
Introductionto Asp.Net Core

Jim Fawcett

CSE686 – Internet Programming

Spring 2018

Introduction

• Asp.Net Core provides a framework for building and executing both
Console and Web Applications

• The 2.1 framework provides a host, responsible for startup and
lifetime management.
• Generic Host – host non-web apps

• Windows services and executables

• Web Host – suitable for hosting web applications
• Create instance with IWebHostBuilder

• Primary focus is web applications

• It provides a pluggable hosting environment that supports:
• Kestral, IIS, Apache, Nginx

Web Application Hosting Options

• Kestral

• IIS, Apache, Nginx

Diagrams from https://docs.microsoft.com/en-us/aspnet/core/fundamentals/servers/?view=aspnetcore-2.2&tabs=windows

Asp.Net Core Pipeline

• Provides an application pipeline that supports pluggable services

• Pipeline services are delivered via a Dependency Injection Container

• The pipeline is configured with one or more components.

Diagram from https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-2.2

Middleware components pass Requests
to next component via Request
Delegates.

Each component configures a lambda
that binds to a Request Delegate,
defining its processing and invoking
a next() function.

When a Request arrives the middleware
delegate sequence is invoked.

Middleware

• Middleware is software that's assembled into an app pipeline to
handle requests and responses. Each component:
• Chooses whether to pass the request to the next component in the pipeline.

• Can perform work before and after the next component in the pipeline.

• Request delegates are used to build the request pipeline. The request
delegates handle each HTTP request.

• The points, above, are taken from:
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/middleware/?view=aspnetcore-2.2

Configuring Middleware

• You configure pipeline middleware using the Configure method,
provided by the Startup class.
• Services include:

• Serving static files

• MVC routing and operations

• Custom services

• Service lifetime:
• AddSingletonService<IService, Service>()

Singleton service used for the lifetime of the Application

• AddScopedService<IService, Service>()
Singleton service used for the duration of one HTTP request

• AddTransientService<IService, Service>()
Created with each request for service, possibly many times per HTTP request

Middleware provided by the framework
- partial list

• Authenication

• Cookie Policy

• CORS

• Diagnostics

• HTTPS Redirection

• MVC

• Routing

• Session

• Static Files

• URL Rewriting

• WebSockets

Startup

• Startup Class
• ConfigureServices method

• Registers a service interface and implementing class for dependency injection using one
of the AddService methods, described in the previous slide

• Each AddService adds a service to the Dependency Injection Services container.

• Configure method
• Creates the application’s pipeline with app.UseXXX() invocations.

• app.Run(some write method)

• An app.UseXXX invocation need not pass a message down the pipeline.

• App.Run executes only if all app.UseXXX() middleware pass along the request message.

• Essentially, the pipeline is the sequence of app.UseXXX() methods in StartupConfigure()

Building Web Host

• IWebHostBuilder CreateWebHostBuilder(string[] args)
• Creates a host and defines the Startup Assembly

• IWebHostBuilder methods:
• Build()

• …

• Extension methods:
• Start(IWebHostBuilder, String[])

• UseConfiguration(IWebHostBuilder, IConfiguration)

• UseServer(IWebHostBuilder, IServer)

• UseStartup(IWebHostBuilder, String)

• …

app.Run

• app.Run(…) is similar to app.UseXXX(), but does not send on a
request. It is the pipeline terminus.

That’s All Folks

