Unfunded Projects

2017

PRIVATE
Project #6 – C++ Reflection
Purpose:
Those of you who have taken CSE681 – Software Modeling and Analysis know that reflection can be very useful. It helped us build a test harness, for example.
Reflection is the act of inquiring, from an executable or DLL, about the types it contains, their methods, properties, and so on, and once found, possibly instantiating instances of those types. In all the .Net languages, reflection is based on metadata stored in the bytecode image.

There is no reason why we can’t store type information within C++ native executables and libraries as well. In order to do that you would have to build a type analyzer, presumably based on the parser prototype, that would retrieve this information from source code, then package that information for storage in the compiled code. You would probably inherit from a reflection base class that provided the necessary mechanics for storage and retrieval.

Requirements:

Design a mechanism for storing type information within compiled code. Two ways to do that come to mind immediately: 1) simply create data structures to hold the information and pack the type and method information as constants in those structures, and 2) store the information as windows resources.

You will find a reflection prototype in Handouts\CSE687\code\reflectionproto that uses the first method. You will find a demo of storing information as resources in Handouts\CSE775\code\resources.

Specifically, your reflection library:
1. Shall provide for storage of type names, method names, and parameter types and names.

2. Shall provide a query mechanism to inquire about types and methods.

3. Shall provide for the creation of an instance of any of the discovered types – enter the object factory.

You might build a test harness to show how useful your reflection library can be.

