
Chapter 12
Object Oriented Design Principles

Jim Fawcett

Spring 2015

based on a series of articles by

Robert Martin, www.objectmentor.com/publications

CSE687 – Object Oriented Design Class Notes

Chapter - 12 2

Contents

 Open/Closed Principle

 Liskov Substitution Principle

 Dependency Inversion Principle

 Interface Segregation Principle

 Granularity Issue

 Reuse/Release Equivalence Principle

 Common Reuse Principle

 Common Closure Principle

 Acyclic Dependencies Principle

 Stability Issue

 Stable Dependencies Principle

 Stable Abstractions Principle

Chapter - 12 3

Bad Designs

 What makes a design bad? Robert Martin suggests:

– Rigidity

It is hard to change because every change affects too many other

parts of the system.

– Fragility

When you make a change, unexpected parts of the system break.

– Immobility

It is hard to reuse in another application because it cannot be

disentangled from the current application.

 The design principles discussed in the following are all aimed at

preventing “bad” design.

The Open/Closed Principle

based on an article of that title by Robert Martin

Chapter - 12 5

Statement of Principle

 Software entities (classes, packages, functions) should be open for

extension, but closed for modification.

 Definitions

– Open:

A component is open if it is available for extension:

• add data members and operations through inheritance.

• Create a new policy template argument for a class that accepts policies.

– Closed:

A component is closed if it is available for use by other components but

may not, itself, be changed, e.g., by putting it under configuration

management, allowing read only access.

Chapter - 12 6

Origin and Motivation

 The open/closed principle was stated and discussed as one of the

fundamental object oriented principles by Bertrand Meyer in:

Object Oriented Software Construction, Prentice-Hall, 1988.

 In large complex systems, changes occur often, due to:

– changing requirements

– latent errors

– performance issues

Making changes can often result in cascades of changes to other,

dependent components.

 The open/closed principle says that components should never change,

only be extended to meet changing requirements.

Chapter - 12 7

The Role of Abstraction

 It is very difficult to build components that don’t change, but only

support extension:

– Latent errors force change. We can’t fix incorrect operation by extension.

The component itself must be fixed.

– Performance failures force change. When performance needs are not met

we are forced to change the implementation to perform better, usually by

changing a computational algorithm or data structure.

 What we can do is represent the component by an abstract interface,

e.g., an abstract class, which provides a protocol that derived classes

implement.

Chapter - 12 8

Abstract Interfaces

 When we program to abstract interfaces:

– changes to derived classes which implement the interface will not break any

client code, and may not even require recompilation of some clients.

– What we can’t do is change the interface definition. Any change here may

force changes on most or all of its clients.

 Abstract interfaces directly support the Open/Closed Principle. They

must be extended, but are closed to modification. Since they have no

implementation they have no latent errors to fix and no performance

issues.

Chapter - 12 9

Abstract Interfaces

Component 1 Component 2

interface A

interface B

Chapter - 12 10

A Real Example

 Recall the catalog program we’ve discussed several times in class. Its

class diagram is shown on the next page.

– Since we want to reuse the navig class in many programs without change it is

important that the defProc class satisfy the Open/Closed Principle. If defProc

doesn’t change then navig can stay the same.

– But, since navig can know nothing of the application details of a program

designed after it was released, we depend on extensions of defProc to supply

the needed application program processing.

– defProc is not an abstract base class in strict C++ terms since it provides

default processing. However, it behaves like an abstract class in that it

provides a protocol for navig to use and expects derived classes to override

its virtual methods.

Chapter - 12 11

Catalog Prog.
NAV Module

CATALOG Module

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet smaller

fileInfo

catalog::main()

Attribute:

 virtual void dirsProc(const string &dir);

 virtual void fileProc(const fileInfo &fi);

defProc

wildcards

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a dir,

extract file information

define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing

STL containers

store a set of directories and their associated files

Note that

catalog::main()

and navig

actually refer to

a userProc

object through

defProc

pointers

Chapter - 12 12

A Less Radical Approach

 The open/closed principle says that components should never change, only be

extended to meet changing requirements.

 Robert Martin, in his paper “The Open-Closed Principle” does not propose quite

so drastic a design paradigm. He suggests:

– Make all member data private, e.g., no public, no protected data.

– No global data - ever.

– No use of RTTI

– Use polymorphism and/or templates to provide extensions

 Few would suggest that 100 percent of every design should satisfy the

open/closed principle:

– An effective design may use many components which do satisfy the principle but also

include program “glue”.

– The glue is used to bind the components into a working program, without much regard

to the open/closedness of the glue part.

Chapter - 12 13

Summary Table of Contents

 The Open/Closed Principle states that:

– well designed code can be extended without modification

– new features are added by adding new code rather than changing already

working code

 Software that is designed to be reusable, maintainable, and robust

must be extensible without requiring change.

– We do this with abstract classes

– algorithms make use of virtual functions

– they are extended by derived classes that implement the virtual functions in

different ways

The Liskov Substitution Principle

based on an article of that title by Robert Martin

Ref: Barbara Liskov, “Data Abstraction and Hierarchy”,

SIGPLAN Notices, 23, 5 (May 1988)

Chapter - 12 15

Statement of Principle

 Functions that use pointers or references statically typed to some base

class must be able to use objects of classes derived from the base

through those pointers or references without any knowledge

specialized to the derived classes.

 We have seen how powerful this principle is in helping us design

loosely coupled systems. The base class provides a protocol for clients

to use regardless of what derived class is receiving the client’s

messages.

Chapter - 12 16

Substitution Failures

 A hierarchy of classes will fail to satisfy this principle if any of the

following are true:

– The base class does not make its destructor virtual

– Derived classes redefine non-virtual member functions of the base

– Virtual functions are overloaded or given default parameters

– Clients use dynamic_cast to access derived class extensions to base class

protocol through base class pointers or references.

Chapter - 12 17

More Subtle Failures

 Martin points out that substitution failures can happen for more subtle

reasons.

– Deriving a square from a rectangle implies that one of the state variables,

height or width, is redundant. Clients of rectangle need to know they are

working with square if they take advantage of square’s property - height =

width.

 The Liskov Substitution Principle implies that “is-a” relationships are

based on behavior, not some intrinsic mental model.

– The behavior of a square - change its height and you change its width -

does not apply to rectangles and so square objects are not rectangle

objects.

Chapter - 12 18

A Real Example

 Consider again the catalog program. It is crutial for the nav module’s

reuse that the navig class uses no knowledge of the application

program.

– nav is a very useful facility and we want to use it in many designs, but only

maintain one component.

– It is critically important that the navig class depends only on its defProc

interface and not on implementation details of the catalog data structure.

– If navig is to remain unchanged in various applications it must be able to

use its base class defProc pointer with no knowledge of the specifics of the

catalog’s userProc classes, e.g., navig’s use of the defProc hierarchy satisfies

the Liskov Substitution Principle.

Chapter - 12 19

Catalog Prog.
NAV Module

CATALOG Module

navig

userProc typedef map<string,fileSet> dirMap

typedef set<fileInfo,smallert> fileSet smaller

fileInfo

catalog::main()

Attribute:

 virtual void dirsProc(const string &dir);

 virtual void fileProc(const fileInfo &fi);

defProc

wildcards

program executive

navigate directory

subtree

filter filenames

with wildcards

find files in a dir,

extract file information

define ordering

for fileInfo objects

default processing of

files and directories

while navigating

application specific

file/dir processing

STL containers

store a set of directories and their associated files

Note that

catalog::main()

and navig

actually refer to

a userProc

object through

defProc

pointers

Chapter - 12 20

Summary Table of Contents

 The Liskov Substitution Principle states that every function that operates on a

base class reference or pointer should be able to operate successfully when a

derived class object is substituted for the base object. In doing this it should

need no information about the derived object, or even know that the object is

not a base class instance.

 To ensure a design supports the Liskov Substitution Principle:

– derived objects must not expect users to obey pre-conditions stronger than expected

for the base class

• their pre-conditions must be no stronger

– derived objects must satisfy all of the post-conditions satisfied by the base class

• their post-conditions must be no weaker

– base classes must provide virtual functions including a virtual destructor.

Dependency Inversion Principle

based on an article of that title by Robert Martin

Chapter - 12 22

Statement of Principle

 Dependency Inversion Principle:

– High level components should not depend upon low level components.

Instead, both should depend on abstractions.

– Abstractions should not depend upon details. Details should depend upon

the abstractions.

 We all can agree that complex systems need to be structured into

layers. But if that is not done carefully the top levels tend to depend

on the lower levels.

– On the next page we show a “standard” architecture that appears to be

practical and useful.

– Unfortunately it has the ugly property that policy layer depends on

implementation layer which depends on utility layer, e.g., dependencies all

the way down.

Chapter - 12 23

A Layered Architecture

Policy Layer

Implementation Layer

Utility Layer

Chapter - 12 24

Using Abstract Layers

 The diagram on the next page shows a “better” model, e.g., less rigid,

less fragile, more mobile.

– Each layer is separated by an abstract interface.

• policy depends, not on the implementation, but only on its abstract

interface.

• implementation depends only on its interface and on the interface

defined by utility

• utility depends only on its published interface

– Policy is unaffected by any changes to implementation and utility and

implementation is unaffected by changes to utility.

• as long as we transport the interface along with its component each of

the three components is reusable and robust

Chapter - 12 25

Layers Using Abstraction

Policy Layer

Implementation Layer

Utility Layer

Abstract Implementation
Interface

Abstract Utility
Interface

Chapter - 12 26

Decouple using Object Factories

Policy Layer

Implementation Layer

Utility Layer

Implementation

Interface

Utility

Interface

implementation

factory

Utility factory

Chapter - 12 27

A Real Example

 The dups program, discussed earlier in class illustrates the dependency

inversion principle. In fact it has the “layered abstraction” structure

shown on the previous page. Its function is to find all files with

duplicate names on some directory subtree.

– Nav module communicates only to the abstract defProc interface. Nav is

where the policy for searching is established.

– Dups fileStore implementation depends on the STL utilities, but only on

their published “abstract” interfaces. The designer of the fileStore module

can substitute different allocator objects in the STL containers or, if hash-

based set and map containers were available (there are some open-

software implementations available that adhere to the STL interfaces) they

could be used without affecting the rest of the design in any way except to

make it faster.

Chapter - 12 28

Operation:

 navig(defProc &dp);

 ~navig();

 void start(std::string dir);

Attribute:

 defProc &dp;

 fileInfo fi;

 std::string userDir;

 void walk(const std::string &dir);

navig

Operation:

 virtual ~defProc();

 virtual void dirsProc(const std::string &dirName);

 virtual void fileProc(const fileInfo &fi);

defProc

Operation:

 virtual void dirsProc(const std::string &dirName);

 virtual void fileProc(const fileInfo &fi);

 void showFiles();

 string& startPath();

Attribute:

 fileStor fs;

 string currDir;

 string startDir;

dupsProc

Operation:

 fileStor();

 fileStor& add(const string &file, const string &path);

 void display();

 void showFiles();

 void showPaths();

 long int files();

 long int paths();

 fileMap& FileMap();

 pathSet& PathSet();

Attribute:

 typedef set<string> pathSet;

 typedef list<pathSet::iterator> itrList;

 typedef map<string, itrList> fileMap;

 fileMap _files;

 pathSet _paths;

fileStor

navExec

Operation:

 fileInfo();

 fileInfo(const fileInfo &fi);

 fileInfo(const std::string &path);

 ~fileInfo();

 fileInfo& operator=(const fileInfo &fi);

 bool firstFile(const std::string &filePat);

 bool nextFile();

 void closeFile();

 std::string name() const;

 unsigned long int size() const;

 std::string date() const;

 std::string time() const;

 std::string attributes() const;

 bool operator<(const fileInfo &fi) const;

 bool operator==(const fileInfo &fi) const;

 bool earlier(const fileInfo &fi) const;

 bool later(const fileInfo &fi) const;

 bool smaller(const fileInfo &fi) const;

 bool larger(const fileInfo &fi) const;

 bool isArchive() const;

 bool isCompressed() const;

 :

Attribute:

 WIN32_FIND_DATA data;

 HANDLE _handle;

 std::string _origPath;

 SYSTEMTIME DateAndTime() const;

fileInfo

DUPS Program

Chapter - 12 29

Summary Table of Contents

 The Dependency Inversion Principle states that components that

encapsulate high level policy should not depend on components that

implement details.

 Instead, both kinds of components should depend on abstractions.

Interface Segregation Principle

based on an article of that name by Robert Martin

Chapter - 12 31

Statement of Principle

 Clients should not be forced to depend upon interfaces they do not

use.

– this applies to clients of the public interface of a class

– it also applies to derived classes

 We create interfaces to satisfy the needs of clients. When a

component has several different clients it is tempting to provide a large

interface that satisfies the needs of all clients.

 It is much better design to have the component support multiple

interfaces, one appropriate for each client.

– Otherwise, if we have to change an interface we affect even those clients

that do not use the features we change.

Chapter - 12 32

Motivation

 The earlier principles say that we should never change an interface,

and that one way to help keep interfaces immutable is to make them

abstract.

 However, the reality is that not all interfaces can, or even should be

abstract. When we have such a situation it is important to keep the

impact of changing an interface localized.

 The intent of this principle is that we push interfaces down the

decomposition hierarchy to the clients that really need them.

Chapter - 12 33

An Example

 The diagram on next page shows a class hierarchy designed to support

implementation of electronically secured doors. The base door class

provides support for timed doors, key code doors, and remote control

doors.

– Base door class is doing too much. Here it must supply default behaviors

for each of the three types of doors which do nothing since each behavior is

needed by only one of the derived classes.

– The problem is that any change in one behavior will cause recompilation of

all derived classes. Suppose we ship a revised door component in the form

of a new dynamic link library. Every client will have to be recompiled. They

can’t just use the new interface.

– Even making base door class abstract, which avoids some of these

problems, clients still have to deal with a complicated interface.

Chapter - 12 34

Fat Interfaces

timer timer client

set

timeOut

door

key code door timed door
remote control

door

Chapter - 12 35

Segregating Interfaces

 The fat door interface can be slimmed down by using multiple

inheritance, as shown in the next diagram.

– The door base class now only provides those behaviors common to all

doors.

– Each of the specialized activities is segregated into its own base class, e.g.,

key code base and remote control base

 Now the door class provides only the behaviors for doors and doesn’t

need to provide any null behaviors.

 When an interface changes, only the clients that use the interface will

need to be recompiled.

Chapter - 12 36

Putting Door Interface on a Diet

timer timer client

set

timeOut

timed door

door

remote control

door

door
remote

controls

Chapter - 12 37

Summary Table of Contents

 The Interface Segregation Principle states that:

– fat interfaces lead to inadvertent couplings between clients that ought to be

isolated

– fat interfaces can be segregated, through multiple inheritance, into abstract

base classes that break unwanted coupling between components.

– clients simply mix-in the appropriate interfaces for their activities.

The Granularity Issue

based on an article by Robert Martin

Chapter - 12 39

Partitioning into Packages

 As software becomes large and complex we need to enforce some form

of partitioning that is larger than the class and smaller than a program.

 Packages represent a grouping of classes into a cohesive structure that

represents a single high-level abstraction.

 Packages allow us to reason about and reuse software on a large scale

without being swamped with detail.

Chapter - 12 40

Reuse/Release Equivalence Principle

 The granule of reuse is the granule of release. Only components that are

released through a tracking system can be effectively reused.

– We reuse code if, and only if, to use you don’t have to look at source code, only

its public header files. You need only link with static librar-ies or include

dynamic link libraries.

– Whenever these libraries are fixed or enhanced we receive new versions which

we install at our convenience.

 This granule is the package.

– Is a package a module? Not necessarily. A package can be one or more

modules - the important thing is that for tracking they are treated as a unit.

Chapter - 12 41

Common Reuse Principle

 The classes in a package are reused together. If you reuse one of the

classes in a package, you reuse them all.

– Generally, reusable classes collaborate with other classes that are part of

the reusable abstraction. This principle states that these classes belong in a

package.

– When a package is reused, a dependency is created on the whole package.

– Every time the package is released the applications that reuse it must be re-

evaluated and re-released.

– We want to make sure that when we depend on a package we depend on

most of the classes in the package, otherwise we are re-evaluating and re-

distributing more than is necessary and wasting effort (remember “Small is

Beautiful”).

Chapter - 12 42

Common Closure Principle

 The classes in a package should be closed together against the same

kinds of changes. A change that effects a package affects all the

classes in that package.

– If code in an application must change (and that happens constantly during

development) we want the changes to occur entirely in one package.

– If we fix a latent error or performance bug we want to fix and re-release

only one package.

– The Common Closure Principle is an attempt to gather together in one place

all the classes that are likely to change for the same reasons.

– The principle groups together classes which cannot be closed against

certain types of changes, e.g., based on requirements or platform.

Chapter - 12 43

Acyclic Dependencies Principle

 The dependency graph describing relationships between packages in a

program must contain no cycles.

– The issue here is to ensure there are no mutual dependencies.

– The package is a unit of work assigned to an individual or team.

– When a package is released, it is put under configuration control and made

available for others to use.

– Other teams can decide whether or not to immediately adopt the new

release, since adopting a new release may break their code.

– Thus changes made do not need to have an immediate effect on another

team.

– To make this sensible process work there can be no mutual dependencies

between packages.

Chapter - 12 44

Build Map

 The package dependency graph is a build map.

– lowest level packages are built first

– then the packages that depend of them are build

– this process continues until the build is complete

 Packages may or may not have a structure that matches the activity

decomposition in the program.

– that is why packages are not the same as modules

– a program is described by its activities

– activities are designed and implemented with modules

– modules are partitioned into packages to isolate mutual dependencies to

within a single package.

– packages are the unit of assigned work and release

Chapter - 12 45

Summary Table of Contents

 The Granularity Issue is one of implementation more than design.

There are three important principles associated with a system’s

granularity:

– The Reuse/Release Equivalence Principle - packages are the unit of release.

– The Common Reuse Principle - classes in a package are reused together.

– The Common Closure Principle - classes in a package should be closed

together against the same kinds of changes.

– The Acyclic Dependencies Principle - the dependencies between packages

must have no cycles.

The Stability Issue

based on an article by Robert Martin

Chapter - 12 47

Volatile & Nonvolatile Dependencies

 Volatility describes how frequently a component changes.

– if we say a component is volatile we mean that it is likely to change,

perhaps due to changing requirements, latent errors, performance issues,

or changes of platform

– if we say a component is non-volatile we mean that it is very unlikely to

change.

 Stability measures how volatile the component is:

– The fewer things a component depends upon the more stable it is. An

abstract interface is highly stable.

– The harder it is to change the more stable it is. A common utility that many

components already use is highly stable.

Chapter - 12 48

Independence and Responsibility

 Independent classes are classes which do not depend on anything else.

– Abstract classes are nearly independent - they do depend on the needs of

their clients.

– Independent classes are stable. Nothing drives their change.

 Responsible classes are classes that are heavily depended upon.

– A common utility like the standard C++ STL is responsible.

– Responsible classes are stable. They are too hard to change because a

change implies many related changes in clients.

 The most stable classes are both Independent and Responsible.

Chapter - 12 49

Stable Dependencies Principle

 Every complex program must be layered to make its implementation

manageable. We organize these layers into packages. This implies

dependency relationships between the packages that make up a

program.

 The Stable Dependencies Principle states that:

– the dependencies between packages in a design should be in the direction

of stability of the packages

– a package should only depend on packages that are more stable than it is

Chapter - 12 50

Good Volatility

 Some volatility is necessary in a design if it is to be maintained.

– We encourage volatility with the Open/Closed Principle.

– By using this principle we design packages to support certain kinds of

changes.

 Any package that is difficult to change should not depend on a package

that we expect to be volatile.

Chapter - 12 51

Positional Stability
Measuring Dependency

 Positional stability is based on the number of dependencies that enter and

leave a package:

– Afferent Couplings:

Ca = number of classes outside package depending on classes inside package

– Efferent Couplings:

Ce = number of classes inside package that depend on outside classes

– Instability:

I = Ce/(Ca + Ce)

I  [0,1], I=0  maximum stability, I=1  minimum stability

 If we are careful only to #include files that we depend on and we isolate

one class per file, then we can compute I by counting includes.

Chapter - 12 52

Stable Abstractions Principle

 The abstraction of a package should be proportional to its stability:

– Packages that are maximally stable should be maximally abstract.

– Unstable packages should be concrete.

 If a package is to be stable it should expose abstract interfaces so that

it can be extended.

– stable packages that are extensible are flexible and do not constrain the

design

 The Stable Abstractions Principle combined with the Stable

Dependencies Principle amount to a Dependency Inversion Principle for

packages.

Chapter - 12 53

Measuring Abstraction

 A measure of abstraction is the ratio of the number of abstract classes

to total number of classes:

A = number of abstract classes / total number of classes

A  [0,1].

A = 1  maximum abstraction, A = 0  minimum abstraction

Chapter - 12 54

Stable Abstractions Principle

stable unstableInstability- I

concrete

abstract

a
b

s
tr

a
c

ti
o

n
 -

 A

0 1

0

1

abstraction balanced w
ith stability

Chapter - 12 55

Distance Metric

 The distance of a design from the balanced state is measured by:

D = A + I - 1

This is the perpendicular distance of the design from the balanced line

on the previous chart.

Chapter - 12 56

Summary Table of Contents

 The Stability Issue is concerned with volatility of components.

– we require stability of responsible components

– we expect stability of independent components

 Not all instability is bad.

– A system has to be mutable in order that latent errors and performance

failures can be fixed.

– A system has to be mutable in order to satisfy changing or new

requirements

 A good design develops packages that maintain a balance between

abstractness and instability as measured by D.

End of Presentation

