Introduction to Internet Programming

Jim Fawcett CSE686 – Internet Programming Summer 2006

- Dr. Sapossnek, Boston Univ., has a series of presentations on various topics relating to internet programming with Microsoft .Net <u>http://www.gotdotnet.com/team/student/academicreskit/</u>
- Paul Amer, Univ. Del., Hyper Text Transfer Protocol (HTTP) <u>http://www.cis.udel.edu/~amer/856/http.03f.ppt</u>
- World Wide Web Consortium <u>www.w3c.org</u>
- Our website <u>www.ecs.syr.edu/faculty/fawcett/handouts/webpages/webdev.htm</u>

Internet History

- 1961 First paper on packet-switching theory
 - Kleinrock, MIT
- 1969 ARPANet goes on line
 - Four hosts, each connected to at least two others
- 1974 TCP/IP, Berkley Sockets invented
- 1983 TCP/IP becomes only official protocol
- 1983 Name server developed at University of Wisconsin.
- 1984 Work begins on NSFNET
- 1990 ARPANET shutdown and dismantled
- 1990 ANSNET takes over NSFNET
 - Non-profit organization MERIT, MCI, IBM
 - Starts commercialization of the internet
- 1995 NSFNET backbone retired

Web History

- 1990 World Wide Web project
 - Tim Berners-Lee starts project at CERN
 - Demonstrates browser/editor accessing hypertext files
 - HTTP 0.9 defined, supports only hypertext, linked to port 80
- 1991 first web server outside Europe
 - CERN releases WWW, installed at Stanford Linear Accelerator Center
- 1992 HTTP 1.0, supports images, scripts as well as hypertext
- 1993 Growth phase exponential growth through 2000
- 1994 CERN and MIT agree to set up WWW Consortium
- 1999 HTTP 1.1, supports open ended extensions

Original Goals of the Web

- Universal readership
 - When content is available it should be accessible from any type of computer, anywhere.
- Interconnecting all things
 - Hypertext links everywhere.
 - Simple authoring

Web Design Principles

- Universal
- Decentralized
- Modular
- Extensible
- Scalable
- Accessible
- Forward/backwards compatibility

Basic Concepts

- Universal Addressing

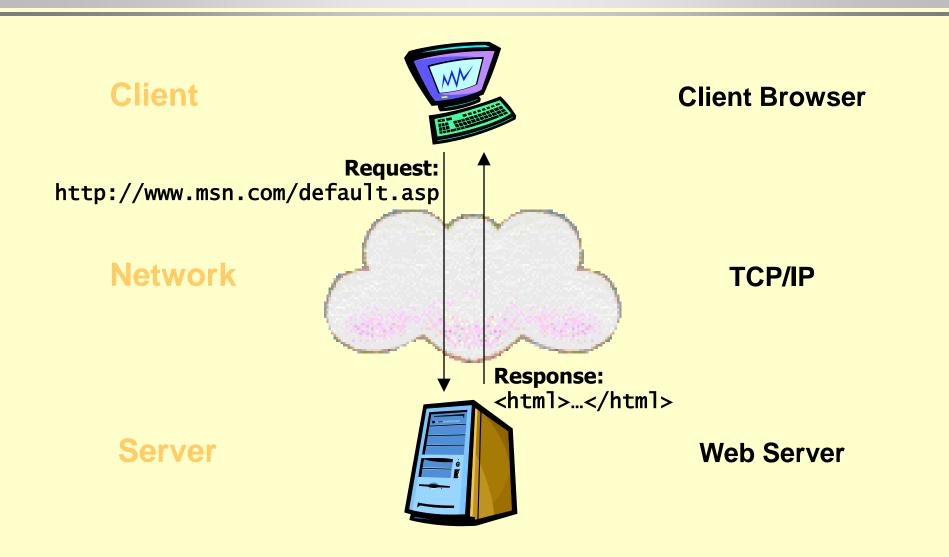
 TCP/IP, DNS
- Universal Processing Protocols

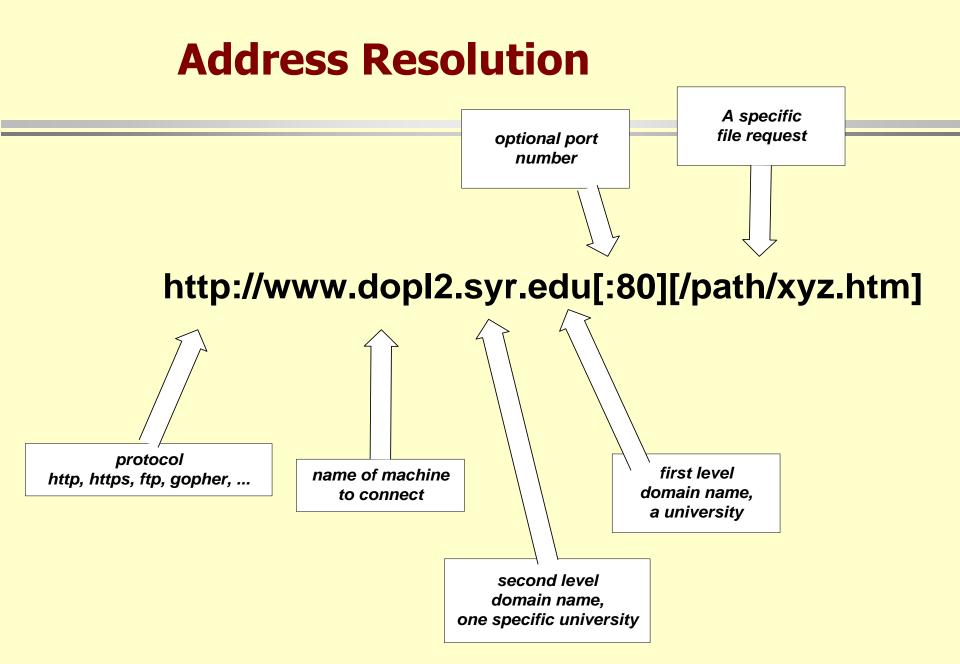
 URLs, HTTP, HTML, FTP
- Format Negotiation through HTTP
- Hypertext → Hypermedia via HTML → XHTML
 Support for text, images, sound, and scripting
- Client/Server Model

Servers on the Internet

- HTTP HyperText Transport Protocol
 - File Transport Protocol
- Gopher Text and Menus
 - Network News Transfer Protocol
- DNS Distributed Name Service
- telnet log into a remote computer
- Web services

• FTP


NNTP

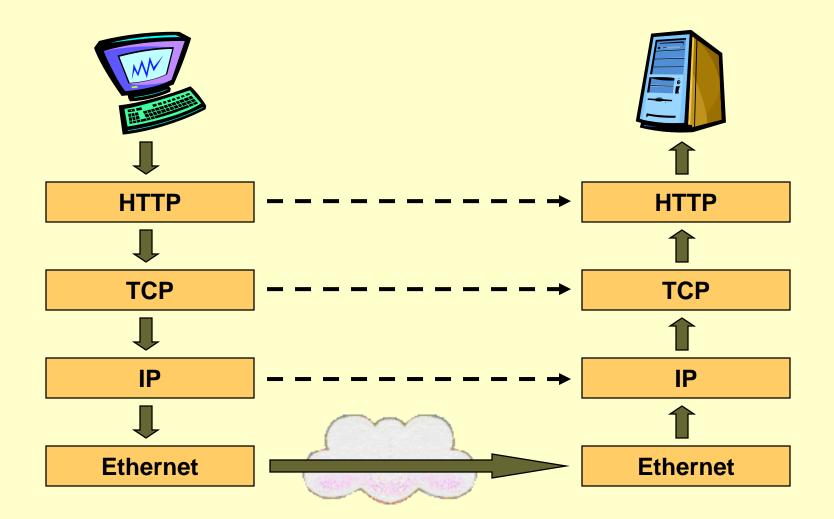

- coming soon to a web server near you

HyperText Markup Language (HTML)

- The markup language used to represent Web pages for viewing by people
 - Designed to display data, not store/transfer data
- Rendered and viewed in a Web browser
- Can contain *links* to images, documents, and other pages
- Not extensible uses only tags specified by the standard
- Derived from Standard Generalized Markup Language (SGML)
- HTML 3.2, 4.01, XHTML 1.0

Internet Technologies www.Architecture

Some Interesting Views of the Internet

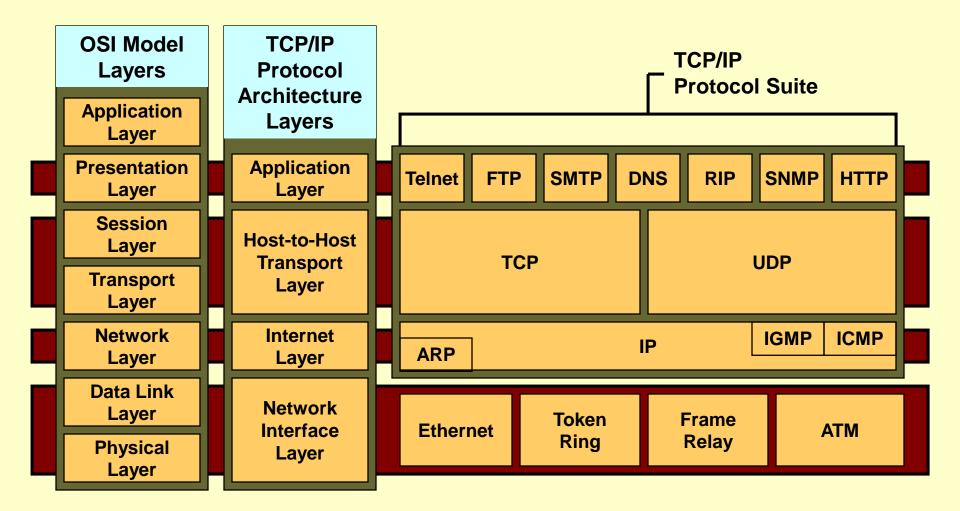

The following plots are from the Cooperative Association for Internet Data Analysis

- http://www.caida.org
- <u>http://www.caida.org/tools/visualization/walrus/gallery1/</u>
- <u>http://www.caida.org/tools/visualization/plankton/Images/</u>

Networks

- Network = an interconnected collection of independent computers
- Why have networks?
 - Resource sharing
 - Reliability
 - Cost savings
 - Communication
- Web technologies add:
 - New business models: e-commerce, advertising
 - Entertainment
 - Applications without a client-side install

Network Protocol Stack


Networks - Transport Layer

- Provides efficient, reliable and cost-effective service
- Uses the Sockets programming model
- Ports identify application
 - Well-known ports identify standard services (e.g. HTTP uses port 80, SMTP uses port 25)
- Transmission Control Protocol (TCP)
 - Provides reliable, connection-oriented byte stream
- UDP
 - Connectionless, unreliable

Communication Between Networks

- Internet Protocol (IP)
 - Routable, connectionless datagram delivery
 - Specifies source and destination
 - Does not guarantee reliable delivery
 - Large message may be broken into many datagrams, not guaranteed to arrive in the order sent
- Transport Control Protocol (TCP)
 - Reliable stream transport service
 - Datagrams are delivered to the receiving application in the order sent
 - Error control is provided to improve reliability

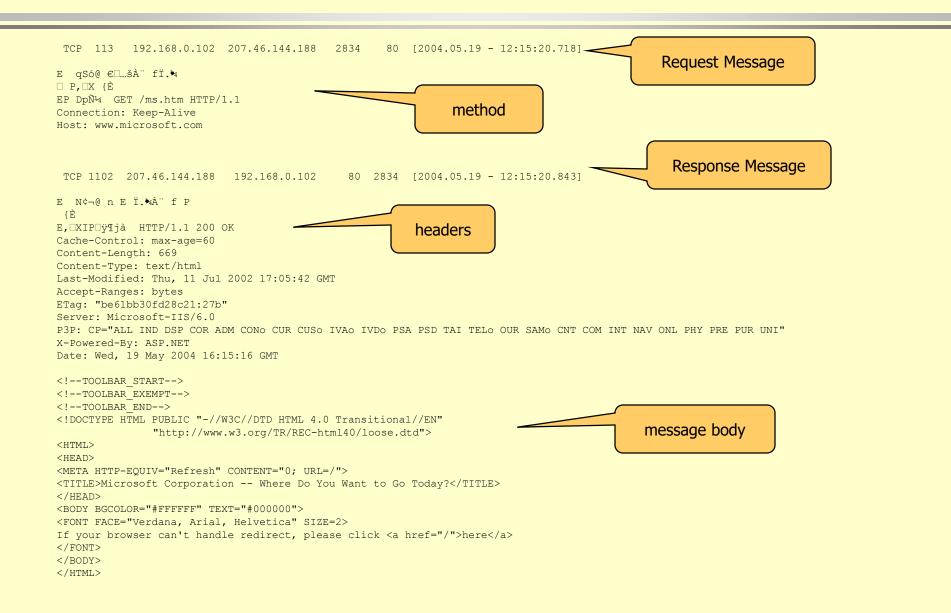
Network Protocols

HTTP Protocol

- Client/Server, Request/Response architecture
 - You request a Web page
 - e.g. http://www.msn.com/default.asp
 - HTTP request
 - The Web server responds with data in the form of a Web page
 - HTTP response
 - Web page is expressed as HTML
 - Pages are identified as a Uniform Resource Locator (URL)
 - Protocol: http
 - Web server: www.msn.com
 - Web page: default.asp
 - Can also provide parameters: ?name=Leon

HTTP is Stateless

- HTTP is a stateless protocol
- Each HTTP request is independent of previous and subsequent requests
- HTTP 1.1 introduced keep-alive for efficiency
- Statelessness has a big impact on how scalable applications are designed


Cookies

- A mechanism to store a small amount of information (up to 4KB) on the client
- A cookie is associated with a specific web site
- Cookie is sent in HTTP header
- Cookie is sent with each HTTP request
- Can last for only one session (until browser is closed) or can
 persist across sessions
- Can expire some time in the future

Network Packet Sniffer

🗞 Pl/	AFCT	M - Stopp	ed						
		s <u>M</u> ode <u>H</u> el							
Туре	Size	From IP	To IP	From Port	To Port	Date / Time	Contains string	Lacks string	^
TCP TCP TCP TCP	44 105 595 40 63	207.46.245.222 192.168.0.102 207.46.245.222 192.168.0.102	192.168.0.102 207.46.245.222 192.168.0.102 207.46.245.222	80 2832 80 2832	2832 80 2832 80	2004.05.19 - 12:15:17.187 2004.05.19 - 12:15:17.203 2004.05.19 - 12:15:17.312 2004.05.19 - 12:15:17.312			
UDP UDP TCP TCP TCP	63 525 48 40 48	192.168.0.102 192.168.0.1 192.168.0.102 192.168.0.102 207.46.144.188	192.168.0.1 192.168.0.102 207.46.144.188 207.46.144.188 192.168.0.102	1976 53 2834 2834 80	53 1976 80 80 2834	2004.05.19 - 12:15:17.562 2004.05.19 - 12:15:17.578 2004.05.19 - 12:15:20.609 2004.05.19 - 12:15:20.718 2004.05.19 - 12:15:20.718			
TCP TCP	113 1102	192.168.0.102 207.46.144.188	207.46.144.188 192.168.0.102	2834 80	80 2834	2004.05.19 - 12:15:20.718 2004.05.19 - 12:15:20.843			
TCP TCP TCP TCP TCP TCP TCP	40 40 40 40 40 40	192.168.0.102 192.168.0.102 192.168.0.102 192.168.0.102 207.46.245.222 207.46.144.188	207.46.144.188 207.46.144.188 207.46.245.222 207.46.245.222 192.168.0.102 192.168.0.102	2834 2834 2832 2832 80 80 80	80 80 80 2832 2834	2004.05.19 - 12:15:21.031 2004.05.19 - 12:15:21.093 2004.05.19 - 12:15:21.093 2004.05.19 - 12:15:21.187 2004.05.19 - 12:15:21.187 2004.05.19 - 12:15:21.203			~
		Clear top		2 (2003.)	Entire packet				
Packet size: 1102 TTL: 110 TCP special Protocol #: 6 Sequence: 2076707909 Packet type: TCP Acknowledgement: 2181388361 Vindow: 65462 Mindow: 65462 From IP 207.46.144.188 ACK PSH						Content-Length: 6 Content-Type: tex Last-Modified: Th Accept-Ranges: by ETag: "be61bb30fd Server: Microsoft	t/html u, 11 Jul 2002 17 tes 28c21:27b"	7:05:42 GMT	
To IP:		92.168.0.102				P3P: CP="ALL IND 1	DSP COR ADM CONo	CUR CUSo IVAo	
From po	ort: 80	use: Wo	ld Wide Web HTTP			Packet data			
To port:	2834	use: EVT	Р			TOOLBAR_START</td <td></td> <td></td> <td>^</td>			^
Status: Stopped Free physical RAM: 574360 KB T00LBAR_EXEMPT Status: Stopped Packet data allocation: 67 KB T00LBAR_END T00LBAR_END Status: Stopped Packet data allocation: 67 KB T00LBAR_END D0CTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Trans</td									
Search current packets> Find / Next <									
Filter systems> Apply filters to incoming packets Setup packet filters 0-> <-1M									

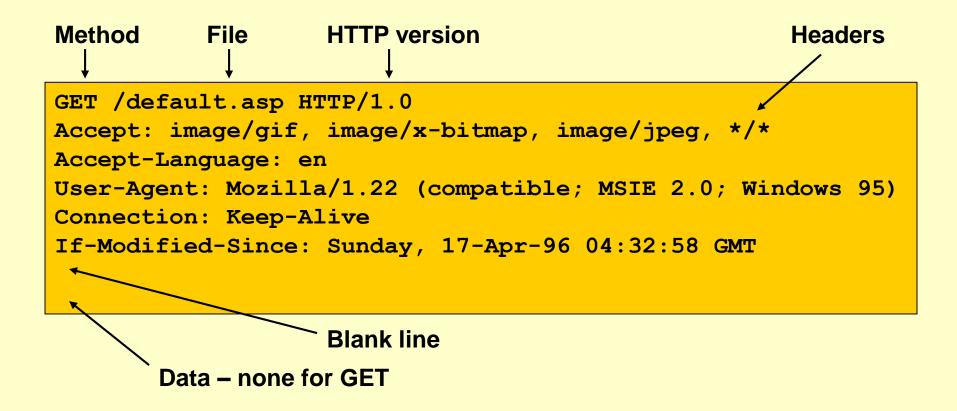
HTTP Messages as seen by packet sniffer

Typical HTTP Transaction

- Client browser finds a machine address from an internet Domain Name Server (DNS).
- Client and Server open TCP/IP socket connection.
- Server waits for a request.
- Browser sends a verb and an object:
 - GET XYZ.HTM or POST form
 - If there is an error server can send back an HTML-based explanation.
- Server applies headers to a returned HTML file and delivers to browser.
- Client and Server close connection.
 - It is possible for the client to request the connection stay open requires design effort to do that.

HTTP Methods

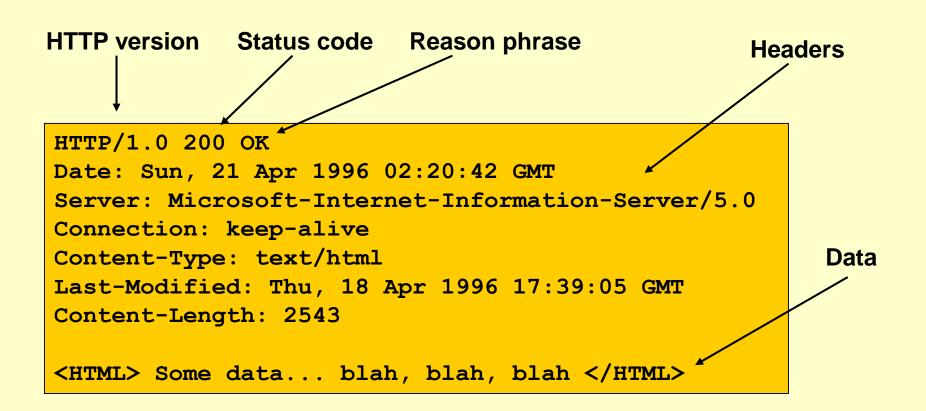
- GET request-URI HTTP/1.1
 - Retrieve entity specified in request-URI as body of response message
- POST request-URI HTTP/1.1
 - Sends data in message body to the entity specified in request-URI
- PUT request-URI HTTP/1.1
 - Sends entity in message body to become newly created entity specified by request-URI
- HEAD request-URI HTTP/1.1
 - Same as GET except the server does not send specified entity in response message
- DELETE request-URI HTTP/1.1
 - Request to delete entity specified in request-URI.
- TRACE request-URI HTTP/1.1
 - Request for each host node to report back


Tracing HTTP Message with Tracert

>trac	ert v	ww.r	noscov	-gu:	ide.ru	1	
[raci	ng ro	oute	to mo	scou	v-guid	le . r	u [81.176.69.152]
over	a max	cimur	n of 3	30 ha	pps :		
1	1	ms	1	ms	1	ms	192.168.0.1
2	- 7	MS	- 7	MS	- 7	MS	10.101.208.1
3	8	ms	10	ms	- 7	MS	fas3-2.syrcnybsh-rtr01.nyroc.rr.com [24.92.227.138]
4	- 7	ms	9	ms	- 7	MS	srp2-0.syrcnyspp-rtr04.nyroc.rr.com [24.92.227.217]
5	8	ms	- 7	ms	- 7	MS	<pre>srp10-0.syrcnyspp-rtr01.nyroc.rr.com [24.92.224.137]</pre>
6	- 7	ms	- 7	ms	8	MS	srp8-0.syrcnyspp-rtr02.nyroc.rr.com [24.92.224.138]
23456789	11	ms	11	ms	11	MS	son0-1-1.albynywav-rtr03.nyroc.rr.com [24.92.224.170]
8	13	ms	12	ms	11	MS	pop1-alb-P7-0.atdn.net [66.185.133.229]
9	14	ms	12	ms	11	MS	bb1-alb-P0-1.atdn.net [66.185.148.100]
10	18	MS	15	ms	19	MS	bb2-nye-P3-0.atdn.net [66.185.152.71]
11	16	MS	29	ms	16	MS	pop1-nye-P1-0.atdn.net [66.185.151.51]
12		MS	15	ms	15	MS	0.so-2-0-0.BR1.NYC4.ALTER.NET [204.255.173.33]
13	17	MS	15	ms	15	MS	0.so-6-0-0.XL1.NYC4.ALTER.NET [152.63.21.78]
14	16	MS	18	ms	15	MS	0.so-4-0-0.TL1.NYC9.ALTER.NET [152.63.0.173]
15	×		18	ms	16	MS	0.so-7-0-0.IL1.NYC9.ALTER.NET [152.63.9.245]
16	15		40	ms	15	MS	0.so-1-0-0.IR1.NYC12.ALTER.NET [152.63.23.62]
17			- 94		- 95	MS	so-0-0-0.TR2.LND9.ALTER.NET [146.188.15.26]
18	- 96		- 97	ms	- 94		
19	94		- 94		- 94		POS3-0.cr1.lnd10.gbb.uk.uu.net [158.43.150.97]
20		MS	98	MS	- 99	MS	pos3-0.cr1.lnd8.gbb.uk.uu.net [158.43.253.142]
21	104			MS	. 99	MS	ge0-0.gw1.lnd8.gbb.uk.uu.net [158.43.188.25]
22		MS		ms	150	MS	rtcomm-gw.customer.ALTER.NET [146.188.66.50]
23	156		156		156		msk-dsr7-ge1-0-0-0.rt-comm.ru [217.106.7.200]
24	156	MS	159	MS	155	MS	81.176.69.152
r		1.4	_				
frace	com	plete	ð.				

Pinging Various URLs

CMD.EXE
Pinging bismark [192.168.0.103] with 32 bytes of data:
Reply from 192.168.0.103: bytes=32 time=1ms TTL=128 Reply from 192.168.0.103: bytes=32 time=2ms TTL=128 Reply from 192.168.0.103: bytes=32 time=19ms TTL=128 Reply from 192.168.0.103: bytes=32 time=6ms TTL=128
Ping statistics for 192.168.0.103: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 1ms, Maximum = 19ms, Average = 7ms
C:\temp >ping www.ecs.syr.edu
Pinging ecswww.syr.edu [128.230.208.33] with 32 bytes of data:
Reply from 128.230.208.33: bytes=32 time=22ms TTL=113 Reply from 128.230.208.33: bytes=32 time=23ms TTL=113 Reply from 128.230.208.33: bytes=32 time=24ms TTL=113 Reply from 128.230.208.33: bytes=32 time=23ms TTL=113
Ping statistics for 128.230.208.33: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 22ms, Maximum = 24ms, Average = 23ms
C:\temp >ping www.moscow-guide.ru
Pinging moscow-guide.ru [81.176.69.152] with 32 bytes of data:
Reply from 81.176.69.152: bytes=32 time=156ms TTL=42 Reply from 81.176.69.152: bytes=32 time=156ms TTL=42 Reply from 81.176.69.152: bytes=32 time=178ms TTL=42 Reply from 81.176.69.152: bytes=32 time=155ms TTL=42
Ping statistics for 81.176.69.152: Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 155ms, Maximum = 178ms, Average = 161ms


HTTP Request

Multipurpose Internet Mail Extensions (MIME)

- Defines types of data/documents
 - text/plain
 - text/html
 - image/gif
 - image/jpeg
 - audio/x-pn-realaudio
 - audio/x-ms-wma
 - video/x-ms-asf
 - application/octet-stream

HTTP Response

Status Codes

200	OK	Classes:		
201	Created			
202	Accepted	1xx: Informational		
204	No Content			
301	Moved Permanently	2xx: Success		
302	Moved Temporarily			
304	Not Modified			
400	Bad Request	3xx: Redirection		
401	Unauthorized			
403	Forbidden	4xx: Client Error		
404	Not Found	5xx: Server Error		
500	Internal Server Error			
501	Not Implemented			
502	Bad Gateway			
503	Service Unavailable			

- not used, reserved for future
- action was successfully received, understood, and accepted
- further action needed to complete request
- request contains bad syntax or cannot be fulfilled
- server failed to fulfill an apparently valid request

Programming the Web

- Client-Side Programming
 - JavaScript
 - Dynamic HTML
 - Net controls
- Server-Side Programming
 - ASP script
 - Server components
 - C# code-behind
 - ADO
 - Web controls used on ASPX pages
 - Web services

Web Processing Models

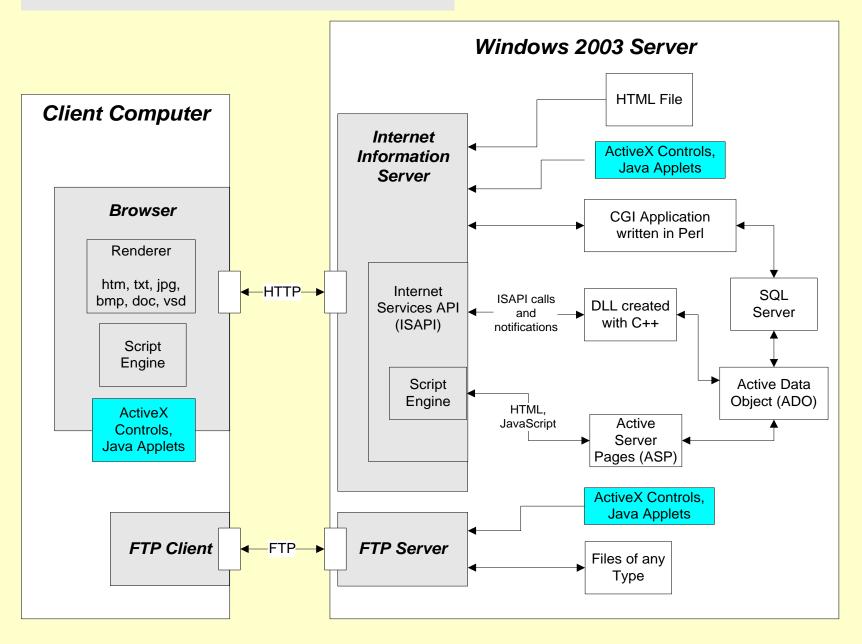
• HyperText Transfer Protocol (HTTP)

- Universal access
- HTTP is a "request-response" protocol specifying that a client will open a connection to server then send request using a very specific format. Server will respond and then close connection.

• HyperText Markup Language (HTML)

- Web of linked documents
- Unlimited scope of information content

• Graphical Browser Client


- Sophisticated rendering makes authoring simpler
- HTML File Server
 - Using HTTP, Interprets request, provides appropriate response, usually a file in HTML format
- Three-Tier Model
 - Presentation, application logic, data access

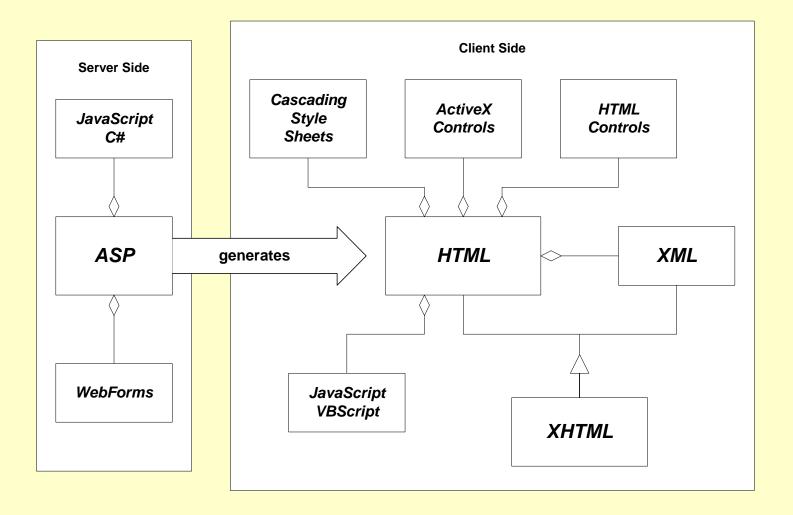
Three Tier Architecture

- Client Tier
 - Presentation layer
 - Client UI, client-side scripts, client specific application logic
- Server Tier
 - Application logic, server-side scripts, form handling, data requests
- Data Tier
 - Data storage and access

Client/Server - Current Web Model

Programming the Web Client-Side Code

- What is client-side code?
 - Software that is downloaded from Web server to browser and then executes on the client
- Why client-side code?
 - Better scalability: less work done on server
 - Better performance/user experience
 - Create UI constructs not inherent in HTML
 - Drop-down and pull-out menus
 - Tabbed dialogs
 - Cool effects, e.g. animation
 - Data validation


Programming the Web Server-Side Code

- What is server-side code?
 - Software that runs on the server, not the client
 - Receives input from
 - URL parameters
 - HTML form data
 - Cookies
 - HTTP headers
 - Can access server-side databases, e-mail servers, files, mainframes, etc.
 - Dynamically builds a custom HTML response for a client

Programming the Web Server-Side Code

- Why server-side code?
 - Accessibility
 - You can reach the Internet from any browser, any device, any time, anywhere
 - Manageability
 - Does not require distribution of application code
 - Easy to change code
 - Security
 - Source code is not exposed
 - Once user is authenticated, can only allow certain actions
 - Scalability
 - Web-based 3-tier architecture can scale out

Web Programming – Language Model

Programming Paradigms Event-Based Programming

- When something of interest occurs, an event is raised and application-specific code is executed
- Events provide a way for you to hook in your own code into the operation of another system
- Event = callback
- User interfaces are all about events
 - onClick, onMouseOver, onMouseMove...|
- Events can also be based upon time or interactions with the network, operating system, other applications, etc.

Event-Based Programming on Client Dynamic HTML (DHTML)

- Script is embedded within, or attached to, an HTML page
- Usually written in JavaScript (ECMAScript, JScript) for portability
 - Internet Explorer also supports VBScript and other scripting languages
- Each HTML element becomes an object that has associated events (e.g. onClick)
- Script provides code to respond to browser events

Programming the Web

• DHTML Document Object Model (DOM)

Server Object Model

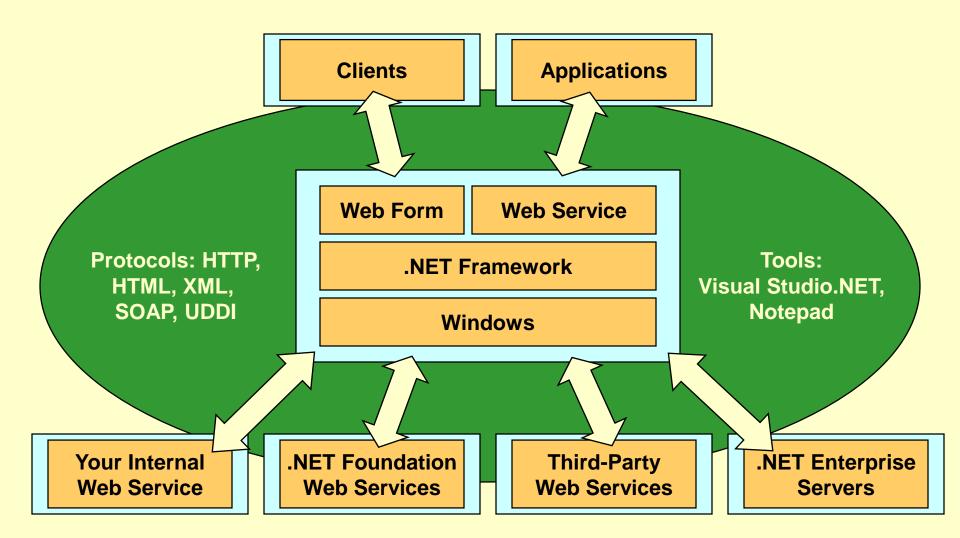
- Application Object
 - Data sharing and locking across clients
- Request Object
 - Extracts client data and cookies from HTTP request
- Reponse Object
 - Send cookies or call Write method to place string in HTML output
- Server Object
 - Provides utility methods
- Session Object
 - If browser supports cookies, will maintain data between page loads, as long as session lasts.

Server Side Programming with ASP

- An Active Server Page (ASP) consists of HTML and script.
 - HTML is sent to the client "as-is"
 - Script is executed on a server to dynamically generate more HTML to send to the client.
 - Since it is generated dynamically, ASP can tailor the HTML to the context in which it executes, e.g., based on time, data from client, current server state, etc.

Programming the Web Active Server Pages (ASP)

- Technology to easily create server-side applications
- ASP pages are written in a scripting language, usually VBScript or Jscript
- An ASP page contains a sequence of static HTML interspersed with server-side code
- ASP script commonly accesses and updates data in a database


Event-Based Programming on Server ASP.Net

- Pages are constructed from HTML, Web Controls, and C# event handlers.
- The ASP.Net Page processing renders Web Controls on a page into HTML constructs with attached Javascript event handlers.
 - The Javascript handlers post messages back to the server describing the event, which is then handled by C# code on the server.
- The result of the handled event is usually another page sent back to the browser client.

Introduction to .NET What is .NET?

- A vision
 - Web sites will be joined by Web services
 - New smart devices will join the PC
 - User interfaces will become more adaptable and customizable
 - Enabled by Web standards

Introduction to .NET The .NET Platform

Common Language Runtime Assemblies

- Assembly
 - Logical unit of deployment
 - Contains Manifest, Metadata, MSIL and resources
- Manifest
 - Metadata about the components in an assembly (version, types, dependencies, etc.)
- Type Metadata
 - Completely describes all types defined in an assembly: properties, methods, arguments, return values, attributes, base classes, ...

Common Language Runtime Services

- Code management
- Conversion of MSIL to native code
- Loading and execution of managed code
- Creation and management of metadata
- Verification of type safety
- Insertion and execution of security checks
- Memory management and isolation

- Handling exceptions across
 languages
- Interoperation between .NET Framework objects and COM objects and Win32 DLLs
- Automation of object layout for late binding
- Developer services (profiling, debugging, etc.)

Common Language Runtime Security

- Evidence-based security (authentication)
- Based on user identity and code identity
- Configurable policies
- Imperative and declarative interfaces

Windows Forms

- Framework for building rich clients
- Built upon .NET Framework, languages
- Rapid Application Development (RAD)
- Visual inheritance
- Anchoring and docking
- Rich set of controls
- Extensible controls

- Data-aware
- Easily hooked into Web Services
- ActiveX support
- Licensing support
- Printing support
- Advanced graphics

Web Forms

- Built with ASP.NET
 - Logical evolution of ASP
 - Similar development model: edit the page and go
- Requires less code
- New programming model
 - Event-driven/server-side controls
 - Rich controls (e.g. data grid, validation)
 - Data binding
 - Controls generate browser-specific code
 - Simplified handling of page state

Web Forms

- Allows separation of UI and business logic
- Uses .NET languages
 - Not just scripting
- Easy to use components
- XCOPY/FTP deployment
- Simple configuration (XML-based)

ADO.NET

- Similar to ADO, but better factored
- Language-neutral data access
- Supports two styles of data access
 - Disconnected
 - Forward-only, read-only access
- Supports data binding
- DataSet: a collection of tables
- Can view and process data relationally (tables) or hierarchically (XML)

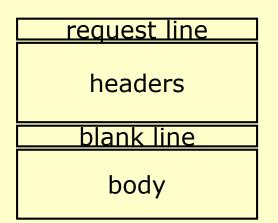
- Threats
 - Data integrity
 - code that deletes or modifies data
 - Privacy
 - code that copies confidential data and makes it available to others
 - Denial of service
 - code that consumes all of CPU time or disk memory.
 - Elevation of privilege
 - Code that attempts to gain administrative access

Protections

- Least privilege rule:
 - Use the technology with the fewest capabilities that gets the job done.
- Digital signing
 - Who are you?
- Security zones
 - Trusted and untrusted sites
- Secure sockets layer (SSL)
- Transport layer security (TLS)
- Encryption

Areas of Exploration

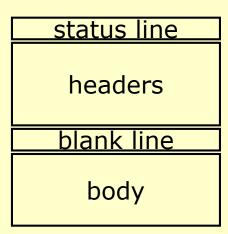
- XML
- TVWeb
- MathML
- RDF
- Accessibility
- SMIL


- Universal Data Services
- merger of features
- Mathematical Markup Language
- Resouce Description Framework
- for the handicapped
- Synchronized Multimedia Integration Language
- Internationalization
- Speech

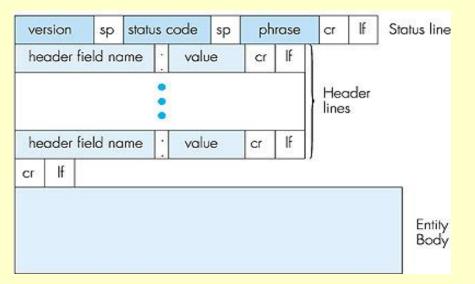
- Introduction to the Web and .Net, Mark Sapossnek, Computer Science, Boston Univ.
 - slides available on www.gotdotnet.com
- World Wide Web Consortium
 - Excellent Tutorial Papers, standards
- XHTML Black Book, Steven Holzner, Coriolis, 2000
 - Very comprehensive treatment of HTML, XHTML, JavaScript
- Inside Dynamic HTML, Scott Issacs, Microsoft Press, 1997
- C# .Net Web Developer's Guide, Turtschi et. al., Syngress, 2002
 - Class text
- Web Developers Virtual Library
 - Excellent set of tutorials
- Class Web Links
 - Web links.htm

Appendix A HTTP Message Headers

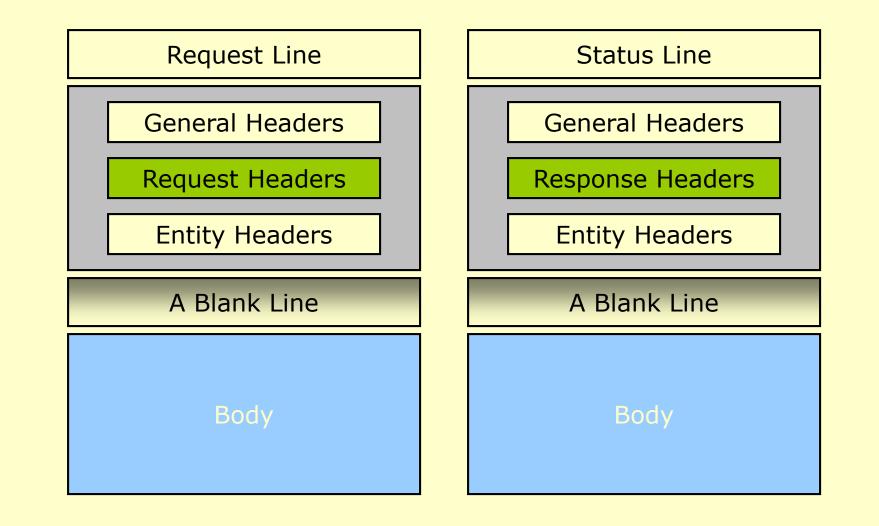
Request Message

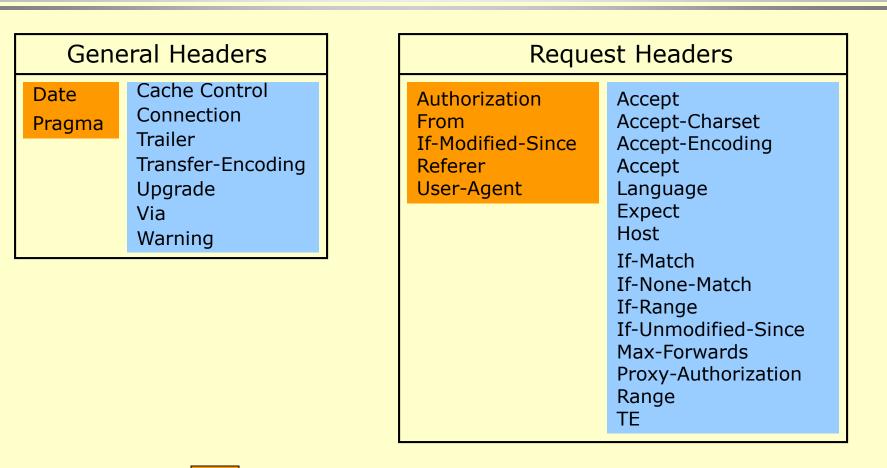


request methods: DELETE, GET, HEAD, POST, PUT, TRACE


method URL If Request line sp sp Version cr header field name value Cr lf Header lines header field name If value Cr If CL Entity Body

GET /pub/index.html HTTP/1.0 Date: Wed, 20 Mar 2002 10:00:02 GMT Pragma: no-cache From: amer@udel.edu User-Agent: Mozilla/4.03


Response Message


HTTP/1.1 200 OK Date: Tue, 08 Oct 2002 00:31:35 GMT Server: Apache/1.3.27 tomcat/1.0 Last-Modified: 70ct2002 23:40:01 GMT ETag: "20f-6c4b-3da21b51" Accept-Ranges: bytes Content-Length: 27723 Keep-Alive: timeout=5, max=300 Connection: Keep-Alive Content-Type: text/html

Headers

Headers

Headers present in HTTP/1.0 & HTTP/1.1

New Headers added in HTTP/1.1

Headers

Response Headers		Entity Headers	
Location Server WWW-Authenticate	Accept-Ranges Age ETag Proxy-Authenticate Retry-After Vary	Allow Content-Encoding Content-Length Content-Type Expires Last-Modified extension-header	Content-Language Content-Location Content-MD5 Content-Range

Headers present in HTTP/1.0 & HTTP/1.1

New Headers added in HTTP/1.1

End of Presentation