
ASP.NET MVC

Jim Fawcett
CSE686 – Internet Programming
Summer 2010

What is Asp.Net MVC?

 Framework for building web applications

 Based on Model-View-Controller pattern
 Model manages the applications data and

enforces constraints on that model.
 Often accessed through persistent objects

 Views are mostly passive presentations of
application state.
 Views generate requests sent to a controller based

on client actions.

 Controllers translate requests into actions on the
data model and generate subsequent views.

MVC Life Cycle

 Clients request a named action on a specified
controller, e.g.:

 http://localhost/aController/anAction

 The request is routed to aController’s
anAction method.

 That method decides how to handle the request,
perhaps by accessing a model’s state and
returning some information in a view.

http://localhost/aController/anAction

What is a Model?

 A model is a file of C# code and an associated
data store, e.g., an SQL database or XML file.

 The file of C# code manages all access to the
application’s data through objects.

 Linq to SQL and Linq to XML create queries into
these data stores

 This can be direct

 More often it is done through objects that wrap db
tables or XML files and have one public property for
each attribute column of the table.

FirstMVCDemoSu10 Model

namespace MvcApplication2.Models

{

public class FileHandler

{

public string path { get; set; }

public string[] files { get; set; }

public bool GetFiles(string pattern)

{

try

{

int pos = path.LastIndexOf("Home");

path = path.Substring(0, pos) + "Views\\Home";

files = System.IO.Directory.GetFiles(path);

return true;

}

catch { return false; }

}

}

}

What is a View?

 Views are usually aspx files with only HTML
and inline code, e.g., <% … C# code here …
%>.
 Code is used just to support presentation and does

no application processing.

 The HTML is augmented by HTML Helpers,
provided by Asp.Net MVC that provide shortcuts
for commonly used HTML constructs.

 Asp.Net MVC comes with jQuery (Javascript)
libraries to support reacting to client actions and
doing AJAX communication with the server.

FirstMVCDemoSu10 View
<%@ Page Language="C#" MasterPageFile="~/Views/Shared/Site.Master"

Inherits="System.Web.Mvc.ViewPage" %>

<asp:Content ID="aboutTitle" ContentPlaceHolderID="TitleContent" runat="server">

About Us

</asp:Content>

<asp:Content ID="aboutContent" ContentPlaceHolderID="MainContent" runat="server">

<h2>Demo Application</h2>

<%

try {

string[] files = ((MvcApplication2.Models.FileHandler)Model).files;

Response.Write("
Find Files in Home Controller's Views Folder");

foreach (string file in files)

Response.Write("
" + file);

string path = ((MvcApplication2.Models.FileHandler)Model).path;

System.IO.FileInfo fi = new System.IO.FileInfo(path + "\\Index.Aspx");

Response.Write("<p/>Index.Aspx Last Revised: " + fi.LastAccessTime.ToString());

}

catch { Response.Write("<p/>Error finding path or file"); }

%>

<p>

This application is intended to host a set of tutorial demos for Asp.Net MVC.

Each Tab will open a new demo example. Eventually I will segregate them into

demo categories with a controller for each category.

</p>

</asp:Content>

What is a Controller?

 A controller is a C# file with controller classes
that derive from the class Controller.

 A controller defines some category of processing
for the application.

 Its methods define the processing details.

 Routing to a controller is defined in the
Global.Asax.cs file. Its default processing is
usually what you need.

FirstMVCDemoSu10 Controller
namespace MvcApplication2.Controllers

{

[HandleError]

public class HomeController : Controller

{

public ActionResult Index()

{

ViewData["Message"] = "First Model-View-Controller Demos";

return View();

}

public ActionResult Form()

{

ViewData["Message"] = "Form not yet implemented";

return View();

}

// code removed here to fit on slide

public ActionResult About()

{

string path = Server.MapPath(".");

Models.FileHandler fh = new Models.FileHandler();

fh.path = path;

fh.GetFiles("*.*");

return View(fh);

}

}

}

Web Application Development

 Create a new Asp.Net MVC project
 Delete any part of that you don’t need

 Add a controller for each category of processing
in your application:
 A category is usually a few pages and db tables that

focus on some particular application area

 Add methods to each controller for each request
you wish to handle.

 Add views as needed for each controller action
 Add Model classes to support the application

area:
 Each model class has public properties that are

synchronized with data in the model db or XML file.

An Opinion

 This Asp.Net MVC structure is very flexible:

 You can have as many application categories as
you need, simply by adding controllers.

 The controllers keep the application well
organized.

 You can have as many views as you need. The
navigation is simple and provided mostly by the
MVC infrastructure, e.g., routing in Global.asax.cs.

 You can have as many models as you need. Just
add classes and use Linq to access the data.

Things you need to know

 LINQ – Language integrated query

 Linq to XML and Linq to SQL are commonly used
by models to provide data needed by a controller
for one of its views.

 Jquery – Javascript Query library

 Jquery is frequently used by views to react to
client actions in the browser.

 Jquery has facilities to use AJAX to retrieve small
amounts of information from the server without
loading a new view.

References

 Class Text: “Pro Asp.Net MVC”

 Asp.Net MVC Tutorials
 http://weblogs.asp.net/scottgu/archive/2007/11/13/asp

-net-mvc-framework-part-1.aspx

 http://nerddinnerbook.s3.amazonaws.com/Intro.htm

 Linq:
 http://dotnetslackers.com/articles/csharp/introducingl

inq1.aspx

 Jquery
 http://docs.jquery.com/Tutorials:How_jQuery_Works#

jQuery:_The_Basics

http://weblogs.asp.net/scottgu/archive/2007/11/13/asp-net-mvc-framework-part-1.aspx
http://weblogs.asp.net/scottgu/archive/2007/11/13/asp-net-mvc-framework-part-1.aspx
http://nerddinnerbook.s3.amazonaws.com/Intro.htm
http://dotnetslackers.com/articles/csharp/introducinglinq1.aspx
http://dotnetslackers.com/articles/csharp/introducinglinq1.aspx
http://docs.jquery.com/Tutorials:How_jQuery_Works#jQuery:_The_Basics

