
1

αααααααα
α

++++=
+=

I
II

 

775544221664422155442214422122111

22111

βααααβαααβαααβααβαβ
αβ

+++++=
+=

T
TT

7755442664425544244222

44222

βαααβααβααβαβ
αβ

++++=
+=

T
TT  

66 β=T  

Table 1 Example of importance and Test Risk of 
some files in Figure 3 

 
If ijα  evaluates close to 1, it indicates that upper 
level files will be affected significantly by changes 
occurring in lower level files which provide 
services, so importance will increase rapidly. 
 
If ijα is close to 0, it indicates upper level files will 
not be affected much by changes occurring in 
low level files and the lower level files are not so 
important.  

B. Test Risk of File, T 
 
Test Risk of a software file is an important issue 
in assuring that required functionality is 
implemented without errors. “A lack of testability 
contributes to a higher test and maintenance 
effort” [1].  Testing a file that uses services of 
others is harder than testing a file that performs 
its required task without depending on other files. 
In Table 1 Test Risk of file 6 (and 7) is the lowest 
rank. The smaller T (close to 1) is, the more 
testable the file.  
 
Below, we introduce implementation quality ( β ), 
which is described in section C 
 

∑+=
AllCalled

mmnnn TT αβ  

 
Magnitude of Test Risk metric varies according to 
the depended upon files’ internal structure and 
the project’s dependency structure.  nβ  is the 

test risk of  file n in isolation.  nT  is the test risk 
accounting for retesting necessary when one of 
the file’s dependent files changes and it must be 
retested and perhaps change. 
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C. Implementation Metric Factor, β  
 
Test Risk of a file depends not only on its internal 
implementation quality, but also on the quality of 
the files that it depends on. For this reason, 
metric factor, β , of many other files in the project 
may affect the test risk of any specific file.  A 
number of metrics may be chosen to evaluate β .  
For this paper we use average lines of code per 
function and average cyclomatic complexity per 
function.  For our own work we take 50 lines of 
code and cyclomatic complexity of 10 as upper 
bounds of desirable values for these metrics. We 
use these bounds to normalize the metric factor, 
as follows:  
 

∑
∈

+=

++++=

),1(

2

22

2

22

1

1

)(11

)(....)()(11

Nj j

ji
i

N

Niii
i

M
m

N

M
m

M
m

M
m

N

β

β

 

 
Lowercase m is the measured metric, uppercase 
M is boundary value metric. 

D. Case of Circular Dependency 
  
In the case of circular dependency, each member 
has the same importance and Test Risk size, 
since there is a mutual dependency between 
each file, and any change can affect any other 
file, as shown in Figure 5. 
 

22111 TT αβ +=

33222 TT αβ +=

11333 TT αβ +=
 

 

133221

332212211
1

11333222111

33222111

22111

1
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−
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T
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Figure 4: Circular dependency, 
Testability. 

 
In Figure 4 and Figure 5, we see the effect of 
circular dependency over Test Risk and 
importance. As identified, ijα are always less than 

1, dividing importance by 2132131 ααα−  or Test 

Risk by 1332211 ααα−  makes Test Risk and 

importance increase.  Thus circular dependency 
increases Test Risk, since a change in any file 
may affect every file in the mutual dependency 
set.  
 

3131 1 II α+=

1212 1 II α+=

2323 1 II α+=
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1
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Figure 5: Circular dependency, Importance. 
 
When there are more than a single cyclic path 
there is a critical value for ijα  at which the 
solution for importance and Test Risk becomes 
singular, e.g., the risk becomes unbounded.  This 
indicates that a change made on a component 
with unbounded risk is likely to cause an 
unending sequence of changes12.   
 
Figure 6 and Figure 7 show the matrix 
representation of importance and Test Risk for 
Figure 5. 
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Figure 6 – Matrix representation of importance  
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Figure 7 – Matrix representation of Test Risk 
 
In Figure 8, if for all i, j, ijα are greater than 
0.7071, behavior becomes undefined, as the 
change sequence becomes unbounded. 
 

 
12 Essentially, our risk model is a Markov process that 

becomes unstable at the critical value for ijα . 
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1212 1 II α+=

11333 TT αβ +=

3132121 1 III αα ++= 33122111 TTT ααβ ++=

11222 TT αβ +=

1313 1 II α+=

Figure 8 – Three mutually depended files. 
 

31132112
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1 1

1
αααα

αα
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++

=I   

and   

13311221

3312211
1 1 αααα

βαβαβ
−−
++

=T   

 
It can be clearly seen in Figure 8 that circular 
dependency increases the software system's 
Test Risk and file importance.  Importance 
increases since a change in any given file affects 
all files in the mutually dependent set, including 
possibly itself. A few more simple cases with 
increasing numbers of paths show that as density 
of dependency paths increase the critical value 
for ijα  decreases. 

E. Risk Contribution of a Single File 
 
Risk factor is calculated by product of importance 
and Test Risk metrics.  

iii xTIR =  
A file with high Importance and high Test Risk will 
have a high risk, while a file with low importance 
but the same high Test Risk will have lower Risk 
Factor.  
 
We develop a file-rank procedure which orders 
the entire system’s file set by increasing risk, iR , 
the product of Importance and Test Risk. This 
ranking process should prove to be useful while 
managing the development of large systems, 
indicating where attention should be focused to 
improve development risk.  
 
Risk factor provides feedback about individual 
files and also provides insight about the global 
state of a software project. For instance, if a 
developer needs to test a file, its risk factor will 
provide an idea of how much time to allocate for 
that task. Ranking files by Test Risk shows 
project management where to focus effort to 
reduce overall risk by redesigning and re-
factoring high risk files. 

4. INTERPRETING RESULTS 
 
In this section, we describe interpretation of 
obtained results and how to asses the quality of 
software systems from analysis of their source 

code. And the following section describes 
candidate improvement techniques. 

A. Visualizers Providing a Different View 
 
All the results, obtained from software projects 
are represented as text, and interpreting these 
texts is almost as hard as reading source code. 
We felt the need of providing other kinds of 
representations, which would disclose the 
qualitative nature of this information in easily 
understandable fashions. We developed a 2D 
dependency viewer to give us comprehensible 
views of large software systems. 
 
In Figure 9, we see a visualization of the Mozilla 
GKGFX library.  Smallest circles represent 
individual source files – strong components of 
size 1, others have larger mutual dependency 
sets, e.g., strong components. The number at the 
center of each circle indicates the size of a strong 
component. The dimension of each circle is 
proportional to size of the strong component. And 
a line between circles shows dependency among 
circles 

  
Figure 9 – Mozilla GKGFX library DepView 

screen shot. 
 
Component #52 is the largest component in the 
GKGFX library with 119 source files.   
 
Figure 9 shows dependencies (Fan-in and Fan-
out) of one of the files in that component. As we 
see, this file depends not only on the files inside 
the associated strong component but also files 
which belong to other strong components. If any 
change occurs to depended files or depended 
components, this file needs to be tested to make 
sure that introduced change does not have an 
effect on the functionality of that file. In Figure 1, 
above, we see the internal dependency relations 
within the component #52; the density of 
dependencies in component indicates significant 
development risk.  

B. Seek Fundamental Qualitative and 
Quantitative Measure of System Quality 
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Two possible ways of proceeding exist. One is 
focusing on strong components; the other is 
focusing on individual files. In order to evaluate 
the quality of system, we need quantitative inputs 
about software system under study. We see in 
Figure 10, data gathering and processing flow 
during analysis of software.   
 

 
Figure 10 – Analyzing and visualizing software 

system’s quality 
 
Quantitative inputs that could be used are: 

 
 Importance metric of a file 
 Testability metric of a file 
 Average Cyclomatic complexity per 

function 
 Maximum Function size 
 Number of function declarations 
 Strong component size  
 Global object declaration count  
 Total lines of code 
 Change duration  
 Number of change occurred during 

change period 
 
We studied not only large software systems, but 
also we tested on our own project, which has 25 
source files.  Since we know our project well: 
which files carry high risk, which files need to be 
re-factored; however we were not sure about the 
size of the strong components and their 
interaction with other files:, we obtained results 
that are encouraging towards effectiveness of our 
approach to this research problem even for 
relatively small size project as in Figure 11. 
 

 
Figure 11 – DepAnal’s internal dependency 

structure. Consist of 25 files 
 

In Figure 11, we see DepAnal’s file level 
dependency structure, before seeing this picture, 
we were not aware that DepAnal has a strong 
component with 6 files. For this small size 
project, the largest strong component contains 
more than 20% of the source files in the entire 
project. As developers of this project, we felt that 
this view demonstrated potential problems in 
seconds, without the user needing detailed 
knowledge of this project. 

5. EMPIRICAL STUDY ON MOZILLA LIBRARY, 
GKGFX AND MFC 

 
We downloaded version 1.4.1 of the Mozilla 
Win32 configuration [12] [13]. This included the 
entire build, which makes many executables and 
libraries.  We were able to build all the libraries 
and executables in about a week’s effort, using 
the information provided on www.mozilla.org.  
 
We built some simple parsers to find all the files 
included in a specific build, based on compiler 
output.  This included all common code and 
header files.   
 
The information provided on the Mozilla web site 
was very well prepared, easy to digest, 
considering the size of this large project, and 
straightforward to use.  We chose this project 
because of the quality of its tools and the fact that 
it has a very large code base. 
 
We applied our risk model to Mozilla GKGFX 
library and it gave us important insights about 
potential problem files, on which attention should 
be focused. This information obtained without 
diving into implementation details, which is very 
important for the software project’s testers, 
developers, and managers. 
 

Mozilla GKGFX Library Windows Build 2003/10/10 Ver 1.4.1
Max Importance vs Alpha

61.4189 73.1501 90.152 117.1672
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Figure 12 – Max Importance vs. Alpha (α ) value 

for Mozilla GKGFX Library Version 1.4.1. 
 
First, we explored the variation of maximum 
importance with ijα =α , making the simplifying 
assumption that it is constant for all files. 
Essentially we are treating α as the average 
probability of a consequential change in a 
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depending file when we change the depended 
file. Thus, these results will be qualitatively 
useful, but not numerically precise. We see, from 
the plot in Figure 12, that Importance grows 
without bound above α =0.115. This indicates 
that changes are very likely to propagate 
throughout the system since one might expect 
the value of α to be of the order of 0.1. 
 
Next, we calculated Risk factor values using 
average cyclomatic complexity13 (AvgCC) and 
Fan-out14 values for each file in GKGFX when 
calculating β ; we took desirable limits to be 10 
for AvgCC and 5 for Fan-out. We used these 
values since it becomes harder to manage a file 
which uses several other files’ services, 
accordingly, it is hard to understand and test a 
file with high complexity functions.  

Risk Values for Mozilla GKGFX Library Files, Version 1.4.1 
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Figure 13 – Risk values for files in GKGFX 

Library 
 
Figure 13 shows the risk rate of all the files in 
Mozilla library, GKGFX, in increasing order. Note 
that about %10 of the files have most of the Risk 
in the library code. Interestingly, the file with the 
highest risk is part of the second largest 
component (with 56 files in Figure 9). This shows 
that the high risk files are not guaranteed to be 
part of largest strong component.  
 

 
Figure 14 – Components of in GKGFX Library 

after removing global object dependency. 
 
Not surprisingly, all the files with high risk are 
members of strong components [4]. This also 

 
13 AvgCC = Sum of CC of each functions in a file divided by 

number of functions in that file. 
14 Fan-out is a number of depended files whose services 

are employed by a file.   

proves that risk analysis is providing dependable 
information. 
 

Risk Values for Mozilla GKGFX Library Files, Version 1.4.1
Alpha = 0.1 - Global object dependency removed
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Figure 15 – Risk values for files in GKGFX 

Library, after global object dependency removed 
 
Figure 15 shows logarithmic scale risk values of 
GKGFX Library after global dependency 
removed, we see there is dramatic reduction in 
risk values. As we see in Figure 14, after 
removing dependencies on global data, strong 
component size is significantly reduced.  
Moreover, this made a big impact on maximum 
risk as in seen Figure 15 and Table 2, max risk 
reduced from 2593.4 to 572.93.  
 
 With global 

object 
Without 

global object 
Maximum Risk 2593.4 572.93 
Average Risk  22.86 10.02 

Table 2 – GKGFX risk values 

6. EMPIRICAL STUDY OF MFC   
 
In this section, we explored the affect of two 
specific changes on MFC project’s structural 
quality. Effect of elimination of global data is 
examined, and using interfaces and class 
factories to avoid binding to concrete classes, is 
simulated with very interesting results. 

A. Elimination of Global Data 
 

One of the promising ways for improvement is 
exclusion of global variable. In this part of the 
paper, our goal is to find out the effect of global 
variables on the size of strong components. 
Using our tools we analyzed MFC files, and find 
dependencies among MFC files with and without 
dependencies caused by global objects. 
 
Figure 16 shows the result of a first run 
considering global variable dependencies; we 
see one big component consisting of 135 files.   
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Figure 16 – MFC - Internal dependencies of 

Component #1 with 135 files. 
 
When we exclude dependencies caused by 
global variables we obtained  
Figure 17.  This shows that the largest 
component size is reduced from 135 to 25. 
Interestingly 110 files involved in the big strong 
component are due to global object 
dependencies. This indicates that use of global 
variables should be avoided as much as 
possible15.  
 
 With global 

object 
Without global 

object 
Max. Risk 204.62 37.22 
Avrg. Risk  13.18 2.84 

Table 3 – MFC risk values 
 

 

 
Figure 17 – MFC - Internal dependencies of 

Component #6 with 25 files, after removing global 
object dependency. 

 
MFC has 251 source files, which is less than half 
the size of Mozilla’s GKGFX Library. When we 
remove global object dependencies, the size of 
the largest strong component is significantly 
reduced. 
 
Similarly risk values are reduced: the highest risk 
value reduced from 204.62 to 37.22. This 
indicates the effect of strong component size on 
risk rate, Table 3 - Figure 18 – Risk values for 
files in MFC Library, global object dependency 
removedwith global object dependencies, and 
 

15 This is “common wisdom” in the development 
community. 

Figure 18 without global object dependencies.  
The files with highest risk rate are different, in the 
first case appinit.cpp, and in the second 
wincore.cpp (after removing global object 
dependency).  

Risk Values for MFC
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Figure 18 – Risk values for files in MFC Library, 

global object dependency removed 
 

The MFC library exhibits Test Risk singularity for 
alpha very close to 0.1.  This means that its code 
would be extraordinarily sensitive to change. 
When we reduced alpha to 0.09, the singularity 
was avoided, leading to the analysis above.  
Since MFC is a viable commercial product, we 
believe that typical values for alpha in 
commercial systems may well be less than 0.1.  
Estimating alpha is an area of research we are 
now pursuing16.  

B. Insertion of Interfaces and Object Factories 
 
One technique that can be used to reduce the 
size of large strong components is to use 
interfaces and object factories to move 
dependencies from volatile implementations to 
immutable interfaces.  Object factories are 
needed to avoid reintroducing dependencies on 
implementation, removed by binding to 
interfaces.  This technique helps us decompose 
large strong components into a series of smaller 
components.  We show, below, that that has a 
net, and often quite significant, improving effect 
on software quality.  Deciding where to place 
interfaces is part of our current research, but 
initial results are quite encouraging.  One 
approach that looks very promising is based on a 
partitioning process developed by another 
member of our research group.  
 
In order to investigate the affect of using 
interfaces instead of some specific concrete 
classes to reduce dependency risk for the 
system, we simulated the use of interface by 
reducing the predicted potential for change 
factor, alpha.  Using GKGFX library which has 

 
16 Alpha measures the probability that a change in one 

component causes changes in another component that 
depends on it.  One would expect lower values of alpha for 
components with solid, robust designs.  Finding means to 
measure and predict alpha values is an issue we are currently 
investigating. 
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598 source files total, we first applied regular risk 
analysis with alpha of 0.1 for all files as in Figure 
19, and highest risk value for this analysis came 
out 2543.   
 
To simulate the affect of interface, we selected 
23 files with high fan-in values (fan-in value 31 
and greater) and for these files we reduced the 
alpha value to 0.01, simulating the insertion of 
interfaces. As we know alpha value indicates the 
potential for change of one file due to a change in 
a file on which it depends.  If it is smaller, change 
in one file is less likely to cause change in other 
files. We picked high fan-in files, since these files 
are being used heavily by other files, and these 
high fan-in files play a key role in introducing 
interdependency on others.   
 
After introducing these changes and applying our 
risk analysis to the same Mozilla library with 
these interface simulations, we found the highest 
risk value was reduced from 2543 to 853, as 
shown in Figure 19. 

Risk Values for Mozilla GKGFX Library Files, Version 1.4.1
Alpha=0.1 , for Interface Simulation Alpha=0.01
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Figure 19 – Risk Analysis of GKGFX Library 

 
In summary, modifying a relatively small number 
of files (23 files out of 598) to use interfaces, 
resulted in the highest risk value being reduced 
from 2543 to 853. This indicates the use of 
interfaces will increase testability of the system 
and reduce importance of files; consequently risk 
will be reduced.  
 
By introducing interfaces we eliminate some 
structural problems in the software system.  
Another, critically important, outcome is that 
without resorting to semantic analysis of code, 
but simply simulating the addition of interfaces 
we see the results in terms of reduced system 
risk.  This task would be extraordinarily difficult 
without the file rank based risk analysis we have 
developed.   Thus, without adding a great 
analysis load on developers, but just using 
simulation, we can locate files to focus on, which 
contribute the highest benefit to remedy 
structural problems.    
 
Now, we apply the same analysis to the simpler 
DepAnal program.  This will let us gauge whether 
the risk model will be useful for smaller system 
as well as large system like Mozilla.  Figure 20, 

below we show the outcomes of risk analysis on 
DepAnal as it currently exists, and also when we 
simulate the introduction of interfaces. 
 

Risk Analysis for DepAnal Ver 125.3 
Alpha=0.1
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Figure 20 – Analysis of Risk of DepAnal 

 
We introduce 4 interfaces into a system that has 
25 files.  For the simulated interfaces alpha 
values are reduced to 0.01.  The chosen files all 
have the high fan-in values, and as it is seen 
from the figure, overall risk is reduced.   

7. CONCLUSIONS 
 
In this paper we present a new software 
development Risk Model and have shown that 
the model can be used to predict problem areas, 
as concentrations of high risk files.  
 
Inoue et. al. [3] proposed a usage-based file rank 
proced-ure. Their goals are to retrieve reusable 
components from a storage repository. Our 
ranking procedure is risk based with the goal of 
identifying components that have high risk of 
propagating changes.  The methods of our paper 
and the former are have some similarities but the 
algorithms and final results are quite different.  
Our paper uses a two-level structure with Test 
Risk and importance as the bases for ranking. 
 
Jungmayer [1] proposes a testability analysis 
process that inspired our work.  We have added 
propagation likelihood weights and the notion of 
importance to build a stronger model. 
 
The model predicts that, as the density of 
dependency relations increases in strong 
components of the dependency graph, Risk 
factor grows and becomes unbounded at critical 
densities. We’ve applied the model to a library 
from a real open-source project where the model 
predicted that most of the development risk is in 
about 10% of the library files.  
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