
Abstract

Documented  specifications  can  aid  in  software 
verification,  comprehension,  maintenance  and  reuse. 
Often,  specifications  fall  out  of  sync  with  evolving 
implementation. Both discovery of missing specifications 
and  corrective  maintenance  of  incorrect  specifications 
require  measuring  the  quality  of  specifications,  not  in 
terms  of  accurately  representing  end  user  needs,  but 
rather,  to  answer  the  question  of  concordance  "How 
faithfully/accurately does this specification represent the 
behavior of this implementation?" We implemented and 
tested  our  prototype  system  using  Design  by  Contract 
(DBC)  specifications  and  intermediate  language  (Java 
bytecode)  manipulation.   We  consider  the  traditional 
source code mutation testing "syntactic mutation testing", 
and examine its  shortcomings.  We propose a different 
failure-injection approach, "semantic mutation testing," to 
measure  component  specification-implementation 
concordance. We  demonstrate and compare our approach 
to traditional mutation testing, using a small function with 
multiple alternative specifications.

Keywords:  software  maintenance,  software  
verification,  software  comprehension,  Design  by  
Contract, mutation testing, fault injection

1 INTRODUCTION

We  propose  a  component  specification  quality 
(adequacy)  criterion  that  measures  how  completely  a 
specification represents the behavior of an implementation. 
Our "semantic mutation testing" approach borrows ideas 
from  traditional  (“syntactic”)  mutation  testing  [1],  but 
instead of causing static change in code, we inject random 
small errors in the values used throughout processing, to 
perturb the dynamic state of the program.

In our earlier tests, we quickly discovered that mutants 
(mutated  versions  of  the  programs)  often  crash  due  to 
“array index out of bounds” exception. We use automated 
data flow analysis to avoid most cases of array index out 
of bounds by not mutating values used in indexing. In a 
correctly  implemented  sort  function  with  multiple 
alternative  specifications,  our  black-box  and  white-box 
approaches  give better  measures  of  specification  quality 
compared to traditional (syntactic) mutation testing.

Section II states our central question of specification-

implementation concordance and introduces DBC. Section 
III defines traditional  (syntactic) mutation testing and its 
documented shortcomings. Section IV introduces semantic 
mutation  testing.  Sections  V  and  VI  explain  the 
experiments conducted and analyze their results.

2 SPECIFICATIONS

2.1 Specification-Implementation Concordance

Software development is a structured creative process 
of human-machine communication and control. Often, the 
contract between the end user and the software developers 
is the requirements specification document, without which, 
end  users  would  have  to  manually  verify  the 
implementation. Documented specifications are central to 
software  verification  and  validation,  and  are  of  great 
importance  to  the  tasks  of  software  comprehension, 
maintenance  and  reuse.  Human  language  requirements 
specifications  have  traditionally  caused  specification 
quality research to put more emphasis on human-centric 
criteria, mainly for comprehension and implementation of 
specifications [2].

Often, requirements specifications fall out of sync with 
evolving  implementation.  Some  features  added  to  the 
implementation  may  be  missing  in  the  specification, 
causing  incompleteness  of  specifications,  even  with 
executable  specifications  that  continue  to  validate  the 
implementation.  Maximally  incomplete,  an  empty 
specification  accepts  (verifies  as  correct)  any 
implementation.  Concordance  of  specifications  and 
implementation  cannot  be  measured  merely  by  using 
specifications to verify an implementation of the program. 
Although necessary, this is not sufficient.

If specifications are missing and need to be discovered, 
alternative versions of (hypotheses for) specifications may 
have  to  be  compared,  by  measuring  specification-
implementation concordance to answer the question:

"How faithfully/accurately  does this  specification  
represent the behavior of this implementation?"

This quality is  measured against  the implementation, 
and can only represent actual end-user need to the degree 
that the program is already known to perform correctly as 
judged  by  the  end  user.  For  component  reuse,  this  is 
exactly the quality that we need to measure and improve.

Measuring Component Specification-Implementation Concordance

with Semantic Mutation Testing

Kanat Bolazar, James W. Fawcett

Department of Electrical Engineering and Computer Science,

Syracuse University, Syracuse, NY 13244, USA

kanat2@yahoo.com, jfawcett@twcny.rr.com



2.2 Design by Contract (DBC)

Meyer  demonstrates  in [3]  that  human-language 
specifications  are  often  incomplete, ambiguous,  and 
inconsistent. From a six-line requirements specification by 
Naur that at first sight appears to be clear, unambiguous 
and  complete,  even  after  two  published  versions  of 
supposedly corrected and complete (and four times larger) 
specifications by Goodenough and Gerhart [4][5], Meyer 
still  shows  errors  of  incompleteness,  ambiguity, 
inconsistency and incorrectness.

Meyer's  DBC specifications  (called  "contracts")  add 
executable side-effect-free checks before each method to 
require valid inputs (“preconditions”) and after, to ensure 
correct  functional  operation  (“postconditions”).  Every 
method must also preserve, upon termination, the object 
internal consistency conditions (“object invariants”).

Consider this div method, with a human-readable but 
not automatically testable API documentation:

/** Divides n by m; m should not be 0. */
int div(int n, int m) { return n/m; }

A  partial contract for div may only allow operation 
with  nonnegative  n  and  positive  m  values.  This  is  a 
contract for a partial domain (input value space). We  mark 
preconditions with @pre and postconditions with @post:

@pre   n >= 0  &&  m > 0
@post  $result * m >= n
@post  ($result ­ 1) * m < n

A  more  general  complete  contract can  easily  be 
derived by requiring these conditions on absolute values of 
n and m (leaving only  m != 0 as the precondition), as 
well as requiring consistency of sign in $result. Different 
syntaxes and languages can be used for DBC; for example, 
UML diagrams use OCL (Object Constraint Language) for 
such specifications. We use DBC in our experiments, but 
this  can  easily  be  switched  with  any  other  form  of 
automatically verifiable specification.

Given alternative specifications,  we want to measure 
how  closely  these  specifications  match  against  existing 
function  implementation.  Our  specification  adequacy 
measure is similar to (syntactic) mutation testing.

3 SYNTACTIC MUTATION TESTING

3.1 Definition

We consider the traditional mutation testing as per [1] 
to be syntactic mutation testing. More appropriately called 
"mutation analysis" (of test suites), this method does not 
test  software,  but  rather  provides  a  test  criterion  to 
evaluate test  suite adequacy (quality),  similar to various 
code coverage criteria.

For an original program, P which passes test cases T1, 
T2, ..., mutation testing uses a predefined set of mutation 
operators (such as '/' → '+') to create "mutants" M1, M2, ... 
which  are  all  possible  single-mutation  versions  of  P. 
Mutants are compiled and checked against the test suite. If 

mutant Mi doesn't pass the test suite (if any test case T j 

fails),  we  consider  mutant  Mi killed.  Otherwise  mutant 
remains "live".

A mutant is semantically equivalent to P if it always 
behaves the same way as P for any input. No test case (that 
passes  P)  could  kill  an  equivalent  mutant.  Mutation 
adequacy score is the number of killed mutants divided by 
the number of non-equivalent mutants. If this score is 1.0, 
all non-equivalent mutants are killed by our test suite, and 
the test suite is called "mutation adequate".

3.2 Semantic Equivalence of Mutants

As  an  example  of  semantic  equivalence,  these  two 
loops  behave  the  same  way  so  long  as  i  is  not  varied 
unpredictably from within the loop:

for(i=0; i  < 10; i++) …
for(i=0; i != 10; i++) …

Semantic equivalence of arbitrarily complex programs 
is undecidable; we cannot generally know if Mi ≡ P. Offutt 
[1] suggests skipping mutant equivalence testing for some 
hard-to-analyze mutants to automate mutation testing. But 
inadequacy  of  test  suite  is  discovered  by  mutants  Mi 

(suspected  to  be  ≡ P)  that  pass  all  tests.  Without 
equivalence testing, any test suite is "mutation adequate".

Actually,  reading  between  the  lines  of  DeMillo's 
seminal early work on mutation testing in 1978 [6], even 
in the short example of Hoare's  FIND function, DeMillo 
did not check for semantic equivalence of live (unkilled) 
mutants. He postulates that the 14 live mutants for the final 
reduced test set may be equivalent, even though there can't 
be  more  than  10  equivalent  mutants  because  an  earlier 
larger test set had only 10 live mutants left.

As  equivalence  is  in  general  undecidable,  and 
prohibitive  in practice even for short programs, the actual 
number of non-equivalent mutants is never truly known. 
Therefore  the  mutation  adequacy  score  can  only  be 
approximated  for  nontrivial  programs;  it  cannot  be 
calculated.

3.3 Myths of Mutation Testing

Recently,  some  faulty  assumptions  ("myths")  of 
mutation testing were listed and dispelled by experiments 
conducted in a paper on higher order (multiple mutations 
per mutant) mutation testing [7]. These myths are rarely 
stated but often presumed to be correct in mutation testing 
research.

"All Mutants Are Equal (AME) Myth" states that all 
mutated versions of a program are equally useful. This is 
easy to disprove: In [7], 41% of all mutants were killed by 
100% of the test cases, and were called  "dumb mutants". 
For  dumb  mutants,  any  one  test  case  is  a  mutation-
adequate test suite all by itself! By appearing in both the 
numerator and the denominator, dumb mutants inflate the 
mutation  adequacy  score  and  give  a  false  sense  of  test 
suite adequacy.



"Syntactic  Semantic  Size  (SSS)  Myth"  states  that 
programs  generally  have  relatively  few  minor  syntactic 
differences from a correct version. This is falsely derived 
from DeMillo's "Competent Programmer Hypothesis" [6] 
which  states  that  a  program  written  by  a  competent 
programmer will differ from a correct version by relatively 
few faults. But semantic differences from correct behavior 
(faults)  are  not  necessarily  caused  by  few  syntactic 
differences; different algorithms, data structures and much 
refactoring may be needed for a small change in behavior.

3.4 Beyond "Dumb" Mutants

SSS  myth  can  be  dispelled  with  a  simple  example. 
Consider this method and its partial (incomplete) contract:

/*        int n0 = abs(n);
 * @post  $result <= 2*n0
 * @post  (abs(n) > 10 ||
 *         $result >= max(n0­2, 4*n0­20))
 */
int sqr5(int n) {
    if (abs(n) < 10) return n * n / 5;
    else return 20;
}

This is a somewhat strict specification that only allows 
values within  [max(|n|­2, 4|n|­20), 2|n|] while
|n| <= 10. Here are the actual outputs from this function 
compared to our contract's min and max requirements:

TABLE I.  Input, Output and Contract Limits for sqr5(int n)

|n| 0 1 2 3 4 5 6 7 8 9 10

sqr5(n) 0 0 0 1 3 5 7 9 12 16 20

max 0 2 4 6 8 10 12 14 16 18 20

min -2 -1 0 1 2 3 4 8 12 16 20

Consider the common mutation operator of replacing 
an arithmetic operator in {*, /, %, +, -} with another. Fig 1 
shows original function and eight mutants, of which only 
one (12.5%),  n*n+5, fails all tests and is a dumb mutant. 
Even the two mutants that are always 0 do not fail all tests.

Figure 1.  sqr5(int n) method (n*n/5) and eight mutants

For nontrivial test cases with n in 3..10, our  mutants, 
on average, pass only 17.2% of the tests each. For n in {8, 
9, 10}, there is no mutant that passes our contract. Any one 

of these three test cases kills all mutants. For n=10 where 
the correct output is 20, the output error for eight mutants 
are    {-8, -12, -20, -20, -20, +75, +85, +480}.

Averaged  over all  experiments,  Jia  and Harman had 
41% dumb mutants [7]. We only have 12.5%, even though 
any mutant,  on average,  fails  82.8% of  nontrivial  tests. 
Two-mutation mutants are worse (10 of 16 are constant-
valued). Clearly, few syntactic differences do not produce 
programs that behave similarly. Few syntactic differences 
on a correct  program does not produce  a program with 
only a few faults.

4 SEMANTIC MUTATION TESTING

4.1 Introduction

Semantic mutation testing (SMT) is a  fault  injection 
method that introduces input/output (black-box) or internal 
(white-box)  semantic  state  faults  while  a  program  P  is 
being  tested  or  verified  against  specifications/contracts. 
Analysis of syntactic mutation testing examines effects of 
mutation  on  dynamic  behavior  of  the  program.  Offutt's 
"necessity" condition [8] states that mutation must cause a 
program state change to be of value. In SMT, we focus on 
necessity,  but  also  attempt  to  limit  the  magnitude  of 
program state change to have small semantic defects in our 
mutants.

SMT adequacy score of a contract that passes P is the 
number  of  mutant  test  cases  not  killed  by  the  contract 
divided by the number of non-equivalent mutant test cases. 
Contracts that fail  P are disqualified,  and get a score of 
0.0.

Even though equivalence of arbitrary programs for all 
possible  inputs  is  undecidable,  equivalence  for  one  test 
case is easy to check:  If the output of mutant Mi for the 
test  case Tj is  the same as the output of P,  test  case  is 
equivalent,  and  could  not  possibly  be  killed  by  any 
specification/contract.  This  means,  unlike  syntactic 
mutation  testing,  SMT  adequacy  score  can  always  be 
calculated.

4.2 Black-Box Semantic Mutation Testing

In black-box SMT, errors are introduced only to the 
inputs  and  outputs  of  the  method.  To  make  sure  this 
introduces  a  semantic  change,  the  ideal  approach  is  to 
mutate inputs, run program P with some form of crash-
handling,  and  mutate  outputs.  The  mutated  inputs  and 
outputs define a mutant. Specifications with higher degree 
of  concordance  with  implementation  should  kill  (fail) 
more mutants.

Black-box error injection is also used in fuzz testing 
[9].  Fuzz  testing  focuses  only  on  stress-testing  the 
implementation for robustness (avoiding crashes) whereas 
black-box SMT  does not test the target program itself, but 
rather  attempts  to  measure  functional  specification 
adequacy. We want to avoid, not discover, cases that cause 
crash, so that we can conduct functional tests.



4.3 Data-Flow Analysis for Crash Prevention

Our experiments  revealed  that  program crash caused 
by  array  index  out  of  bounds  exception  is  a  common 
problem when random errors are introduced in programs. 
Similar  to  deadlock  handling,  we can  logically  prevent, 
dynamically avoid, or detect and recover from such critical 
faults. For prevention, we need white-box analysis, even 
for black-box fault injection. Alternatively, to dynamically 
avoid  or  recover  properly,  we  need  to  instrument  the 
implementation.

Our  prototype  uses  a  prevention  approach.  We start 
with a data flow analysis of the Java implementation using 
a Java bytecode manipulation library,  ASM, to discover 
when an int type data source (variable or value) is used 
directly or indirectly for indexing in an array. This requires 
discovering  possible  execution  paths  and  tracking 
definition-use  paths  that  may  pass  through  various 
locations in the JVM expression stack. We refrain from 
mutating values from such data sources, to prevent array 
index crashes. In the example below, if n and k are method 
arguments,  we will  not  mutate their  incoming values  in 
black-box SMT; in this case, a single mutation of k → k+1 
could cause a crash:

for(int i = 0; i < n + k; i++)
         sum += a[i];

Prevention  is  a  static  analysis  approach,  keeping 
execution  safe  without  dependence  on  actual  runtime 
values. This comes at a cost: While preventing crash, this 
also  eliminates  potentially  safe  array  size  and  cross-
element  mutations within the array.  Such mutations can 
separately be added with (array-size-aware) array mutation 
operators  (see  section  5.3).  Our  approach  can  also  be 
extended to handle other less-frequent causes of crash and 
state corruption, such as division by zero and using a type 
beyond its valid range.

4.4 White-Box Semantic Mutation Testing

In white-box semantic mutation testing, errors can be 
introduced  at  any  place  where  Java  stack  machine  has 
values  in  its  stack  (expression  stack).  For  example,  the 
simple expression a + b ­ c has five spots for mutation: 
When local  variables  a, b, and  c are read,  and when 
expressions  (a+b) and  (a+b­c) are calculated. All five 
of these values may be mutated at the same time.

In  white-box  SMT,  a  single  composite  randomized 
mutant is generated to introduce random errors in program 
dynamic state. Each execution with the same inputs gives 
us  a  slightly  different  test  case.  A  mutant  test  case  is 
defined by inputs and the mutation decisions made in one 
execution of the program.

As there are many sites for mutation, if the probability 
of state change per mutation site is not very small, even a 
short program can quickly accumulate a large number of 
mutations  (especially  within  loops)  and  deviate 
significantly  from the  original  program's  semantics.  We 
control  the  standard  deviation  of  our  random  value 

generator to limit the deviation in program state space (see 
third paragraph of section 5.4).

5 EXPERIMENTS

5.1 Sorting, Alternative Specifications

We tested traditional syntactic mutation testing, white-
box and black-box semantic mutation testing on a sorting 
function with seven  alternative   specifications.  The sort 
method,  sort(int[] ar),  takes  an  integer  array,  and 
returns a nondecreasing sorted version of the integer array.

Seven alternative  contracts  (our  DBC specifications) 
are  ordered  in  our  approximate  completeness/strictness 
order  in  table II;  actual  order  depends  on  input  pattern 
frequencies. Here, bag(.) converts the collection (array) to 
a bag/multiset.

TABLE II.  Seven Alternative Contracts for Sort Method

Contract Postcondition

C0. NO_TEST TRUE

C1. SAME_LEN $result.length == ar.length

C2. SORTED_NOTEQ ∀i: $result[i] < $result[i+1]

C3. SORTED ∀i: $result[i] <= $result[i+1]

C4. SAME_VALUES bag($result).equals(bag(ar))

C5. SORTED_LEN SAME_LEN && SORTED

C6. SORTED_VALUES SAME_VALUES && SORTED

C2 is too  strict: It won't allow duplicate elements in 
the returned array, so it fails even correctly implemented 
sort  method for  54% of  our  test  cases.  Due to  this,  its 
killed  mutants  score  is  erroneously  inflated.  Mutation 
testing disqualifies C2 for failing unmutated program.

5.2 Traditional (Syntactic) Mutation Testing

We used Jumble [10] to run traditional mutation tests 
on  this  method.  Jumble  uses  Java  bytecode  rather  than 
source  code  manipulation  to  eliminate  the  need  for 
recompilation  per  mutation.  Jumble  was  being  used  in 
2007 in a continuous-test of a 370,000-line Java software 
every  15  minutes  [10].  We  ran  Jumble  with  standard 
settings.

Unfortunately, Jumble did very poorly on the original 
code, as seen in Table III, due to finding many mutation 
points in the unrelated debugging/logging print statements. 
Even  though  debug  option  was  turned  off  and  these 
statements  never  ran  in  unmutated  original  program, 
Jumble gave poor adequacy scores due to our unit test not 
discovering  changes  in  the  debug/log  code.  Of  the  17 
mutation points Jumble found, 11 mutation points were in 
debugging code that  never  got  executed.  Strangely,  two 
mutation points were supposedly even caught by no-test 
unit test (not theoretically possible), leaving a compressed 



and misleading range of adequacy score values that gave 
0.35 to the best contract and 0.11 to the no-contract case.

After  we  edited  our  code  to  manually  remove  all 
debugging/logging  code,  we  were  left  with  only  6 
mutation  points,  of  which  two  again  were  supposedly 
caught  by  the  no-test  contract.  The  adequacy  score  is 
erroneously  nonzero  for  C0,  and  contracts  are  not 
distinguished by their scores.

TABLE III.  Traditional (Syntactic) Mutation Test Results

Contract
Mutant Adequacy Score

Original Code Edited Code

C0. NO_TEST 0.11 0.33

C1. SAME_LEN 0.11 0.33

C2. SORTED_NOTEQ --
(error: "test class is broken")

C3. SORTED 0.35 1.00

C4. SAME_VALUES 0.11 0.33

C5. SORTED_LEN 0.35 1.00

C6. SORTED_VALUES 0.35 1.00

In traditional syntactic mutation testing, any mutation 
is considered equivalent, regardless of how many times it 
gets  executed.  These  tests  show  that  considering  every 
mutation point equal gives misleading adequacy scores.

5.3 Black-Box Tests

We randomly produced 1000 input-output sets using 
our correct implementation of sort method. After skipping 
trivial cases of arrays of size 0 and 1, we were left with 
803  input-output  sets.  We  mutated  the  returned  sorted 
array using four array mutation operations:

swap: swaps two elements of array ar

replace:  replaces an element of array ar with a 
randomly picked element from another array 
of similar values

resize:  either  duplicates  an element  of array  to 
grow the  array  by  one  element,  or  removes 
one  element  to  shrink  the  array  by  one 
element.

random:  replaces  an  element  of  array  ar  with  a 
random int value

For each of the 803 input-output sets, we produced 200 
mutated  versions  of  the  output  array  using  1  to  30 
mutations per mutant,  for a total of 160,600 mutant test 
cases.  Comparing  with  correct  output  from  unmutated 
program, we found 146,179 of these to be non-equivalent 
mutant test cases. Table IV shows our test results.

Recall  that  C2  is  too  strict  to  even  accept  correct 
implementation;  this  behavior  inflates  the  number  of 
mutants  killed  by  C2,  as  it  even  kills  some  equivalent 

mutants.  In this case,  the ordering of semantic mutation 
adequacy scores  corresponds  to  our prior  belief  of  how 
complete  each  specification  is.  As  C6  is  a  complete 
specification  (modulo invariants),  its  mutation adequacy 
score is 1.0.

TABLE IV.  Black-Box Semantic Mutation Test Results

Contract
Mutants
Killed

Adequacy Score 
(Proportion)

C0. NO_TEST 0 0.00

C1. SAME_LEN 82,245 0.56

C2. SORTED_NOTEQ 141,838             --   (0.00)

C3. SORTED 103,385 0.71

C4. SAME_VALUES 125,597 0.86

C5. SORTED_LEN 132,531 0.91

C6. SORTED_VALUES 146,179 1.00

5.4 White-Box Tests

We ran our data flow analysis to prevent mutation of 
values that may cause array index out of bounds exception, 
using any array access and new array creation operations 
as  our targets.  For example,  whatever  value or  variable 
reaches top of the JVM expression stack for an IALOAD 
(int array load) instruction should never be mutated. At all 
remaining sites of integer value operation in the JVM stack 
machine,  we  modified  the  compiled  Java  bytecode  to 
insert a call to our stateless mutater method to inject error 
to the int value on top of the expression stack. We didn't 
need access  to source code or recompilation to produce 
this composite randomized mutant.

The  amplitude  and  frequency  of  mutations  can  be 
numerically  adjusted  in  semantic  mutation  testing.  We 
used  integer-rounded  Gaussian  distributions  as  our 
additive  error  terms,  with  two   different  standard 
deviations;  σ =  0.2 and  σ =  0.5. Values in (-0.5, 0.5) get 
rounded  to  0  and  do  not  cause  any  state  change.  This 
happens 98.76% of the time with σ = 0.2, and 68.27% of 
the time with  σ =  0.5.  These two tests are  significantly 
different; the σ = 0.5 case has nonzero error added about 
25.6 times more often than the σ = 0.2 case.

The results for both values of standard deviations are 
shown in table V. For tests with  σ = 0.2, 812 non-trivial 
cases  with  200  mutant  runs  each  gave  us  162,400  test 
cases, of which only 7,095 were non-equivalent. For tests 
with  σ = 0.5, 787 non-trivial input-output sets each with 
200 mutant runs each gave us 157,400 test cases, of which 
102,868  were  non-equivalent.  In  both  cases,  the  faulty 
contract  C2  failed  more  mutants  than  there  were  non-
equivalent mutants.

As we  do not  mutate  int  values  that  are  directly  or 
indirectly used in array indexing, the length of the array 
never changes, and two pairs of contracts that differ only 
in checking array length produce exactly the same values: 



C0 and C1 both kill  (fail)  no mutants,  and C3 and C5 
always kill the same number of mutants.

In this case, the limitations of our mutation operators 
cause sortedness to be considered more easily satisfiable 
then preserving  the  bag of  values  from the input  array. 
This is understandable, as any one mutation to any of the 
values during the execution will always change the bag of 
values, but may not change their order (and sortedness).

TABLE V.  White-Box Semantic Mutation Test Results

Contract

Mutant Adequacy Score

σ = 0.2
(7,095 Mi ≢ P)

σ = 0.5
(102,868 Mi ≢ P)

C0. NO_TEST 0.00 0.00

C1. SAME_LEN 0.00 0.00

C2. SORTED_NOTEQ
--

(117,442 killed)
--

(109,729 killed)

C3. SORTED 0.37 0.47

C4. SAME_VALUES 0.86 0.92

C5. SORTED_LEN 0.37 0.47

C6. SORTED_VALUES 1.00 1.00

6 DISCUSSION AND FUTURE WORK

We  have  shown  the  feasibility  of  measuring 
specification  quality  by  how  often  specification  fails 
programs  with  small  semantic  errors.  Compared  to 
traditional (syntactic) mutation testing, both our white-box 
and  black-box  semantic  mutation  testing  approaches 
produce  adequacy  scores  that  better  represent  the 
concordance  of  the  specification  with  our  correct 
implementation.  Our  data-structure-aware  black-box 
mutation  operations  gave  better  results  compared  to 
primitive-value-aware single mutation operator for integer 
values injected into method implementation (white-box).

Our crash prevention avoids any mutations that could 
have  an  effect  in  array  sizes  and  which  element  is 
accessed.  Other  mutation  operators  such  as  the  array-
mutation operators used for black box testing can also be 
introduced  to  accessed  arrays,  after  proper  data  flow 
analysis  to  prevent  array  index  crashes.  As  always,  the 
mutation operators  will  be most useful  if  they represent 
common types and patterns of faults.

As an alternative to randomly created test cases as seen 
in our experiments, we can use any existing test suites, or 
consider gathering test data in situ, by saving input-output 
sets (using serialization for reference types, objects) from a 
component while the software system is running.

To the degree that the implementation itself is tested 
and  known  to  conform  to  user's  needs,  our  semantic 
mutation specification adequacy score also measures how 
well the specifications match actual user requirements.

We  believe  this  simple-to-compute  measure  of 
specification-implementation  concordance  can  help 
automate measuring quality of suspected-to-be-outdated as 
well as  rediscovered or competing specifications. We plan 
to use this method in evolving component specifications, 
in a tool that assists program comprehension and discovery 
of missing specifications.

Source  code  and  examples  from  this  paper  are 
available at our Semantic Mutation Testing page [11].

7 REFERENCES

[1] A. J. Offutt, R. H. Untch, "Mutation 2000: Uniting the 
Orthogonal", in Mutation 2000: Mutation Testing For 
the  New  Century,  W.  E.  Wong,  Ed,  Kluwer 
International  Series  on  Advances  in  Database 
Systems,  vol.  24.  Kluwer  Academic  Publishers, 
Norwell, MA, 2001, pp. 34-44.

[2] A. Davis, S. Overmyer, K. Jordan, et al, “Identifying 
and  Measuring Quality  in  a  Software  Requirements 
Specification,”  pp.  141–152  in  Proceedings  of 
METRICS ’93, Baltimore, MD, May 1993.

[3] B.  Meyer,  "On  Formalism in Specifications,"  IEEE 
Software,  vol.  2,  no.  1,  pp.  6-26,  January/February 
1985.

[4] J. B. Goodenough, S. Gerhart, "Towards a Theory of 
Test  Data  Selection,"  IEEE  Trans.  Software 
Engineering,  vol.  SE-1,  no.  2,  pp.  156-173,  June 
1975.

[5] J. B. Goodenough, S. Gerhart, "Towards a Theory of 
Test:  Data Selection Criteria,"  in  Current  Trends in 
Programming  Methodology,  vol.  2,  R.  T.  Yeh,  Ed, 
Prentice-Hall, Englewood Cliffs, NJ, 1977, pp. 44-79.

[6] R.  A.  DeMillo,  R.  J.  Lipton,  and  F.  G.  Sayward, 
“Hints on Test Data Selection: Help for the Practicing 
Programmer,” Computer,  vol.  11, no. 4,  pp.  34–41, 
April 1978.

[7] Y. Jia, M. Harman, "Higher Order Mutation Testing," 
Information  and  Software  Technology,  vol.  51,  no. 
10, pp. 1379-1393, October 2009.

[8] R.  A.  DeMillo,  A.  J.  Offutt,  "Constraint-Based 
Automatic  Test  Data  Generation,"  IEEE  Trans. 
Software  Engineering,  vol.  17,  pp.  900-910, 
September 1991.

[9] B.  P.  Miller,  L.  Fredriksen,  B.  So,  "An  empirical 
Study  of  the  Reliability  of  UNIX  Utilities," 
Communications of the ACM, vol.33, no.12, pp.32-
44, December 1990.

[10] S.  A.  Irvine,  T.  Pavlinic,  L.  Trigg,  J.G.  Cleary,  S. 
Inglis, M. Utting, "Jumble Java Byte Code to Measure 
the  Effectiveness  of  Unit  Tests  ,"  pp.  169-175  in 
Proceedings of TAICPART  - MUTATION 2007.

[11] http://www.ecs.syr.edu/faculty/fawcett/handouts/web
pages/research/Bolazar/SMT/


	1 Introduction
	2 Specifications
	2.1 Specification-Implementation Concordance
	2.2 Design by Contract (DBC)

	3 Syntactic Mutation Testing
	3.1 Definition
	3.2 Semantic Equivalence of Mutants
	3.3 Myths of Mutation Testing
	3.4 Beyond "Dumb" Mutants

	4 Semantic Mutation Testing
	4.1 Introduction
	4.2 Black-Box Semantic Mutation Testing
	4.3 Data-Flow Analysis for Crash Prevention
	4.4 White-Box Semantic Mutation Testing

	5 Experiments
	5.1 Sorting, Alternative Specifications
	5.2 Traditional (Syntactic) Mutation Testing
	5.3 Black-Box Tests
	5.4 White-Box Tests

	6 Discussion and Future Work
	7 References

