
Standard Template Library 1

CSE687 - Object Oriented Design

Standard Template Library

Jim Fawcett
Spring 2009

Standard Template Library 2

Some Definitions

 vector, string, deque, and list are standard sequence containers.

 set, multiset, map, and multimap are standard associative containers.

 Iterators:

– Input iterators are read only – each iterated element may be read only once.

– Output iterators are write-only – each iterated element may be written only once.

– Forward iterators can read or write an element repeatedly. They don’t support
operator--() so they can only move forward.

– Bidirectional iterators are like forward iterators except that they support moving
in both directions with operator++() and operator--().

– Random access iterators are bidirectional iterators that add the capability to do
iterator arithmetic – that is they support *(it + n);

 Any class that overloads the function call operator - operator() - is a functor
class, and we refer to its instances as functors or function objects.

Standard Template Library 3

Computational Complexity

 Constant time refers to operations that do not depend on the
number of elements stored in a container.

– Inserting an element into a list is a constant time operation.
Finding the location at which to insert is a linear time operation.

 Logarithmic time refers to operations that need time to run that
grows as the logarithm of the number of elements in the
container.

– A logarithmic operation on a container with 1,000,000 takes 3
times as long to complete as that operation of a container with
1,000 elements.

 Linear time refers to operations that require computation time
that grows proportionally to the number of elements in the
container.

Standard Template Library 4

STL Supports Guaranteed Complexity
for Container Operations

 Vectors and Deques:
– Insertion is a linear time operation.

– Accessing a known location is constant time.

– Searching an unsorted vector or deque is a linear time operation.

– Searching a sorted vector or deque should be a logarithmic time
operation (use binary_search algorithm to ensure that it is).

 Lists:
– Insertion is a constant time operation.

– Accessing a known location and searching, whether sorted or not,
is linear time, with the exception of the end points, which can be
accessed in constant time.

 Sets and Maps:
– Insertion and accessing are logarithmic time operations.

– Searching should be a logarithmic time operation (use member
function find, etc., to ensure that it is).

 Unordered_set and Unordered_map

– Lookup, insertion, and deletion are constant time operations

Standard Template Library 5

STL Supports Guaranteed Complexity
for Container Operations

Standard Template Library 6

STL Header Files for Containers
<deque> deque<T> Double ended queue, fast insert/remove from

either end, indexable

<list> list<T> Doubly linked list, fast insert/erase at

current location and either end, slow

traversal

<map> map<key, value>

multimap<key,value>

Associates values with sorted list of keys,

fast insert/remove, fast access with index,

fast binary search. Map is indexable

<queue> queue<T>

priority_queue<T>

First in, first out queue

Efficient insertion, removal of largest

<set> set<T>

multiset<T>

Set of sorted keys, fast find/insert/remove

<stack> stack<T> Last in, first out queue

<vector> vector<T> Slow insert/delete except at end, fast

access with index. Slow find.

STL Header Files for Containers

Standard Template Library 7

 <array> array<T> Fixed array of elements of type T

<unordered_set> unordered_set<T> Unordered collection, constant time lookup,

insertion, removal

<unordered_map> unordered_map<k,v> Unordered key/value collection, constant

time lookup, insertion, removal

Standard Template Library 8

Other STL Header Files

<algorithm> find, find_if, search,

copy, fill, count,

generate, min, sort, swap,

transform, …

applied to a container over

an iteration range

<functional> bind1st, bind2nd, divides,

equal_to, greater, less,

negate, minus, multiplies,

plus, …

passed to an algorithm

instead of using function

pointers.

<iterator> operator+, operator=,

operator++, operator--,

operator*, operator->, …

defines current location,

range of action on a

container or stream

<memory> allocator, operator==,

operator!=, operator=,

operator delete,

operator new

supports redefinition of

allocation policy for

containers

<numeric> Accumulate, product,

partial sum,

adjacent difference

applied to a container over

an iteration range

<utility> pair, operator!=,

operator<=, operator>,

operator>=

pair class and global

operators

Standard Template Library 9

STL Iterators

Input iterator Read only, move forward istream_iterator

Output iterator Write only, move forward ostream_iterator
inserter
front_inserter
back_inserter

Forward iterator Read and write
Forward moving

Bidirectional iterator Read and write
Forward and backward

list
set, multiset
map, multimap

Random access iterator Read and write
Random access

C++ pointers
vector
deque

Standard Template Library 10

STL Functions

 unary functions:

– take single argument of the container’s value_type

// unary function

template <typename T>

void printElem(T val) {

cout << “value is: “ << val << endl;

}

void main() {

list< int > li;

:

// unary function used in algorithm

for_each(li.begin(), li.end(), printElem);

}

Standard Template Library 11

STL Functions

 predicate:

– function taking a template type and returning bool

// predicate

template <class T>

bool ispositive(T val) { return (val > 0); }

void main() {

list<int> li;

:

// return location of first positive value

list<int>::iterator iterFound =

find_if(li.begin(), li.end(), ispositive<int>);

}

Standard Template Library 12

STL Function Objects

 Function objects:

– class with constructor and single member operator()

template <class T> class myFunc {

public:

myFunc(/*arguments save needed state info */) { }

T operator()(/* args for func obj */) {

/*

call some useful function with saved

state info and args as its parameters

*/

}

private:

/* state info here */

}

Standard Template Library 13

unary_function type

 The unary_function type serves as a base class for functors that
will be used in adapters like not1. It supplies traits needed by
the adaptors.

An example use follows on the next slide

#include <functional>

template <class Arg, class Result>

struct unary_function{

typedef Arg argument_type;

typedef Result result_type;

};

Standard Template Library 14

STL Function Adapters

 negators:
– not1 takes unary_function predicate and negates it
– not2 takes binary_function predicate and negates it

// predicate

template <class T>
class positive : public unary_function
{
public:
bool operator()(T val) const { return (val > 0); }

};

void main() {
list<int> li;
:

// return location of first positive value
list<int>::iterator iter =

find_if(li.begin(), li.end(), positive);

// return location of first non-positive value
iter = find_if(li.begin(), li.end(), not1(positive));

}

Standard Template Library 15

binary_function type

 The binary_function type provides traits needed by binary
function adapters, as illustrated on the next slide.

#include <functional>

template <class Arg1, class Arg2, class Result>

struct binary_function

{

typedef Arg1 first_argument_type;

typedef Arg2 second_argument_type;

typedef Result result_type;

};

Standard Template Library 16

STL Function Adapters

 binders:

– bind1 binds value to first argument of a binary_function

– bind2 binds value to second argument of binary_function

void main() {

list<int> li;

:

// return location of first value greater than 5

list<int>::iterator =

find_if(li.begin(), li.end(), bind2(greater<int>(),5));

}

Standard Template Library 17

STL Function Objects

arithmetic functions
plus

minus

times

divides

modulus

negate

addition: x + y

subtraction: x - y

multiplication: x * y

division: x / y

remainder: x % y

negation: -x

comparison functions
equal_to

not_equal_to

greater

less

greater_equal

less_equal

equality test: x == y

inequality test: x != y

greater-than comparison: x > y

less-than comparison: x < y

greater or equal: x >= y

less or equal: x <= y

logical functions
logical_and

logical_or

logical_not

logical conjunction: x && y

logical disjunction: x || y

logical negation: !x

Standard Template Library 18

Algorithms by Type

compare

equal, lexicographical_compare, mismatch

copy

copy, copy_backward

heap

operations

make_heap, pop_heap, push_heap, sort_heap

initialization

fill, fill_n, generate, generate_n

merge

inplace_merge, merge

min and max

max, max_element, min, min_element

permutations

next_permutation, prev_permutation

remove

remove, remove_copy, remove_copy_if, remove_if,

unique, unique_copy

Standard Template Library 19

Algorithms by Type (continued)

scanning

accumulate, for_each

Search

adjacent_find, count, count_if, find, find_if,

find_first_of, search

set operations

includes, set_difference, set_intersection,

set_symmetric_difference, set_union

sorting

nth_element, partial_sort, partial_sort_copy, sort,

stable_sort

swap operations

swap, swap_ranges

transformations

partition, random_shuffle, replace, replace_copy,

replace_copy_if, replace_if, reverse, reverse_copy,

rotate, rotate_copy, stable_partiton, transform

Standard Template Library 20

End of Presentation

