

Abstract

Today, software is found in almost all systems, vehicles, communication devices, medical
equipments, and entertainment, for example. The size and complexity of these systems has grown
continuously over the last forty years — the time span for modern computing. The latest release of
the Windows operating system, called Vista, is expected to be more than fifty million lines of code,
about 40% bigger than the previous version.

Some of the reasons for this are numerous feature demands and the need to support
multiple platforms, and need for compatibility with legacy software and hardware. Each line of
code, in these large systems, requires perhaps several technical decisions, often, but not always
simple. The sheer volume of this decision making process is daunting. No single human can fully
understand a system of high complexity. To help ameliorate this problem, systems are decomposed
into subsystems, libraries, modules, and classes. Most of these components have
interdependencies, in order to provide services, one to another. However, in systems of great size,
the dependencies often become a dense web of relationships. It is exactly this problem on which
we focus in this research.

We propose that static dependency structure is an important element to understand the state
of large software system. We conduct various analyses using well-known existing open-source,
commercial and expert developed projects, including our own projects to evaluate the overall
effectiveness of our approaches. We detect structural problems in large software development
projects, and present a structure metric to rank software files according to their risk contribution to
the software system. Additionally, we present a model that indexes software components
according to their potential for reuse. We design and conduct experiment to investigate the impact
of change in one file on other files. Furthermore, we provide tools needed to support analysis,
project visualization and monitoring. Finally, we investigate corrective procedures and simulate

their application, monitoring improvements in observed defects.

STRUCTURAL MODELS FOR LARGE SOFTWARE SYSTEMS

By

MURAT KAHRAMAN GUNGOR

B.S. Sakarya University, 1997
M.S. Syracuse University, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer and Information Science

in the Graduate School of Syracuse University

July 2006

Approved:

Advisor Professor James W. Fawcett

Date

© Copyright 2006 Murat Kahraman Giingor

All rights reserved

The Graduate School
Syracuse University

We, the members of the Oral Examination Committee,

hereby register our concurrence that

Murat Kahraman Giingor

satisfactorily defended his dissertation on

July 2006

Examiners:
Marek Podgorny
(Please sign)
Can Isik
(Please sign)
Daniel Pease
(Please sign)
Ehat Ercanl
(Please sign)
Advisor:

James W. Fawcett

(Please sign)
Oral Exam Chair:

Yildiray Yildirim

(Please sign)

Contents

ADSEIACT ..ttt h bt e h ettt e bt e bt sh bttt e bt e b e nbeenaees 1
(01031 11S) 1L RO OO OO SOUP TSP OPPUPRPPRRRPN v
LISE OF TADIES ...eeiiiiieetie ettt ettt et et e e et e e e aseeeabeeeaseeenaeeensneeeenas viii
LSt OF FIGUIES .ttt ettt ettt ettt e b e s heeeaa e et e eabe e bt enbeenneeeneas ix
Chapter 1 INtrodUCHION ...cueeeeeeiencerenserossancssneissssnsssnssssssssssnsessssssssssssssssssssssssssssssasssssssssssssssasssssassses 1
L1, IMIOTIVALION ...ttt ettt ettt ettt e et e e et e e e aaeeeaseesaaeeesaseesabeeensseeasseeensasennseesnseeanes 2
1.2. ProbIem STateImMENTcc.eeiuiiiiiiie ettt ettt ettt sttt et e bt e bt e bt sbeeeneeenneeneean 3
1.3. Other’s Statements Relating to Problems in Large Development Software.c..cceeveennenne 6
1.4. Goals and AcCOMPIISHMENLS........c.ieriieriierieriecie ettt ere e e be e e staesseessaeenbeenseensees 9
1.5. Method STatemENTooiuiiiiiiieciii ettt ettt ettt e e sab e e eteeeeaseeeareeesseeeaneeas 13
1.5.1 Type Based Dependency ANALYSISccvevierieerierieeiieieereesieesieeseeesieeesveesneeseesseesssesens 13
1.5.2 Qualitative and Quantitative Measures of System Quality...........cceeevevvieeiiierieeneerienenenne, 14
1.5.3 Finding Mutual Dependencies.ccoevuieriieriienienie ettt 15
1.5.4 Visualizers Providing Comprehensible VIEW..........cccooveviiiiiiiiiieiiieeieeeiee e 16
1.5.5 Monitoring Development Manuallycccocveviiiiiiiiiiieiieienee e 16
1.5.6 Sample Analysis: Partial Analysis of Dependency Analyzer...........cccocevviieiienieniennnnne, 17
1.6. Results and Contributions in Brief..........cocoiiiiiiiiiiii e 20
1.7, LAtETatuIe REVIEW ... eeueiiiiiieiiitieie ettt ettt ettt et et e et s eeeeneeneas 21
1.7.1 Dependency AIZOTItRMSccviviiiieiiieie ettt sae e esae e esbe e e e nseenees 21
1.7.2 Refactoring SOftWare SYStEIMS.ceviiiuieriieriieiieriierie ettt sttt e sbe e 24
1.7.3 Analyzing Quality of SOUICE Filesc.ooovuiiiiiiiiiiiciieee e 24
1.7.4 Internal Metrics OF FIlesccoiiiiiiriiiieieiee e 27
1.7.5 Visualizing Software PIOJECScouiiiiiiriiiiiie ettt 28
Chapter 2 Analysis of System Structure 30
2.1 BASIC MOACIS ...ttt ettt ettt et ee e nee 30
2.1.1 Problem: Large Fan-0UL...........cccccuiiiiiiiiiriieiiesie ettt eteesteessaesanesnne e 31
2.1.2 Problem: Large Strong COMPONENLSccveerrieeiirerrieerireesrieeieeesveeeseeessseesseeessseesseeas 32
2.1.3 Problem: Large Fan-Incccccoeciiiiiiiiiiicic ettt esaaeenne e 34
2.1.4 Desirable Dependency SIUCLUIEcc.veriierierierieeie et ereeseesiee e ereereeseesseessaessaesnneens 35
2.2. Dependency Analysis Tool, DepANal..........ccoooiiiiiiiiiiiiiiet e 37
2.3, ANALYSIS APPIICATIONS .ovviiiiiiiiiiieeiieeetie ettt e ette et e st e et e e sebeeebeeestbeeesbeeesaseessseeensseessseens 42
2.3. 1 DEPANAL...c.iiiiiieieeie ettt ettt st e e et et e st et eetbe e b e enbeentaessaenraeenaean 43
2.3.2 Strong Component ANALYZET:cccuieiieriieriieiie ettt ettt e saeesiae e ens 46
2.3.3 Size and Complexity ANALYZEI:c.eioviieeiieeiie ettt et sbeeeeaeeeasee s 47
2.3, 4 DIEPVICW ..ecuiiiiieiiie et ettt ettt et e vt et e e st e e teesteesbbessseesbeasseesseessassseasseesseesseesaessaessaensaeans 47
2.3.5 Dependency Analyzer User INterface.........cccvevieviieiieeiiieiiesiesiece e 49
2.3.60 CRANGE LOZEETeeeuieeiieieeiee ettt ettt et ettt et e bt e see e nte e bt enbeenteesaeesneesnneens 50
2.3.7 MATIX MAKET ...ttt ettt ettt ettt st e e eneeneens 51
2.4, SUIMIMATY ...eveeiiieeiie et et ettt e ettt e e bt e e e atteentee e saeeeaseeeseeesnseeenseeeenseeenseeesseesnseeennsaeanseesnsaeesnseenn 53
Chapter 3 Empirical Study 54
3.1. Empirical Study of the Open-Source Mozilla Project.........c.ccoccveeviieniiiieniiesiieecie e 54

v

3.1.1 Mozilla Data COIECTION ...c.eeiiiieiieiieiieieie ettt ee e 55
3.1.2 Fan-in Data Extracted from Mozilla GKGFX Librarycccccevvveviieniienireiieieeeeeene 57
3.1.3 Fan-out Data Extracted from the Mozilla GKGFX Libraryccccccevevieiieiienienienne 58
3.1.4 Strong Components in the Mozilla GKGFX Libraryccccoceevvieviienieeieeieeieesieeeenn 59
3.1.5 Topologically Sorted Dependencies for Mozilla’s GKGFX Libraryccccccceevenennenne. 65
3.2 SUMIMIATY ..ottt ettt ettt e e bt e sab e e ettt e bt e e s bt e e bt e e sateesabteesabeesnbeeenbteesnbeeenns 72
Chapter 4 Software Product Risk Model 73
T 2 1] 1LY (0 <) SRS PRRR SRR 74
4.1.1 Dependency StIUCLUTEccueeierireiieiieiiereesteesteereeteeseesseesssessaessseesseesseesseesseessaessseans 75
4.1.2 File IMPOTLANCE.....oeeiiiieiiieiiieeiie ettt e eiee et e et e et e e beeetaeeesbeeesbeeeseseeessaeessseesssesensseenaseeas 76
4.1.3 Brief Discussion of Alpha Value Calculationcccveevievieriiiiiiiieieeeesieeeee e 78
4.1.4 File TeStabIlity, T ...cveecvieeiieeiieeieeie ettt ettt e sae e et eete et essaessaessseenseesseesaessaessnesnneans 79
4.1.5 Implementation Metric FACOT, /5ccioeirieirieirieieieieieeeee e 81
4.1.6 Case of Circular Dependencycc.eeruieriierienieiieeie ettt e e saae e ens 82
4.1.7 Representation of Importance and Testability..........cccceevvieiiiiiiiiieriicccieeeeecee e 84
4.1.8 Critical Dependency DensSity.......c.cccveviiiriieriieiieiie ettt et sre e beereesreesreesraeesaeens 87
4.1.9 Product RISK MOAEL, Roooiiiiiiiiieiieeee ettt e e e 90
4.2. Empirical Study of Risk Model on Mozilla Library, GKGFX..........c.ccccocvivviiiiiiiiieeieee, 91
4.3. Improving the RiSk MOlcc.cccuiiiiiiiiiiiiiccic ettt saae e ees 93
4.4, Reusability Index, RIccioiiiiiiiii ittt et e st e e ens 94
4.5. Applying Reusability Index to a New Design for DepAnal..........cccoooiviiiiiieniiniienieiieee 95
0. SUINIMATYvveeeivieeeteeeteeestteesteeetteeasseeeseeessseeassseessseeassssaasseesssssasseesssesansseesssesansssenssesssseensses 96
Chapter 5 Change Impact Factor EStimationcccceicreeicnreinscnnisceicssnicssnsisssassssnssssssssssssssnsses 98
RO B 6 U3 o1 1017 51013 H OSSPSR 98
5.2. BacKround STUAYcoocviiiiiieiii ettt ettt ettt sit e et e e staeesbeeetbeesnbeeenbaeesbeeenaaeenes 99
5.3. Change Impact Factor and Risk Model..........ccccoooiiiiiiiiiiiieiieicciccie et 100
5.4. Experiment Design to Determine Alpha (O)ocveivveeiiieiiieiieeeeeeeeeeeee s 103
5.5. Expected Outcome Prior to the EXPeriment...........cccvveevuiieriieiiiiinieeciie e 106
5.6. Empirical Study Process DeSCIIPtiONc.eivvieiieiieiieeieeieeieesieestesveesreesreesseesraesaaesenessneens 107
5.7 OUL RESULES ...ttt ettt ettt et sttt eneens 109
5.8. Computing an Effective Single Alpha Value for a System..........ccoceveiiiiiniiniininiees 115
5.9. Risk Analysis with Measured Alpha Values...........cccooieiiiiiiiiiieeeeeeee e 116
5.10. Contributions of thisS STUAYeceiiiiiieiiiiie e 119
5.11. Concluding COMIMENES........ccuuiiuiiiiieiieieeeeeiesteeee ettt et et eesteesaaeeneeenseeaeenseesseesneesnneens 120
Chapter 6 System Structure - Simulating Constructive Change 122
6.1. Eliminating Global Variables..........c..coveviiiiiiiieiie ettt sane e ens 123
6.1.1 Analysis of GKGFX Library of Mozillacccccveviiiiiiniiniicieee e 124
6.1.2 ANAlYSIS OF MFCuiiiiiiiii ettt ettt et e e s beeetaeesanee s 128
6.2. Insertion of Interfaces and FACtOTIESco.eeiiruirieiiiieieie et 131
6.3. Redesign and SysStem QUALILYceevuieriirieiieeie ettt es e eaeestaessaesaaesnneens 133
6.3.1 Discussion of Old DepAnal DeSi@N........cceeuiiiiiiieiiieiierie ettt 134
6.3.2 Comparing Old vs. New DepAnal in Detail..........cccoeeviiiiiiiiiiiieniiceciecceecee e 135
6.4. Strong Component and Product RiSK...........ccoecueviiiiiiiiiiiiiieieecece e 139
6.5. Global Variable and Occ.cooviiiiiiiiiiceecee ettt et 141
0.0, SUMIMATY ...eeevviiiiiiieeiie et eieeeite sttt e et e estteesbeeesteeeesseessseeesseessseeesseesssesansseessseessseeesseessseens 142
Chapter 7 Conclusions and Future Work 144
7.1. Study Results and CONtriDULIONSccuveriieriierieeieeie et eieesee e saeeereesreeseessaessaessnessneens 145
7.2, FULUTE WOTK 1.ttt ettt et ettt e sttt eat e et enteenbeesaeeenneenneens 150

APPEINUIX crvveieereresssressserossanessssssssasessssssssassssssssssssessssssssassssssssssssossassssssssssassssssssssassssssssssassssssssssassses 152

A.1. Relationship between Code Metrics and Change HiStOTYceeeeeserosssvsssescsssssssssssassssnns 152
A.1.1. Project Wide Measure of Size and Change...............c...coccooiiiiinininiiiiceceee 154
ALL2, MEtric ANALYSISooooiiiiiiieiieciie ettt ettt eseae e seb e e ennaeenbeeennae e 156
A.1.3. Analysis of Windows Build Releasescccoooiiiiiiiiiiiiiiceee e 158
A.1.4. Some Techniques Used As Part of This Analysisccccooiniinininiiiine 159
A.1.5. Multiple Linear Regressionccccoooviiiiiiiiiiiiieiiie et sveeeeeeeeenes 160
A.1.6. Summary of Metric AnalysiS..............cccooiiiiiiiiiiiiiii e 164

A.2. Software DeveloPMEnt EffOrt....eeceeecsserosssresseicssssssssssssssssssssssssssossasssssssssssssssssssssassssass 166

A.3. Correspondence with Professional Interested in Tools like DepAnal 168

A.4. Demonstrating the Effect Of AIPRG......ueeecoeeerosevissreiossarissseisseressssisssssossssssssasssssssssssssssassssses 170

LiSt Of ACTONMYIMS . cccierueiirrurisceicssnressnsisssassssnssssssossassssssssssnsssssssossassssssssssnsessnsssssassssasssssssossasssssassses 174

BibLIOGIraphy .cccccceiicieriniiiiiiicnsniinsnensssnicssneicsssnssssssssstssssssssassosssssssassssasssssssssssssssssssssssssssnssssasssses 176
VEE ettt et h e bt h e ea bt e bt e bt e b e bt e h et ea bt e bt e bt e eheeeheeeeteeabe et e e aeenaes 184

vii

List of Tables

Table 2.1 — Selected developed tools fOr aNAlYSISccvevierieeiieiii e 43
Table 2.2 — Helper tools fOr analySisccciiiiiiiiiiieeiieeiie ettt ettt e e e e 52
Table 3.1 — Summary of generated outputs and files from Mozilla built..........c..ccceevveriinieiiiennnnn, 56
Table 4.1 — Calculation of importance, I of files in Figure 43..........ccccovevieriiiiiiiieeeeesee e 77
Table 4.2 — Example of testability, T of files in Figure 43.......cccoooeiieiieiiiieceeeeeeeee e 80
Table 5.1 — Information Regarding the Experimental Project...........coccoeoieiieiieniineiiiiceeeeen 107
Table 5.2 — Information in database regarding a file, where change occurred.c..cccoeevvenennen. 108
Table 5.3 — Change in risk ordering of files calculated by measured ... and estimated alpha,
compared to risk calculated by measured individual alphas............cccocereiiiiiiiiirienienie e 118
Table 6.1 — GKGFX 1ISK VAIUESccuviiiiiiieiii ettt ettt vee e e evae e 126
Table 6.2 = MFC 1iSK VAIUES.....cc.eiiiiiiiei et 130
Table 6.3 — Comparing structural quality of old and new design DepAnal............cccccocereninnnnen. 138
Table 7.1 — Results and CONtIIDULIONSc.uieiuiiiiiieeiii ettt eeveeeeaeeerae e 148
Table 7.2 — Consequential results of the StUAYc.ccocviiiiiiiiiiiicc e 149
Table 7.3 — Initial results of work that will continue 1ater.............ccoeirieiiiiiieiieeceee e 150
Table 1.1 — Cumulative Change Counts, 10 September 2004c.ccceeviieriienienienie e 154
Table 1.2 — Metrics used in this ANALYSIS.......cccuiiiiiiiiiiiiiiiieeiee ettt et eeree e evee e 157
Table 1.3 — Analyzed MoOzilla REICASES......c..ccviriiiiiiiiiiiieiieieeeee et 158
Table 1.4 — Results of Multiple Linear Regression, MozFindDIl, Release 1.4.1cccoecvvenennnen. 161
Table 1.5 — Correlation Matrix for MLR Model MozFindDIl, Release 1.4.1cooovvvvvvveeeennnn. 161
Table 1.6 — Results of Multiple Linear Regression. Windows Build of Mozilla, Release 1.4.1....163
Table 1.7 — Correlation Matrix for MLR Model. Windows Build of Mozilla, Release 1.4.1 163
Table 1.8 — Summary of MLR StatiStiCscccveriiiiiiiieiieieesite ettt 164
Table 4.1 — Dependency table of a strong component with 29 files from Mozilla.exe component
from Mozilla Project Ver. 1.4.1 processed by DepAnal and then proved manually. 172
Table 4.2 — Dependency Graph of a strong component from Table 4.2 does not show all the
dependency lines for readability.ccierieiiiiiiie e 173

viii

List of Figures

Figure 1.1 — Internal and external dependencies of component #57.c.ccccvveveieeeriienieeniiee e 4
Figure 1.2 — Internal dependencies of component #57 consisting of 60 files...........ccecevviieierencnn. 5
Figure 1.3 — Data Flow — During analysis and visualization of software system’s quality.............. 14
Figure 1.4 — New Design DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files18
Figure 1.5 — Expansion of Strong Components — New-Design DepAnal Ver. 1.7.a........cccccueee.... 19
Figure 2.1 — Basic examples — [arge fan-0Utcccoevierierieeiieeie e sne e ens 31
Figure 2.2 — Example of excessive fan-out, dependency picture of DepAnal...........cccooeevirvinnnnnne 32
Figure 2.3 — Basic examples — Strong COMPONENLeeevieeriireririeerieesieesrieesereeereeenseeeseseeessseenenes 33
Figure 2.4 — Example of strong component, a strong component with four files..............c..ccceeeee. 34
Figure 2.5 — Basic examples — [arge fan-inc.ccccoevierieiieiiie e 35
Figure 2.6 — Basic examples — desirable dependency Structure...........cccoeeveveeriieieeniieneenie e 36
Figure 2.7 — Sample desirable fun-in and fan-out SIZES..........ccceevvieriieriierieiieiie e 36
Figure 2.8 — Analyzing DepANal itSCIf.c.cccuiiiiiiiiiiierieee e s 37
Figure 2.9 — DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files.................... 38
Figure 2.10 — Expansion of Strong Components - DepAnal Ver. 1.7.a.......cccccceveevviiinirencieeeieeee. 39
Figure 2.11 — Fan-in Chart of DepAnal Ver. 1.7.accccooiiiiiiiiiiiieieeiieiesesve e 41
Figure 2.12 — Fan-out Chart of DepAnal Ver. 1.7.acccoceiiiiiiiiieiieeeese e 41
Figure 2.13 — DepAnal data flow diagramccceeeeieiiiiieiiieiie et e 45
Figure 2.14 — Collecting data from SOUICE COACuiiriiiriiiiiiiiieii ettt s 46
Figure 2.15 — DepView of DepAnal, components and files............cccoevverierciinciieiiienieniesee e 48
Figure 2.16 —DepView, dependencies of COMPONENE Occ.eevereiieriieniieniieiieeie et see e 48
Figure 2.17 — Settings for project to be analyzed and dependency options............ccceevvrerveeeneeennne. 50
Figure 2.18 — Change Logger, records change information for change-impact-factor (CIF)

S E:1 5 (0 s USRS 50
Figure 2.19 — Matrix Maker — creates matrix for risk analysis..........cccocevveveiienciieiiiienii e 51
Figure 3.1 — Mozilla GKGFX Library Fan-incccccceviieiiieiiieeiieiieieesiesee s eve e esree e sene v e 57
Figure 3.2 — Fan-in Histogram for GKGFX Libraryccccecveviieiienienieciecieeeeeeiee e 57
Figure 3.3 — Mozilla GKGFX Library Fan-outccccoccuiiiiiieriieeiiecieecee e 59
Figure 3.4 — Fan-out Histogram for GKGFX LiDrarycccccceevvieviieniienienieiieeieeeeesieesiee e 59
Figure 3.5 — Mozilla GKGFX Library Strong Components HiStogramc.cocceevververeenvennenns 61
Figure 3.6 — Mozilla GKGFX Library Strong Components by DepView.........cccccceeveervereeniennnnne 61
Figure 3.7 — Dependencies of only two of the largest strong components with other components..62
Figure 3.8 — Internal - External dependencies of Component #57 consist of 60 files. 63
Figure 3.9 — Internal dependencies of Component #57 consist of 60 files.cccceeveerverirriiennrnne 63
Figure 3.10 — External dependencies to COmMPONENt 57ccceeevveeeiuiieriieiiieeereeeiie e esveeeeee e 63
Figure 3.11 — A strong component member file’ s fan-out to other files in GKGFX Library......... 64
Figure 3.12 — Topologically Sorted Strong Components before Expanding...........cccceeeveeeninncnne 65
Figure 3.13 — Topologically Sorted Strong Components after Expanding............ccceevevveviinniennnnne 68
Figure 3.14 — Expansion of Strong Components after Topological Sort, Entire Mozilla................. 69
Figure 3.15 — Expansion of Strong Components after Topological Sort, MFCcccccceeoinineene. 70
Figure 3.16 — Dependencies between components of MFCcccooiiiiiiiiiiiiiiieeeee e 70
Figure 3.17 — Fan-in chart Of MEC..........ccooiiiiiiie et 71
Figure 3.18 — Fan-out chart Of MEFCcooiiiiiiiiiieeeee et s 71
Figure 4.1 — Simple dependency between filescccoviiiiiiiiiiiiieiieeee e 75

Figure 4.2 — Example of importance of a file and formula of importance calculation...................... 76

Figure 4.3 — Calculation of Test Risk of files, assuming / is 1 and « values are identical. 81
Figure 4.4 — Effect of circular dependency on importance.cceevvvervvereereenieesieerieenieeseesnesneens 82
Figure 4.5 — Effect of circular dependency on testability.coccoevieiieniiniiiiiciieeeeee e 83
Figure 4.6 — Importance, after removing circular dependency in Figure 4.4ccccooevveviveenvnennnn. 83
Figure 4.7 — Testability, after removing circular dependency in Figure 4.5........ccccevvviviiniinnnennnn, 84
Figure 4.8 — Matrix representation of iMpPOTtANCEcevueeruierieeieeriieiieriiesieesee et eeeeseeesiee e seee e 84
Figure 4.9 — Reading IMportance MatIiX.........ccueeevieeeieeiiieeiiieesieeeieeesireesreeesereessaeeesseeesssesessseesnnes 85
Figure 4.10 — Matrix representation of teStabilitycccvevieeviieiiieriieriiesiecie e 85
Figure 4.11 — Reading Testability IMatriX.......cccoecueeriieriieriienieeieeieesieeieesseesnesaeeseesseesseessaessnessnenns 85
Figure 4.12 — Three mutually depended files.cooiiiriiiiiiiiiiii e 86
Figure 4.13 — Two mutually depended files, assuming £ is 1 and « values are identical. 88
Figure 4.14 — Three mutually depended fIles.c.cooviiiiiiiiiiiiie e 88
Figure 4.15 — Four mutually depended flleS...........ccviviiiriiiieiie et 88
Figure 4.16 — Five mutually depended files.occooiiiiiiiiiiiiiii e 88

Figure 4.17 — Change in strong component size vs. change in & for Figure 4.13 thru Figure 4.1689
Figure 4.18 — Max Importance vs. Alpha (&) value for Mozilla GKGFX Library Version 1.4.1..92

Figure 4.19 — Risk values for files in GKGFX LiDIaryc.ccccoevievieniienieniesieeie e sne e 93
Figure 4.20 — Reusability Index of New Design DepAnal Ver. 1.9ccccoiiiiiiiiiiinieieeeee 96
Figure 5.1 — Alpha value repreSentationsc..ccceeeeiieeiieeiiieerieeereeeriieesreeeseeesreeeraeessseeesneeenes 100
Figure 5.2 — Alpha values between file D and depending files.ccceevvievienienienieniecieeieeenn 101
Figure 5.3 — Risk chart of New Design DepAnal [60]cccvevierierieiiiiiieiieieieeee e 103
Figure 5.4 — Change driving many Changes.cccocuerriieriienienie et 104
Figure 5.5 — Sample change flow and dependency between files.cccceevvievvenieiiiiciieiiiieen, 104
Figure 5.6 — Screen shot of Change LOZEETcc.eoviiiiiiieiieieecie et 109
Figure 5.7 — Alpha value calculator.occieiiiiiiiiiiieeie et 109
Figure 5.8 — Alpha value evaluation of Collector.cpp throughout the first release.ccceuue.. 111
Figure 5.9 — Alpha value evaluation in 1 month period between Collector.h and .cpp.................. 112
Figure 5.10 — Alpha values evaluation for 1 month period.ccoceeviriiiiiinie e, 113
Figure 5.11 — Alpha value evaluation of Collector.cpp throughout the first release. 114
Figure 5.12 — Alpha value evaluation for 1 month period...........cccceevevviieviienienienieciecreeee e 114
Figure 5.13 — O €valuation throughout the first release.coooeiiiiiiiiii, 116
Figure 5.14 — Q4,00 €Valuation for one-month period. ..., 116
Figure 5.15 — Product Risk with individually calculated alpha............ccccocvevvievieniiiiiieeiceieeen 116
Figure 5.16 — Product RiSK USING Gy rcqive «eevereerereerermmmmmeiiiiiiiiteiisieissscsssesesss s 117
Figure 5.17 — Comparison of outcome of Product Risk with alpha variancec.ccceieneenen. 118
Figure 6.1 — Components of GKGFX Library, on the right after removing global object
QEPENACIICIESeeeivieeetie ettt et e ettt e et e et e e st e e esteeesaseeessaeesseessseeersseesssesensseessseesnsaeensseeenseeanes 124
Figure 6.2 — Analysis of the component with size 45 in Figure 6.1coocoooiiiiiiiiniieceee 125
Figure 6.3 — Product Risk for GKGFX Lib, simulation of global obj. dep. removal...................... 126
Figure 6.4 — Shown dependencies caused by only global objects for GKGFX, two-way.............. 127
Figure 6.5 — Dependencies of GKGFX, caused by global objects only, one-way............ccccueuene. 128
Figure 6.6 — MFC Dependency reason and external dependencies of Component #6 129
Figure 6.7 — MFC, Internal - External dependencies of Component #6.............ccccevvereeeeeeneeennen. 130
Figure 6.8 — Risk values for files in MFC Library, before and after global object dependency
TEIMOVAL .ttt h ettt et e bt e s bt e sht e sat e e bt e bt e bt e bt e ebeeeat e et entean 131
Figure 6.9 — Risk Analysis of GKGFX Library..........ccccoecvevieniieriieiieeie ettt 132
Figure 6.10 — Analysis of Risk of new design DepAnal, sorted by increasing risk order 133
Figure 6.11 — Analysis of Risk of old design DepAnal, sorted by increasing risk order................ 134
Figure 6.12 — Expansion of Strong Components — New Design DepAnal Ver. 1.7.a........c.c...... 136

X

Figure 6.13 — Expansion of strong components, old design DepAnal.............cccevvevienviereenneennen. 137

Figure 6.14 — Product Risk Values, Old Design vs. New Design DepAnalcccccvveveerreneennen. 138
Figure 6.15 — Expected risk values before and after constructive changes.ccooceveieiiieenen. 139
Figure 6.16 — Dependency graph and its corresponding risk chart...........c.ccoovevieniinciinciiniiiieenn, 140
Figure 6.17 — DepView for basic project @bOVE.ceevuieriierierieiieeie et et et seveeee e 140
Figure 6.18 — Global variable dependency and alpha value (&)cccceevvevieviienieniicieciecveeeen 142
Figure 7.1 — GKGFX Library it€m COUNLS.......cevuereiiiiieiieiierieesieesaeeteereeseeseesseesseesssesssessseesens 146
Figure 1.1 — Total buggy change count number of source files...........cccoeeierienienieniriiieieeeeenn 155
Figure 1.2 — Average number of buggy change of all alive source files.ccccecveeviienciieecnnnns 155
Figure 1.3 — Number of files in libraries by releaseccccvevierieiiieieiiieie e 158
Figure 1.4 — Variations of Metric Averages over all Files in GKGFX Library, By Release.......... 158
Figure 1.5 — Defect count bY TelEASEcuveiiviieiiieiiie ettt e et evae e e enree e 159
Figure 1.6 — Cumulative changes in library by 1elease..........ccccveviiiiiiieiiiinieniesiecieeeeeve e 159
Figure 1.7 — Predicted and actual changes for Mozilla’s MozFindDII librarycccceceveneenen. 162
Figure 1.8 — Predicted and actual changes for Mozilla’s XmlExtrasDIl library............ccccccvevuenen. 162
Figure 1.9 — Predicted and actual changes for Mozilla’s GKGFX librarycccccccevviieniieeennnns 162
Figure 1.10 — Predicted and actual changes for Mozilla’s RAfIDII libraryccccecceveriencnennens 162
Figure 1.11 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1. 10

OCTODET 2003 ...ttt ettt et et e et e e ae e e et e et e e bt e bt e bt e s bt e ee et eneeen bt e bt e nbeesheeeaeeeaneens 163
Figure 1.12 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1. 10

OCLODET 2003 (LL0Z) +vveevvreiietieiieeie et et et et e bt esteestaestaessaeesseesseesseesseesssessseenseenseanseensaesssessnensseans 164
Figure 4.1 — Dependency graph and its corresponding risk chart, alpha =0.9............ccccceverenn, 170

X1

Chapter 1 - Introduction

Chapter 1

Introduction

The primary objective of this research is to understand

how to detect structural problems in large software development projects,

then, to generate algorithms and methods to diagnose specific structural flaws.

Another objective is to provide tools needed to support analysis and project monitoring.
The final objective is to explore possible corrective procedures and simulate

their application, monitoring improvements in observed defects.

Chapter 1 provides an overview of our research, discussing its focus, its methods, our
accomplishments, and their relationship with the work of others. Subsequent chapters explore
each of our focus areas, and the last chapter summarizes our conclusions and proposed areas for

future work.

Chapter 1 - Introduction

1.1. Motivation

Modern software systems are often very large and complex. For example, Windows
Vista, the latest version of the Windows operating system, will be released within a few months,
with more than 50 million lines of source code [2]. Each line of that code required perhaps
several technical decisions, often, but not always simple. The sheer volume of this decision
making process is daunting. No single human can fully understand a system of this complexity,
and, because the decisions are made by humans, not all will be correct.

To help ameliorate this problem, systems are decomposed into subsystems, libraries,
modules, and classes. Most of these components have interdependencies, in order to provide
services, one to another. However, in systems of great size, the dependencies often become a
dense web of relationships, as we will show in the next section, and in more detail in Chapter 3.
These dense relationships make development difficult. It is exactly this problem on which we
focus in this research. Our goal is to provide automated analysis of structure, and structural
problems, and to demonstrate explicit means to resolve problems, so discovered.

Our goal is to provide techniques for managers of large software projects to view the
current state of their project’s products, throughout software development and maintenance.
We have studied existing projects to try to understand ways to do that. Our current work has
shown that static dependency structure is an important element of that analysis.

Screening static structure provides both quantitative and qualitative information
regarding structural problems, as shown in Chapter 3. Structural data can be obtained
automatically via source code dependency analysis. For large software systems, this is a key
attribute of our analysis approach, showing how pieces are interconnected with each other.
Some of the important characteristics that dependency information reveals are size of fan-out,
fan-in and strong components (each strong component is a set of mutually dependent files).

For example, depending on scores of other files (large fan-out) may indicate a lack of

cohesion — the file is taking responsibilities for too many, perhaps only loosely related, tasks

Chapter 1 - Introduction

and needs the services of many other files to manage that. Fan-in is the number of files that
depend on a file. This indicates a lot of reuse, which is good, but high fan-in coupled with low
quality creates a high probability for consequential change, and risk to the cost and schedule of
the project. If we need to improve the widely reused file’s code, that may break the
implementation of many of its using files.

Strong components occur when files have mutual dependencies between them.
Understanding, testing, reusing and adding new features becomes harder due to complex
dependency among the members of component. In the following section, we explore these

specific structural problems.

1.2. Problem Statement

In order to understand large software systems, we analyzed the structural quality of some
existing software systems in terms of their dependencies. One of the software systems that we
studied was Mozilla, version 1.4.1, an open source browser project. Mozilla was targeted to
become the browser for Apple OSX.10 but Apple decided to build its own, Safari, based on the
KHTML rendering engine' [65]. This decision was based on the size, complexity, and
performance of the existing Mozilla base line [66]. The Mozilla project eventually abandoned
much of the 1.4.1 code base before continuing with development [66]. The large size — 6,193
source files — and acknowledged problems makes this code an interesting object for study. Can
we understand why this version of the product was unsuccessful? Can we find effective ways
of improving the system, without detailed knowledge of its low level design details? In an
attempt to answer these questions, we performed a type based file-to-file dependency analysis
over several of the Mozilla libraries, focusing especially on GKGFX, a major library, within
Mozilla with 598 files. We obtained a lot of interesting information about the structure of this

code, including Figure 1.1 and Figure 1.2 below.

' KHTML is another, competing, open-source browser project.

Chapter 1 - Introduction

¥ DepView 1.4 - 2D Dependency Viewer
Wi

[~ Show Dependency |7 Draw | [~ Alowpopup ¥ Fanln W FanOut ¥ ExtDep [NolntemalDep Clear

Smallest disk is a file

Dependency lines

A\

Number indicates the
size of a strong
component, in this
case 60 mutually
dependent files

R R W

A

Figure 1.1 — Internal and external dependencies of component #57.

The two figures, Figure 1.1% and Figure 1.2, represent dependency relationships within
the GKGFX library (Mozilla’s NGLayout Project [56]) from the Mozilla project version 1.4.1.
In this figure, the smallest disks represent individual source files; all larger disks represent
strong components, e.g. sets of mutually dependent files. The number at the center of each
circle indicates the size of a strong component (number of files). A line between circles shows
dependency among files.

Figure 1.1 shows internal and external dependencies of the largest strong component
within the GKGFX library. This figure reveals that the strong component uses services of many
individual files and members of other strong components. In addition, Figure 1.1 adds
dependencies on files, outside the same strong component, on files inside, indicating services it

provides to these files.

2 These figures were generated by our visualization tool, DepView.

Chapter 1 - Introduction

The large disk in the Figure 1.2 represents the same strong component shown in Figure
1.1, a collection of mutually dependent files, 60 in all. Every one of these files depends, either
directly or indirectly, on every other. The dependency relationships are shown by dense lines
within the disk. Each dot around the circle is one of the 60 files. If any file inside the strong
component is changed, it may break the operation or design of any other file in the component
and any of the external files using services of this component, as in Figure 1.1, e.g., 60 plus

many more.

Componenth?

Figure 1.2 — Internal dependencies of component #57 consisting of 60 files.

The complexity of these dependency relationships demonstrates that this component has
extremely poor testability characteristics. Should a developer find and fix a defect in one of
these files, a huge number of other files — more than 60° — need to be retested to demonstrate
that the change caused no other breakage. There are dense dependencies not only within the

strong components, but also among the strong components. This is an indication of high

* A change in a file inside this strong component requires retesting all sixty files inside the component, and all of the many files
outside the component, which depend on files within. These dependencies are the ones shown in Figure 1.1.

Chapter 1 - Introduction

coupling throughout the GKGFX library. Additionally, due to these dense dependencies,
making changes and tracking the effect of those changes is difficult. Therefore, extensibility -
new feature addition — becomes difficult.

The figures above reveal particular issues with the development of large software
systems in general. If dependency between components is dense, that causes several
undesirable attributes. First, it is very hard to reuse files from the component that, because they
depend on so many other files. Extracting them is very difficult, because each extracted file
depends on so many other files. Second, it is hard to test files in the component effectively
because every time a test uncovers a defect, which we fix, we have to retest all the previously
tested files in the component because of their mutually dependencies. Finally, it is very
difficult to understand the behavior of these systems because of their dense relationships.

In this section, we presented a few of the results of our analysis of the open-source
Mozilla project, version 1.4.1. We concluded that the source packaging of its GKGFX library
makes it difficult to test and understand its behavior. In the next section, we present some of
our views, and the views and conclusions of other researchers, concerning these issues.

1.3. Other’s Statements Relating to Problems in Large Development
Software.

It is a natural consequence of development that as a project gets larger, dependency
among its components gets denser and grows more complex. This dependency is necessary to
provide services from one component to another; on the other hand, excessive dependencies
make a system inflexible and fragile. The project becomes difficult for developers to
understand, test, maintain and reuse.

It is very important to provide timely feedback to software engineers and project
management about the state of a software development project, emphasizing these
dependencies. This implies that monitoring the state of a large software development project is

important and will be a major focus of this research. Most of our work is concerned with

Chapter 1 - Introduction

dependency structure of large software systems. Early detection of structural defects will avoid
delays, difficulties and costs associated with fixes made later in the project lifecycle. Higuera

and Haimes [54] reported that:

“Many of the most serious issues encountered in system acquisition are the
result of risks that either remain unrecognized and/or are ignored until they

have already created serious consequences”.

Source code itself carries valuable information that we can monitor frequently.
Software source is always accessible to its developers and managers, and carries up-to-date
information, unlike project documentation, which may be out of date or may not exist.
Moreover, source code provides quantitative information that can be turned into qualitative
symptoms of several types of important problems. This can be used to provide timely feedback
to software engineers and project management about the state of the software development
project [40].

Software systems can be extremely complex. Developing large complex software
systems is difficult, not just due to structural complexity, but because features of that
complexity are essentially unique. When there are common implementation details in a
software system the common structures are factored out into a single service. Other complex
systems, VLSI chips, for example, use repeated structures, so understanding a modest number
of relatively small cells may translate into understanding a major subsystem. Here is what Fred
Brooks, Kenan Professor of Computer Science, University of North Carolina, Chapel Hill [1]

has to say about software complexity:

“Software entities are more complex for their size than perhaps any other

human construct, because no two parts are alike (at least above the

Chapter 1 - Introduction

statement level). If they are, we make the two similar parts into one, a
subroutine, open or closed. In this respect software systems differ
profoundly from computers, buildings, or automobiles, where repeated

elements abound.”

And later in the same reference [1], he says:

“Much of the complexity in a software construct is, however, not due to
conformity to the external world but rather to the implementation itself — its

data structures, its algorithms, its connectivity.”

This complexity, coupled with organizational factors, has been responsible for a
number of noted software disasters: Therac-25 X-Ray machine malfunction resulted in the
deaths of several patients, due to a race condition®, 1985-87 [3], the Denver Airport Baggage
System failure®, 1995 [4], Ariane 5 crash, due to arithmetic errors coupled with specification

and design errors:

“Very tiny details can have terrible consequences”, “That’s not surprising,
especially in complex software system such as this is”, Jacques Durand,

head of the Ariane 5 project, in Paris.

1996 [5], and Mars climate orbiters®, 1999 [6], to cite a few. Complexity causes not

only malfunctions in operational systems, but problems with the development process resulting

* This system is complex
° Problems with both mechanical and software complexity.
® Data in English units instead of metric in software application code.

Chapter 1 - Introduction

in cost and schedule overruns and project cancellations. The Standish Group published a
widely cited report claiming these survey’ results, 1995 [7]:

1. 15.5% of responders reported cost overruns of under 20%. The rest were higher.

2. 13.9% reported time overruns of under 20%. The rest were higher.

3. 31.1% of all projects were cancelled.

We have been examining several large systems: the open-source Mozilla and KHTML
projects, and the libraries MFC (Microsoft Foundation Class library, part of the Visual Studio
Software Developers Kit), and STL (Standard Template Library, part of the C++ standard
library). In addition, we analyzed our own tool implementations to verify our new methods,
algorithms and tools. This gives us a mix of open-source, commercial, and expert developed
code, on which to test our ideas. As you will see, the results are quite interesting. In the next

section, you will find the summary of our goals and accomplishments.

1.4. Goals and Accomplishments

The goal of this research is to understand how to detect structural problems in large
software development projects. Secondarily, we seek to devise algorithms and methods to
diagnose structural flaws. Finally, another goal of this research is to provide tools needed to
support analysis and monitoring of static structure.

Our primary focus is for systems that are so large that no one person can understand the
entire semantics of the project. That drives us to use methods that do not require semantic
analysis®. Lastly, we explore possible corrective procedures and simulate their implementation,
and observe resulting improvements.

The number of source files, in these projects, is too large to pay individual attention to
each file. We need a way to rank files based on their impact on system quality. We have

several questions, which may help us to identify these files or groups of files. Which files

7 Sample size of 365 respondents, representing 8,380 applications [7].
¥ Most of our analysis to-date is based on static type and function-based dependencies.

Chapter 1 - Introduction

contribute most to large strong component size? Can we order the risk of files by using each
file’s interrelationships with other files in the system? How does internal quality of a file, and
the files on which it depends, affect overall system quality?

Another aspect of software implementation is its malleability. It is easy to make
changes to a small part of a software system, but much harder to understand the impact of such
changes on the system as a whole. This has two potential difficulties: a change may improve
the functioning of a small part, but in fact have undesirable repercussions on the larger system.
In addition, change makes establishing reusable components more difficult, both because the
components may change and become incompatible with other users in the larger system, or
because the users change and can no longer correctly use the component.

Our goal is to enable a Project Manager to visualize his large code base and determine
where corrective action is needed and continually monitor the development progress of his
system. The static dependencies we have been discussing are visible on a micro scale. Each
developer knows what other files her code depends on, but may not be aware of indirect
dependencies and other files in the systems that depend on her code. The dependencies on a
macro scale are invisible to humans, due to the overwhelming complexity of real large
projects’.

Without the help of analysis tools, it is difficult to understand a large project, evaluate
its quality, and track progress effectively. Therefore, we generated tools that can handle
analysis of large-scale software systems'’. Chapter 2 covers generated tools and interpretation
of extracted textual and visual data by them. Chapter 3 documents an empirical study of a large
open-source project, which illustrates the value of these tools in understanding large software

systems.

°_ A project developing 5 million lines of code in two and a half years needs about 350 developers, from an example used in
CSE784 — Software Studio, details are in AppendixA.2 at page 166.

' We applied our dependency analysis tool, DepAnal, to the entire Mozilla system, all 6193 files. This processing consumed about
four hours on modern desktop computer. An earlier version of our code required more than 24 hours for this analysis.

10

Chapter 1 - Introduction

These observations led us to consider ranking files by their risk level. Files will be
ranked, according to their risk contribution to the entire system. Files with high risk ranking
then become the target on which developers focus first, in order to alleviate structural problems.
In Chapter 4, we introduce a software product risk model by considering dependency relations
among files and files’ internal metric properties. If a file has poor internal quality and the
system has many files that depend, directly or indirectly, on this file, its quality is a risk factor
for the system. The system risk would be smaller if very few other files depended on this file.
This idea is formulized in our risk model.

Additionally, this research focuses on the ability to identify components for potential
reuse. We describe a model that indexes software components according to their potential for
reuse. This reusability index ranks source code, in existing systems, based on its place in the
structure of the system and its internal metrics. This enables developers to evaluate a file for
reuse before looking at its code. Section 4.4 explains the details of our reusability index model
and its application.

While developing the risk model, we studied the relative frequency of required
consequential changes in files in the project, called Change Impact Factor (CIF). The product
risk model uses change impact factor for every dependency relationship between files in a
project. But, initially, we could supply only rough estimates for the values of these parameters.
So we designed and executed an experiment to measure the CIF factors, as functions of time,
for a real project. As part of this experiment, we developed a measurement process that can be
applied to other projects, as well. In this way, a more accurate assessment of risk is obtained, in
real time, as a project unfolds. Chapter 5 presents details of the experimental design, its
application, and its results.

After identifying potential dependency problems, we also explore the effects of
modifying different dependency types to improve the structure of a large system, without

needing a detailed understanding of its internal semantics. We simulate the effects of these

11

Chapter 1 - Introduction

changes to determine their value, in improving system structure. Chapter 6 presents the details

of this study.

12

Chapter 1 - Introduction

1.5. Method Statement

In this section, we describe study methods that we used to pursue this research.

1.5.1 Type Based Dependency Analysis

We focus on file level dependency information, since files are the unit of testing and
configuration management. We are not interested in portraying type-to-type or function-to-
function dependencies for the reason that we are dealing with large numbers of source files,
every file can define several types, and this would increase the volume of analysis information
to the extent that it would be difficult to draw conclusions about it. Note, however, that our
dependency analysis, in fact, uses this information, extracted from source code.

File dependency information can be obtained quickly, using our analysis tools.
Therefore, this information is always available, unlike project documentation, which may be out
of date or may not exist.

Briefly, the dependency model can be described as follows, first we collect declarations
of types, functions, and global variables, and then, we find invocations of these items across the
files. Finally, we determine the dependency among files based on the collected declaration and
invocation data. The dependency model used throughout this research is given below.
Dependency Model - file A depends on file B if:

- A creates and/or uses an instance of a type declared or defined in B

- Aisderived from a type declared or defined in B (inheritance)

- Ais using the value of a global variable declared and/or defined in B

- A defines a non-constant global variable modified by B

- A uses a global function declared or defined in B

- A declares a type or global function defined in B

- A defines a type or global function declared in B

- A uses a template parameter declared in B

13

Chapter 1 - Introduction

These rules intentionally do not acknowledge dependency of a base type on its derived
types even though it is possible that a derived type modifies protected data members of the base.
Doing so, we believe, would identify potentially many false-alarm dependencies in well-
designed systems. It would be interesting to compare analyses of a major system with this
assumption and with a model in which the base is declared to depend on all derived types if it

provides protected data.

1.5.2 Qualitative and Quantitative Measures of System Quality

We need quantitative inputs about a software system under study to evaluate the quality
of system. With the data extracted from dependency analysis, there are two possible ways to
proceed. One is to focus on mutual dependencies obtained from the dependency graph as strong
components; the other examines dependencies among individual files. We show data gathering

and processing flow we use during our analysis of software, in Figure 1.3.

(2D-Drawing) Views

DepView | Dependency %v *v
% v

Strong Components

StrongComponent
(Component Analysis)

DepAnal —FileDependency
(Type Analysis)

—File Setp

Internal Metrics i .
RiskCalculator ng
. |
(Risk Analysis) Reusability4> o

Figure 1.3 — Data Flow — During analysis and visualization of software system’s quality

We first find dependencies between source files, and record this information, along with

each files’ internal metrics, using DepAnal. After obtaining this textual information, we

14

Chapter 1 - Introduction

visualize dependencies, using DepView, and run our risk model-based analysis tool,
RiskCalculator, to localize potential problems.

The level of detail, at which information is presented, is very important. Too much
detail weakens comprehensibility. However, we need detailed enough information to
understand the quality of the static structure, and need detailed enough information to locate the
origin of structure problems. The two dimensional drawings in Figure 1.1 and Figure 1.2
immediately disclose the web of dependencies and size of interdependent file groups, within the
file set analyzed. In addition, risk analysis merges file internal metric information with
dependency information and provides an effective level of detail. Moreover, risk analysis
enables us to identify files that may adversely affect the quality of the system.

Type Analysis is carried out by our dependency analyzer, DepAnal, a file-to-file static
dependency analyzer for C/C++ source files, section 2.3.1 provides more detail. Two-
dimensional Visualization is obtained by our tool DepView. Product Risk analysis is performed
by using information generated by DepAnal in conjunction with our parsing tool called Matrix
Maker. Additionally, we included a MatLab generated linear system solver'' to evaluate the
matrix equations that describe our risk model.

As shown in Figure 1.3, Product Risk Analysis uses internal metric information, along
with file-to-file dependency data. During risk analysis, we use function size and cyclomatic
complexity, but other potentially useful quantitative metrics could also be used - details are

provided in section 4.1.5.

1.5.3 Finding Mutual Dependencies

After obtaining file level dependency information, we build a dependency graph,
analyze its strong components, to find mutual dependencies, and then perform a topological sort

of the components. This last sorting step is useful for visualization and is also useful in

" A stand-alone executable file.

15

Chapter 1 - Introduction

developing test plans. In a classical test process, we start with the files that depend on no
others, and then continue by testing only those files that depend on already tested files. For
systems with strong components, this is not possible, due to mutual dependencies. Thus, the
number and size of strong components gives important insights regarding how well a software
project is packaged. The dependency density within strong components discloses how strongly
coupled files are, and the strength of this mutual coupling is a compelling measure of test risk,

because it measures potential for the need to retest large numbers of files.

1.5.4 Visualizers Providing Comprehensible View

Our DepAnal results are in text format. Drawing conclusions from these text files is
almost as hard as reading source code. We developed the 2D dependency viewer, DepView, to
obtain comprehensible views of large software systems. The 2D interactive views of
dependency information discloses qualitative information about the system in an easily

understood fashion — see Figure 1.1 and Figure 1.2.

1.5.5 Monitoring Development Manually

Our risk model depends on three things: dependency relationships, analyzed by
DepAnal, internal metrics, analyzed by a program called Analyzer, and the probability that a
change in some file will cause changes to be required in other files in the system. The first two
items are analyzed by our tools, but the third is not.

In order to estimate the probabilities for change in files, due to changes in other files in
the same system, we designed an experiment to explore propagation of changes throughout a
project’s development lifetime. DepAnal was redesigned and implemented from scratch, and
each change carefully recorded. Then the data, so obtained, was analyzed to determine the

change impact factor values (CIF).

16

Chapter 1 - Introduction

1.5.6 Sample Analysis: Partial Analysis of Dependency Analyzer

We studied our own project, which has 30 source files. We know our project in detail,
such as which files are hard to understand and which files need to be re-factored. However, we
were not sure about the size of the strong component dependency between its files. The results
we obtained, shown below in Figure 1.4, are encouraging by illustrating the effectiveness of the
approach even for relatively small size software projects. Charts below expose high-level
structural information. Performing a product risk analysis provides a finer level of detail, so

that we can identify high-risk files.

17

Chapter 1 - Introduction

Topological sort of the [® DepView 1.4 - 2D Dependency Viewer

ﬁles Wig

<-MOSt Independent I Show Dependency 125 Dirawe | I Alowpopup W Fanln W FanOut W ExtDep [Molntemal Dep Clear_l
TOK.CPP Syntan?.cpp reimplZ.h Mgin.cpp Component4
ITest.h

regexpr2.h
regexpr2.cpp
restack.h Componerts
syntax2.h
FILEINFO.CPP
FILEINFO.H
NAV.CPP
NAV.H
TOK.H
SEMI.CPP
SEMI.H
Utilities.cpp
Utilities.h
IncludeMngr.cpp
IncludeMngr.h
Grammar.cpp
Grammar.h
Scopelnfo.cpp
Scopelnfo.h
Collector.cpp
Collector.h
DepRecorder.cpp
DepRecorder.h
DepFinder.cpp
DepFinder.h
Main.cpp
reimpl2.h
syntax2.cpp
TOK.CPP
Most Dependent ->

Ready... Least Dependent -> A

Figure 1.4 — New Design DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30
files

Figure 1.4 illustrates file level dependency structure of DepAnal. Before seeing this
picture, we were not aware that DepAnal has a strong component with size of 4 files. The
largest strong component carries more than 25% of the new source files in the project'>. This

view demonstrates detailed information without using our developer knowledge of this project.

"2 Some of the files taken, without development, from other libraries and projects.

18

Chapter 1 - Introduction

As a developer of DepAnal, we know our code in detail; however, we were not aware of the

existence of this component and this dense interaction between files.

In Figure 1.5, below each dot indicates dependency between two files. The count of

dots shows the degree of communication density. A dot’s distance to diagonal indicates

whether a file’s communicates with a file in its neighborhood or not. Moreover, if a dot is below

the diagonal, it indicates existence of a mutually depended group of files.

Dephnal Version 1.7.a

* e
LR R

* *

* * ¥ »

*
*
*

*

* * ¥ »

Depended on Library Files
* 4
LR N R R R 2
* + +
* *r r r
|+ + *

L B K B R R

* * ¥ »

*

+*

+
+

* *
* *

* * .
+ *

*

Least Dependent ->

[Y RSV SN D) Reo BoN Ko vl (o)
I

Figure 1.5 — Expansion of Strong Components — New-Design DepAnal Ver. 1.7.a

910111213 141516171

81

a9z

T T T T

021222324252

Depending Library Files

62

L T+

728293031

Most Dependent

1 TOK.CPP
2 syntax2.cpp
3 reimpl2.h
4 Main.cpp
5 DepFinder.h
6 DepFinder.cpp
7 DepRecorder.h
8 DepRecorder.cpp
9 Collector.h
10 Collector.cpp
11 Scopelnfo.h
12 Scopelnfo.cpp
13 Grammar.h
14 Grammar.cpp
15 IncludeMngr.h
16 IncludeMngr.cpp
17 Utilities.h
18 Utilities.cpp
19 SEMILH
20 SEMI.CPP
21 TOK.H
22 NAV.H
23 NAV.CPP
24 FILEINFO.H
25 FILEINFO.CPP
26 syntax2.h
27 restack.h
28 regexpr2.cpp
29 regexpr2.h
30 ITest.h

Least Dependent

In Figure 1.5, we see strong components expanded into their individual files, each dot

represents a dependency relationship. For any dot, the file vertically below it (x) depends upon

the file horizontally to its left, on the ordinate (y). Any dot under the diagonal indicates the

existence of a strong component. Each rectangle represents a strong component as shown in

19

MADADAADAADAAAD DD AAMMMMmMMAMMmMMmMMMMMZAO 0D

Chapter 1 - Introduction

Figure 1.4. The table on the right in Figure 1.5 shows the topologically sorted files. R indicates
the file reused, E indicates file was created for this project.
The methods used to obtain this information have the capability of analyzing large-scale

software, as described in a footnote on page 10.

1.6. Results and Contributions in Brief

This section briefly describes the thesis’ results and contributions.

- Developed methods to uncover existing structural problems in software from source
code.

- Developed tools to provide immediate feedback to software developers and managers
about structural state of software development project, even for every large projects.

- Developed source file ranking algorithms using notions of product risk, importance, and
testability of a file.

- Introduced a model that indexes software components according to their potential for
reuse.

- Designed and conducted an experiment to evaluate change impact factor between
source files. For this purpose we redesigned DepAnal, and during that implementation
we monitored and recorded each change.

- Applied our tools on industrial projects to observe and report on the applicability and
quality of estimation.

- The study also enables the identification of components, which need individual
attention and suggest possible ways to avoid impending problems before they become
chronic.

- The study enables a software manager to monitor a software project rapidly without
waiting for documentation files to be produced, directly obtaining structural quality

information from source code.

20

Chapter 1 - Introduction

- Our empirical study has demonstrated that useful information about significant
problems in both large and small systems can be identified without a detailed
knowledge of the entire code base.

- The product risk model predicts that as the density of dependency relations increases in
strong components of the dependency graph, Risk factor grows and becomes
unbounded at critical densities.

- We explored the effect of different dependency types over dependency structure of a
large system without a detailed understanding of its internal semantics.

- We have applied the model to a library from the Mozilla open-source project. The
model predicted that most of the development risk is in about 10% of the library files.
That good news was probably unknown to the Mozilla designers.

- We conducted statistical analysis of file properties versus change potential from

Mozilla change database, using Multiple Linear Regression.

1.7. Literature Review

In the bibliography, we cite over 70 papers that are related to our work or have provided
insight or inspiration for this effort. Here, we review some of them that have been particularly

useful, and cited in this chapter.

1.7.1 Dependency Algorithms

Vassilios Tzerpos [10] developed a file to file dependency analyzer by looking at
#include statements so that “newcomers can grasp the overview of the system much faster,
designers can inspect the quality and modularity of the system structure, and programmers have
much clearer view of which part of the system they are actually developing”. In the same way,
one of our goals is to find dependencies between source code files based on static type analysis.
Unlike Tzerpos [10], we ignore include-based dependencies, as developers are occasionally

careless about the files they include, causing dependency false alarms. Unnecessary

21

Chapter 1 - Introduction

dependencies affect build efficiency but do not affect design or compilation breakage due to
change. Instead, we focus on type-based file dependencies. Note also, that analyzing type
dependencies affords the opportunity to base risk analysis and corrective actions on the types of
dependencies encountered.

Kazman, S.J. Carriere [52] identified the necessity of tools in order to extract
architectural information from source code, and explain how they achieve this by a workbench,
Dali, a set of analysis tools. They have written scripts to extract “file depends on file” relations
from make input file (makefiles). In our case we do not need any other information except
source files themselves to extract dependency information. In addition, like #includes, make
files sometimes carry incorrect dependency information, reducing the accuracy of the analysis.

Ferenc et al. [53] explain the reverse engineering framework, Columbus, which
supports project handling, data extraction, representation, storage, filtering and visualization. It
is a framework to help developers to comprehend the system under development. File to file
dependencies are not their tools’ direct output, but can be derived from its resulting output.
This work focuses on specific type dependencies, while our focus is more specific towards
source file dependency and its visualization. Files are the unit of testing and configuration
management, and so file dependencies are a more appropriate measure of the system structure
than its internal type details — we use these internal type details, but focus on the file-to-file
dependencies they determine as a measure of system quality.

Martin Fowler [50] talks about dependencies (Coupling), and says they are necessary
but should be reduced. One way to reduce dependencies, he suggests, is to use interfaces. And
he stresses the need to avoid cycles". He is concerned with a macro view of systems, similar to
our study, and sees excessive dependency as a structural design problem. He has one basic rule

that is “fo visualize high level dependencies and then rationalize them, separating the interface

'3 Cycles are what cause mutual dependencies, e.g. strong components.

22

Chapter 1 - Introduction

and implementation to break dependencies.” This is one of several techniques, which can be
applied to remedy structural design problems — we have already shown that type of dependency
can be one of the effective directions to pursue.

Robert Martin [47] also studied general dependencies between modules. He classifies
good (interface) and bad (concrete class) dependencies and considers the affect of dependencies
on reuse. He introduces two metrics for instability and abstraction based on types, to define
groups of files, which cannot be reused without one another, named Class Categories. We use,
in our study file-based instability; Martin uses class-based instability.

Yijun et al. [25] use, parsing technologies CPPX or Datrix, which are similar to
Columbus [53] for system analysis. File-to-file dependencies are not their tools’ direct output,
but can be derived from it. What they do is to extract a “code dependency graph” from the
output of the parsers. However, we developed our own parser and dependency analyzer, and
compiled into one standalone compact application without the need of other tools.

Rotschke and Krikhhaar [57] describe a tool with the goal of extracting automated
UML information between the members of source files. Their tool has, however, an
intrinsically different purpose, which is to understand architectural quality of software. For the
large systems, UML discloses detailed relationships between pieces of software, which will be
too much to comprehend. Granularity of our tools is file level, which, we believe, provides the
right amount of detail for human consumption to understand structural quality of software.
Similar to [57], Yu and Rajlich [28] consider hidden dependencies and change propagation. For
data collection and analysis they consider type dependencies but not file to file dependencies.

To find file-to-file dependencies, using source files as input, we have developed model
and implementation for C/C++ projects [59]. The model can be extended to object oriented

programs like Java, C-Sharp etc.

23

Chapter 1 - Introduction

1.7.2 Refactoring Software Systems

Yijun et al. [25] present a graph algorithm to remove unnecessary dependencies among
files. They do this by reorganizing the header files using a class partitioning process. If a file
depends only on some portion of a class in a header file, they distribute class into two or more
classes, and as a result, they will have new header files. By eliminating unnecessary
dependencies, they speed up compilation. However, they change the semantics of the code in a
way that will cause a lot of retesting. Our study is different from theirs; we are not generating
new code or partitioning classes into new classes. We use analysis and simulation to estimate
the effects of constructive changes in Chapter 6. We have a similar goal to reduce dependency
among source files, however our method is more applicable in our context, which focuses on

multiple sources of dependencies, not just class-based.

1.7.3 Analyzing Quality of Source Files

Jungmayr [8] has explored analysis testability using a static dependency model, which
was the inspiration of ours. He has proposed a definition of testability relating to the direct and
indirect fan-out of components'*, proposes a metric methodology, without endorsing specific
metrics, and reports on several experiments'” using this approach. We differ in several ways
from his work 1) by considering importance, 2) in distinguishing types of dependency
relationships, 3) and in providing what we believe to be a more realistic'® weighting of indirect
dependencies. Inspired by a discussion by Jungmayr [8] on testability, we developed a file rank
algorithm that ranks each file based on its testability — a function of its internal quality and the
testability of the files it depends upon, and its importance — a measure of the number of files

that depend on it. Just a note our work can be viewed as a further exploration of the same ideas.

'* We have shown [11] that fan-out is highly correlated with change for the large Mozilla project.

'3 Jungmayr does not provide any technical details in [8] and we are unable to locate any concrete descriptions by him on these
experiments.

' The merits of this weighting are argued in Chapter 5

24

Chapter 1 - Introduction

Furthermore, unlike Jungmayr, we classify and treat differently dependency types, e.g., mutual,
global, callback and simple type usage dependencies. One reason for doing this is that only
dependencies based on simple type usage can be manipulated without breaking code, simply by
rearranging code packages. All the other types are breaking changes. That is, we must change
some aspect of the design to modify the dependency structure for these types.

Inoue et. al. [45] proposed a usage-based file rank procedure. Their goals are to retrieve
components from a storage repository. Our ranking procedure is risk based with the goal of
identifying components that have high risk of propagating changes. The methods of our study
and the former have some similarities but the algorithms and final results are quite different.
Our study uses a two-level structure with Test Risk and importance as the bases for ranking.

In our study, a file with high rank — one that needs to be corrected and tracked — has
high importance and poor testability. The rank is essentially based on both micro qualities —
those of the file being ranked — and macro qualities — how it relates to other files in the code
base. Its importance is much like the importance of a web page. Many search engines on the
internet use page ranking algorithms, as in Google, named PageRanks [41][42][43]. Mostly
these rankings are determined by the number of unique external visitors. Similarly, another
study was conducted to find impact analysis of publications, named “influence weight” [44].
And most recently, Component Rank method [45], based on abstract use relationships, for
ranking software components to retrieve components from a storage repository, propagating
significance throughout the use relations.

We have explored the use of a software metric set supporting examination of large
systems and found a few to be useful, based on an empirical study supported by Multiple Linear
Regression analysis. We have published a paper documenting these results [11] and another
which uses a neural network [62] . Our methods, described here, use a function size metric and
the cyclomatic complexity metric, demonstrated by Capiluppi and Ramil [9] to be effective, for

the analyses of large systems.

25

Chapter 1 - Introduction

Strong components, mutually dependent files, introduce the possibility of a chain of
forced consequential changes when a single component member file is changed, perhaps to
repair a latent defect or improve system performance. Lehman [55] states that when a system
grows in volume and complexity, it may arrive at a point such that any further change to the
system causes, on the average, one extra fault, at which point, the system becomes unstable or
unmanageable. One of the goals of this research is to identify those characteristics to minimize
such consequential changes. We have shown, using a risk model discussed below, that test risk
becomes unbounded when density of mutual dependencies increases beyond a critical point'”.

We develop a file-rank algorithm, similar in concept to the page-rank algorithms used
by some search engines, to identify particular risk areas, localize them to specific files, and
suggest means for diminishing their risks. We have written research papers about this
“Software Development Risk Model” [60][61]. This algorithm is novel, and uses direct and
indirect dependencies to characterize testability and importance. When important files have
poor testability properties, we have shown that larger than normal numbers of changes are
likely.

Change impact analysis can be used to estimate the effect of proposed changes to other
parts of the software. We have developed procedures to calibrate the change impact factor
between source code files. Michelle L. Lee [71] considers, in her dissertation, the impact of
change on types, global functions and global data, such as how many classes are going to be
affected by a change. In this dissertation, we are interested in a coarser level of impact analysis,

that of file-to-file change impact, as in the product risk model.

'7 The value of critical dependency density is a function of probability of an original change in a file causing consequential changes
in dependent files.

26

Chapter 1 - Introduction

1.7.4 Internal Metrics of Files

For purposes of testing and change control, it is important to find ways to estimate the
effect of a change in one file on other files, which use the services of the changed file.
Dependencies among source files reveal important information about possible impacts of a new
change over a set of dependent files. However, not only file-to-file dependency information but
also internal implementation quality of files should be considered. Capiluppi and Ramil have
reported an analysis of cyclomatic complexity [9] [51], as it relates to what they term “release-
touches”, the number of releases in which a file has changed. They have shown that cyclomatic
complexity is related to frequent change. And they stated “... the source files which are subject
to the higher change rate include a large portion of highly complex functions”. Based on these
findings we chose to include cyclomatic complexity as part of our measure of file quality.

Parallel research has been carried out by Ping Yu, et. al. [40] and Basili et. al. [46].
Using regression analysis, they studied the relationships between 10 object-oriented metrics and
the fault-proneness of a class. At the beginning of their research, they developed several
hypothesis about the effect of metrics suits on fault-proneness, and they try to find out whether
their hypothesis are supported by the subject system, which is written in Java with 123 classes.
Some of the results that they report, Fan-in, Lines Of Code (LOC), and Number of Methods per
Class (NMC) have statistically significant effects on fault-proneness. Most of their metrics are
internal to a class, and their unit for this analysis is the class.

These four papers, along with our own, which relates metric values to observed changes
in the Mozilla project [11], are important for this work because we use fan-in, fan-out, and
complexity metrics, as well as others, as the basis for our characterization of large systems and
file-rank algorithm is also utilizes these measures.

Software source code itself carries valuable information for monitoring the state of a

project quickly; additionally software source code is always accessible and carries up-to-date

27

Chapter 1 - Introduction

information, unlike project documentation. As stated in [40] “Software metrics provide
quantitative information that can be used in many ways to make assessment of the software
products and the development process, to help engineers in coding practices and project
manager in decision making... metrics data provides quick feedback to software engineers...”
Our work uses a two level measure of software risk: internal metrics, like those
discussed in this section, are used to define a notion of risk for a file in isolation. We combine
that with test risk derived from the files it depends on, and a measure of a file’s importance,
based on the number of files that depend on it, to evaluate software risk of each file in a

development project.

1.7.5 Visualizing Software Projects

Bassil and Keller surveyed and analyzed many software visualization tools, they stated
in their paper [49] “Today’s software systems are increasingly large and complex, and their
development and maintenance typically involves the collaboration of many people. This makes
the tasks of programming, understanding, and modifying the software more and more difficult,
especially when working on other people’s code”, in their survey, one of the conclusions is “the
more the visualized software systems is large, the more important it is to visualize it graphically
and the less useful it is to pass directly to the source code.”

Another publication of Bassil and Keller [48] covers what are the most desired and used
properties of Software Visualization (SV) tools. It states, “concerning code analysis aspects, it
seems only a low number of these aspects are supported by current SV tools”. And “Calculation
of metrics were the least supported, but were sometimes desired”. They stress the necessities of
software visualization tools.

While we have worked on analysis of large software systems, the complexity of the
systems that we study brought us to the same conclusion. For this reason, we developed a 2D

file level dependency viewer (DepView, covered in section 2.3.4).

28

Chapter 1 - Introduction

In the next chapter, we discuss elementary structural properties of software systems,

and illustrate these properties with an analysis of the source code of our research tools.

29

Chapter 2 - Analysis of System Structure

Chapter 2

Analysis of System Structure

We have studied several open source software projects, mainly focusing on the Mozilla
project, discussed in Chapter 3. Because it has very well maintained release information, code base
controlled by release and each release is accompanied with a change history. Beside Mozilla, we
have looked at KHTM, MFC and STL library files. However, we are not showing KHTML and
STL analysis. These studies were carried out with static source code analysis. In the following
sections, we will discuss system structural properties we believe to be important, and tools we

developed to analyze these properties for large software systems.

2.1. Basic Models

First, we present some hypothetical structural problems and desirable structures. In this
section, we present the charts that we use to analyze a software project; these are all very small

examples for illustration. In a later section, we will use the same charts for large software projects.

30

Chapter 2 - Analysis of System Structure
2.1.1 Problem: Large Fan-out

Depending on scores of other files - large fan-out - may indicate a lack of cohesion — the
file is taking responsibilities for too many, perhaps only loosely related, tasks and needs the
services of many other files to manage that.

The chart in Figure 2.1, below demonstrates the case of large fan-out along with a
topologically sorted diagram of the files. Any file depends directly only on the files indexed by

points in the diagram vertically above it.

o A A
© o =N WA OO
T S Tt
.
g
o)
+ vJ
*
*
.
g

15 | | 14 | | 10 | |4,5,6,7,8,9,12

*

o
Depended Upon Source Code Files

oA N WA OO N®
P S S R

- - * - .
* * \ g * g

0M12345678910111213141516
ost Mos!

t
Dﬂ Depending Source Code Files HD

After topological sort

Structure Chart — Large Fan-out

Figure 2.1 — Basic examples — large fan-out

The topological sort order of the files is [15-14-13-12-11-10-9-8-7-6-5-4-3-2-1]. Each of
these numbered files depend only on files with lower numbers, but do not necessarily depend on
every file with lower number.

We see in the chart above, file number 3 depends on nine other files directly, and depends
on one other file indirectly, not shown by the chart for ease of interpretation. In the later phases of
development, if a change is requested in file 3, it is hard to retain information about what each of
the nine files are used for. Even the developer of that file can easily forget the details of those 9
files. Another drawback is, if a change occurs in any of those nine files, file 3 has to re-tested to

make sure those changes do not break its compilation or operation. When operation of code in file

31

Chapter 2 - Analysis of System Structure

3 is defective, the problem can be in file 3 or in any of the 9 files, it depends on. Therefore, fan-out
should be limited, excessive fan-out reduces reuse; makes code harder to understand and
modification more difficult.

Below in Figure 2.2, we see a dependency view of DepAnal. The picture only shows the
fan-out of dependency of DepFinder.cpp, as we see it depends on many other files. This will make
testing of this file harder. Change in depended files likely force DepFinder.cpp to change, this will

require frequent testing and reduces the manageability of the file.

T

E® DepView 1.4 - 2D Dependency Viewer,

On the left, we see that DepFinder.cpp uses
services of many other source files.

An error fix or update of DepFinder.cpp will
require understanding of all depended files.
This reduces flexibility of accepting new

changes.

Ready Y

Figure 2.2 — Example of excessive fan-out, dependency picture of DepAnal

If someone wants to use DepFinder.cpp, he needs to add scores of other files used by
DepFinder.cpp. Consequently, reusability of DepFinder reduces. This is an undesirable property

and increasing the size of the project.

2.1.2 Problem: Large Strong Components

A strong component, within a dependency graph, is a set of mutually dependent files.
When topologically sorted, a strong component will have dependency relations that appear below

the diagonal of the dependency matrix, as shown in Figure 2.3.

32

Chapter 2 - Analysis of System Structure

©

0
23 *
T
37 - -
S
5 ® 6 .
5
35 > .
(7]
) J s ¢ *
6 Q
4 23 3 If there is a dot under the
8 diagonal, it indicates there
g 2 * are mutually depended files.
y §1
s [7 N 2l S .
0 1 2 3 4 5 6 7 8 9
DD Depending Library Source Code Files DD

After topologically sorting, strong components

Structure Chart — Strong component are expanded

Figure 2.3 — Basic examples — strong component

The existence of strong components, in a set of files, makes it impossible to carry out an
ideal testing process on the set, as discussed below.
Ideal testing process:

- Test those files with no dependencies, and then test all files depending only on files

already tested.
For testing, a strong component must be treated as a unit, because they cannot be put into a total
order. The larger a strong component becomes, the more difficult it is to adequately test.

Change management becomes tougher, due to consequential changes that may occur when
we fix latent errors or performance problems. The chart shows circular dependency among the
files 5, 4, 3 and 2. There is no topological sort possible among these files; this will cause difficulty
picking a file to start testing. In addition, this makes code hard to understand and any change of a
file in a strong component requires all the files in the strong component to be re-tested. If the size
of a strong component increases, it makes testing, maintaining and adding new features much

harder to accomplish. This is a serious sign of structural problems.

33

Chapter 2 - Analysis of System Structure

{18 DepView 1.4 - 2D Dependency Viewer

View

¥ Show Dependency |34 Draw | [Allowpopup ¥ Fanln W FanOut ¥ ExtDep [WolwtemalDep Clear
EED Tomponert? oF R

Fleady, Y

Figure 2.4 — Example of strong component, a strong component with four files

This is the topological sort of the files [8-7-6-5-4-3-2-1]. The order given is the best we
can achieve for testing. Numbered files depend only on files with lower number, but do not
necessarily depend on all files with lower number. Files 2, 3, 4, and 5 cannot be ordered.

From the re-use perspective, a developer would not want to include a lot of files in his
project just for a couple of features; since it will complicate testing, increase the size of the project,

and reduce comprehensibly. As a result, large strong components reduce software reuse.

2.1.3 Problem: Large Fan-In

High Fan-in is not inherently bad. It implies significant reuse, which is good. However,
poor quality of a widely used file will be a problem.

High fan-in coupled with low quality creates a high probability for consequential change.
By consequential change we mean a change induced in a depending file due to a change in the
depended upon file

The chart in Figure 2.5, below demonstrates the case of a large fan-in along with its
topologically sorted diagram of the files. Any file is used only by the files indexed by points in the

horizontal line passing through the used file on the ordinate.

34

Chapter 2 - Analysis of System Structure

16
15 *
14 4 *
13
12
11 A .
10

*

*
*

Depended Upon Source Code Files

Y .

| 2,3,4,5,6,7,8 |

4 5 6 7 8 9 10 11 12 13 14 15 16

Mos’EJ vz i i Most
Iil DH Depending Source Code Files HD
12

After topological sort

O AN wWh OO N®

Structure Chart — Large Fan-in

Figure 2.5 — Basic examples — large fan-in

File 10 is used by 8 files, this shows file 10 is highly used, this is a good thing, however if
a change occurs in file 10, all the depending files have to be re-tested to make sure that the
introduced change does not break their functionality. Sometimes a change can cause a chain of
secondary changes to depending files. Excessive fan-in is risky as in the case of excessive fan-out.

This is the topological sort of the files [15-14-13-12-11-10-9-8-7-6-5-4-3-2-1]. Numbered
files depend only on files with lower numbers, but do not necessarily depend on every file with

lower number.

2.1.4 Desirable Dependency Structure

Each component (file) depends only on its close neighbors. All files have low fan-in and
fan-out. There is no call back to upper level components, or deep call forward.
Figure 2.6, below demonstrates the desirable dependency structure on the left along with

its topologically sorted dependency diagram of the files on the right.

35

Chapter 2 - Analysis of System Structure

] H
©

>

Depended Upon Source Code Files

No dots under the diagonal

|

i

s | L] [+ 1

0 1

2

3

4

5

7
y DH Depending Source Code Files [[][Independend
]

6

I

After topologically sorted strong components

Structure Chart

Figure 2.6 — Basic examples — desirable dependency structure

expanded

With this structure, testing can be organized in a straightforward way — test all files that

depend on no others; then test files that depend only already tested files. There is no circular

dependency, and each file depends only a couple of files, which enables developer to comprehend,

to reuse, and to test the project easily. Moreover, a new change can be easily accommodated

without requiring heavy testing or without causing a chain of changes.

Ideal structure has cohesive components with no mutual coupling. This is the topological

sort of the files [8-7-6-5-4-3-2-1]. Numbered files depend only on files with lower numbers, but do

not necessarily depend on every file with lower number.

Figure 2.7 shows the fan-in and fan-out histogram of basic example above in Figure 2.6.

There are no large fan in

Figure 2.7 — Sample desirable fun-in and fan-out sizes

36

There are no large fan outs

Chapter 2 - Analysis of System Structure

The histogram in Figure 2.7 indicates that there are no scores of fan-in or fan-out, which is

desirable from the perspective of good dependency structure.

2.2. Dependency Analysis Tool, DepAnal

In Chapter 3, we embark on a study of the structure of large systems, focusing on Mozilla,
Version 1.4.1. Before doing that, however, we will illustrate the structural ideas we have been
discussing in this chapter, by examining our own DepAnal tool — a system considerably simpler
than Mozilla - to help us interpret some of the ideas presented earlier in this chapter. To do that, we
discuss several aspects of its code structure and its design.

We analyzed our static type dependency analyzer, DepAnal, in which we know every line
of the code in detail. We would like to find out whether our analysis techniques are disclosing the
same level information. Moreover, can we get insight without reading source code? Shaded area

in Figure 2.8 shows the role of DepAnal in our analysis technique.

(2D-Drawing) Views

DepView 7Dependency» %“ —_— ;6
% -

Strong Components

: StrongComponent
—File Setp> — o oPendency (Component Analysis)
(Type Analysis)

Internal Metrics .
i_» RiskCalculator | Risk
(Risk Analysis) —

Reusability I I I I I I

Figure 2.8 — Analyzing DepAnal itself.

We get insight both of mutual dependencies obtained from the dependency graph as strong
components, and on individual files. DepAnal has 30 source files, 14 files out of 30 are reused
files. We know our project well, which files are complex and hard to modify. However, we were
not sure about the order of high risk files, the size of the strong components and their interaction

with other files: The results we obtained, shown below in Figure 2.9, are encouraging. It

37

Chapter 2 - Analysis of System Structure

illustrates the applicability and helpfulness of the approach even for relatively small size software

projects.
Topological sort of the files e
I Show Dependency |25 ﬂl ™ Allowpopup W Fanln ¥ FanOut ¥ ExtDep [Molntemal Dep _Eﬁﬂ
<-Mos;;2<siteﬁendent IncludeMngr.h
. Grammar.cpp
regexpr2.h Grammar.h
regexpr2.cpp Scopelnfo.cpp
restack.h Scopelnfo.h
syntax2.h Collector.cpp
FILEINFO.CPP Collector.h
FILEINFO.H DepRecorder.cpp
NAV.CPP DepRecorder.h
NAV.H i
TOK.H DepFinder.cpp Least Dependent =
. DepFinder.h ==)
SEMLCPP Main.cpp
SEMIH reimpl2.h
Utilities.cpp syntax2.cpp
Utilities.h TOK.CPP
IncludeMngr.cpp Most Dependent ->

Figure 2.9 — DepAnal Ver 1.7.a’s internal dependency structure. Consists of 30 files

At Figure 2.9, we see DepAnal’s file level dependency structure, before seeing this picture,
generated by DepView, we were not aware that DepAnal has a strong component with size of 4
files, which are files developed specifically for DepAnal. For this small size project, the largest
strong component carries more than 25% of the developed source files in the project. This view
demonstrates a potential problem without using our developer knowledge of this project. Even
knowing our code well, we were not aware of the existence of this component and this dense
interaction between files.

Figure 2.10, below shows each dependency between two files, which are obtained after

expansion of topologically sorted strong components. The closer the dots to the diagonal is the

38

Chapter 2 - Analysis of System Structure

better the structure, indicating local communication, no deep call forward and no deep call

backward.

Depended on Library Files

L I SR SUI N &) Rao BN Ko el (o N an]

Dephnal Version 1.7 a

*

*

+ + +
+*

-

* *
+* *

*
* * +

*
LR R 4
* *

*

*
*
LR B B
*
+ + 4
+*
*
+

+

* * ¥ »

L B N R R B
LA R R K K K B 3
* *

* * »
*

Least Dependent ->

T T T T T T T T T

910111213 14151617 181920212223 24 2526 27 28 2930 31
Depending Library Files

T T T L T T L L

Figure 2.10 — Expansion of Strong Components - DepAnal Ver. 1.7.a

Topologically
Sorted Files

Most Dependent

1 TOK.CPP
2 syntax2.cpp
3 reimpl2.h
4 Main.cpp
5 DepFinder.h
6 DepFinder.cpp
7 DepRecorder.h
8 DepRecorder.cpp
9 Collector.h
10 Collector.cpp
11 Scopelnfo.h
12 Scopelnfo.cpp
13 Grammar.h
14 Grammar.cpp
15 IncludeMngr.h
16 IncludeMngr.cpp
17 Utilities.h
18 Utilities.cpp
19 SEMI.H
20 SEMI.CPP
21 TOK.H
22 NAV.H
23 NAV.CPP
24 FILEINFO.H
25 FILEINFO.CPP
26 syntax2.h
27 restack.h
28 regexpr2.cpp
29 regexpr2.h
30 ITest.h

Least Dependent

At Figure 2.10 above, we see strong components expanded into their individual files, each

dot represents a dependency relationship between two files. For any dot, the file vertically below it

(x) depends upon the file horizontally to its left, on the ordinate (y).

Any dot under the diagonal

indicates the existence of a strong component. Each rectangle represents the strong component as

shown in Figure 2.9.

One other important information Figure 2.10 reveals is the number of dots inside the

rectangles. The more dots (dependency relationship) the higher the risk. We show in section 4.1.8,

that as the dependency density increases, in a set of mutually dependent files, the system gets

closer to, or reaches, the point of unending changes.

39

Chapter 2 - Analysis of System Structure

We know the largest strong component in DepAnal consists of 4

files. In order that 4 files belongs to one strong component, we

1/0\2\ need at least 4 dependency lines among them. However, there

can be other dependencies between the members of a strong

component, as in the case of DepAnal’s strong component, which

\4 3 has 8 dependency lines as shown by the block in Figure 2.10.
\O/ There are twofold more (4-extra) dependencies between
Strong component with 4 files members of the files. This reduces the flexibility of the files for

change, as any change may induce other changes to occur.

Without the help of tools, it would be impossible to analyze large quantities of source files
in a timely manner and obtain accurate results manually. In order to overcome these limitations we
developed several tools to analyze source code and visualize the results to enhance our insights
about the project under examination.

Figure 2.11 shows fan-in histogram of DepAnal. Some of the files have high reuse, such
as Utilities.h/.cpp and Semi.h/.cpp. These files are providing common services needed by most of
the files in the system. As developers, we expect these files to have good implementation quality,
since change in those files requires testing of many files and has potential to cause cascading of

changes in depending files.

40

Chapter 2 - Analysis of System Structure

Fan-in Size

In Figure 2.12, we see the fan-out chart of DepAnal, some of the files use services of many
files in order to accomplish their jobs. For example, Main.cpp uses too many files to accomplish
its assigned task; it would be difficult to understand the reason those 14 files are needed. Some of
them have reasonable fan-out size. As stated earlier, large fan-out reduces comprehensibility of a
file. Depending on many files may cause frequent change in the file with large fan-out due to

changes in depending files. Additionally, in order to make sure no adverse effect transpire due to

Fan-in Chart of DepAnal

Collector.cpp
Collector.h

gacaoacaprQeccocoNIrarQecaAarQcocccocac
855550552 5555>52583x8%80a28g
CEoBOR g 220202300480 5628: &
S E8S0Z S EERPSE>2ZSHEOXFOESF5ED S E
2L2ow g E ° =S < =20 EX5S85308 s
SEogozWeld =g =Z W soE =23 PeLESR
umom_gmo O S n Q O 5 > = =
oN O g Wi o © 5 gn o) n
& %8 © 3= b7 -
8Du_ g
File Name

Figure 2.11 — Fan-in Chart of DepAnal Ver. 1.7.a

changes in depended files, frequent testing is unavoidable.

Fan-out Size

Fan Out Chart of DepAnal

JEENGEE R I i Y

O=2NWHAUIONOOO-=2NWA,O
|

Figure 2.12 — Fan-out Chart of DepAnal Ver. 1.7.a

41

H

H I .

(W HPHH]

(W HHHH]

(- M]

(N W |

| I E A A EE W]
acaocaocprTQCcQCccaaT L CcCcQCNT Q0T QO
8585855085853 85>8dd£8045848¥ 89
SO E Ve DEUL g2 To0L™ NT=0 s
88 E850ZEEPSE S22 53 ERESSHREXF O
8ocs5s0smes=g =% 39%¢gem £3°2 E£5
SOLooxy=-dgH oS o= 2Lo00m X 35
8 anN O s & T o o) QW »n

gregito 32 =3
8ou_ E
File Name

Chapter 2 - Analysis of System Structure
2.3. Analysis Applications

We have analyzed several open source projects. In order to accomplish this we provided
analysis tools capable of analyzing very large systems and characterizing their behavior so as to
make visible the web of dependencies that every large system possesses. These dependency
relationships have always been visible in the small — in local areas around one specific part of the
code base. However, dependencies are invisible in the large — far too complex for a human to
understand without tools. Our goal is the construction of a robust tool set that makes these
relationships visible in clear descriptive ways, with analysis code that is robust, able to handle very
large systems, and with a friendly enough user interface that researchers outside our group can use
them. We have used these tools to help us build and interpret risk models, file ranking, alpha
estimation, and reusability index. Furthermore, the analysis does not depend on semantic
understanding of large parts of the system. For the large systems we study, a single developer can
only understand a small part of the complete system.

Some of the major tools that we developed for analysis are shown in Table 2.1, below.

Tool Name Short Description

Dependency Analyzer, Finds dependencies between C/C++ source code
DepAnal

files based on static type analysis.

This is a user interface for all the developed tools to integrate the
DepAnalUI

management.

Extracts mutual dependency groups and their topological sorts by using
StrongComponent

the dependency information generated by DepAnal.

Analyses several internal metrics of software source file, such as each
Analyzer

function’s cyclomatic complexity, total line count.

Dependency Viewer, provides two dimensional (2D) interactive views
DepView

of dependency relationship file and strong component level.

42

Chapter 2 - Analysis of System Structure

Creates importance and test risk matrix by using dependency and
MatrixMaker

metric information.

Calculates the risk rate of files by using matrices generated by
RiskCalculator

MatrixMaker.

Logs each change record with brief info, cause, date, dependency and
Changel.ogger

metric information.

Table 2.1 — Selected developed tools for analysis

This tool set enables a software manager or developer to constantly monitor structural and
internal qualities of files. Unwanted dependencies can be spotted shortly after they occur, and the

software manager can request corrective action.

2.3.1 DepAnal

Dependency Analyzer, DepAnal is an automated file level dependency analyzer. It finds
dependencies among C/C++ source code files based on type, global function and global variable
invocations and declarations. It ignores include-based dependencies, as developers are
occasionally careless about the files they include. Unnecessary dependencies affect build
efficiency but do not affect design or compilation breakage due to change. All of generated data
are presented as direct dependencies. Hence, the transitive closures of the dependency graph are
not shown. Analysis is carried out this way because, for large systems, the transitive closure
becomes very dense and hard to interpret.

There is one main application file, DepAnal.exe, which finds dependencies between the
files by scanning through source codes in files. A window based user interface we generated to
manage DepAnal and accompanying analysis application, called Dependency Manager.
Dependency Manager organizes the order of the applications’ invocation. Some of the processes it

spawns are Analyzer.exe, which is generating metric information, about each source file, and

43

Chapter 2 - Analysis of System Structure

StrongCompAnal, which uses DepAnal’s output as input to find strong components (A group of
mutually depended files targeting a particular goal).

The plots and graphics, shown above were derived from a static dependency analysis using
DepAnal. The analyzer uses a production-based grammar analysis, greatly simplified from the
grammar required to specify the entire C++ language. The results of the analysis are used to build
a dependency graph for the analysis set, which is then processed to find strong components, and
prepare a topological sort, needed for some of our visualizations. Additionally, the output also used
during Product Risk analysis Reusability Index calculation.

The analysis finds dependencies based on the following model: file A depends on file B if;

1. A creates and/or uses an instance of a type declared or defined in B

2. Ais derived from a type declared or defined in B (inheritance)

3. A is using the value of a global variable declared and/or defined in B

4. A defines a non-constant global variable modified by B

5. A uses a global function declared or defined in B

6. A declares a type or global function defined in B

7. A defines a type or global function declared in B

8. A uses a template parameter declared in B

These rules intentionally do not acknowledge dependency of a base type on its derived types
even though it is possible that a derived type modifies protected data members of the base. Doing
so, we believe, would identify potentially many false-alarm dependencies in well designed systems.
It would be interesting to compare analyses of a major system with this assumption and with a

model in which the base is declared to depend on all derived types if it provides protected data.

2.3.1.1 Architectural View of Dependency Analyzer (DepAnal)

DepAnal’s goal is to find dependencies between source code files based on static type

analysis. Dependency relationships between the files are determined by the model described

44

Chapter 2 - Analysis of System Structure

above, as in [8][25][26][27] DepAnal makes three passes over each file in the project, as shown in
Figure 2.13.

There are three passes over the source code set. We can summarize the job of each passes as
following.

— First pass prepares source files for analysis,

— Second pass collects user-defined types, global functions and global variables,

— Third pass finds dependencies between source files by finding invocations of items

collected in second pass.

Source Files
Preprocessed combined source file

(appending content of all files

after removing system headers)
Output

h J
Collected items
(Types,
Global Functions,
p Global Objects)
reprocessed

files after removing 4—‘

system and user
headers

(types, global function, global object)
Find the invocations: file to items dependencies.
Resolve invoked item’ s implementation files
to obtain file to file dependencies

File to file dependencies

Figure 2.13 — DepAnal data flow diagram

End outputs shown in Figure 2.13 are dependency information between the source files

together with each files internal metrics.

45

Chapter 2 - Analysis of System Structure

C/C++
Source Code

i

Semi-Expresssion

Analyzer Collecting;
J definition and declartion of
types - functions - global objects

Tokenizer

) J

Figure 2.14 — Collecting data from source code

Figure 2.14 illustrates the process of collection of user-defined types, global functions and
global objects. We use the same process for collecting invocations

The internal architecture: The core task is to assemble useful information from collected
data in a representation that gives easily comprehended views of the current state of an analyzed
project. DepAnal’s outputs are all text based. Charts showing the system’s state of health are
prepared using Microsoft Excel.

The goal is to build a tool that can be used to constantly monitor evolution of the state of
large software systems and provide guidance about where detailed quality analysis and re-factoring
are needed.

DepAnal tool does not identify unused code. Its parser is not a full implementation of a
C++ recognizer, but rather an ad-hoc implementation of the rules described in section 2.3. We
have checked manually its results on modest size projects and run it many times on our own code,
as it evolved, and believe that the results are accurate, within the limitations described in this
paragraph.

We also developed two adjunct tools that extract additional information from the project.

2.3.2 Strong Component Analyzer:

StrongComp'® builds a dependency graph from the data provided by DepAnal and

analyzes its strong components, that is, sets of files that are mutually dependent as defined by

' The first implementation of this tool was implemented by Srinivas Neerudu, now with Microsoft in Redmond, Washington.

46

Chapter 2 - Analysis of System Structure

Lakos [58]. It then performs a topological sort of the strong components to show an ordered flow
based on dependency. Finally, it expands the strong components, within the sorted component
order, to arrive at a representation of all the files as well ordered as is possible when there are
mutual dependencies. This provides a candidate for testing order of the files that attempts to

minimize re-testing when latent defects are found and repaired.

2.3.3 Size and Complexity Analyzer:

Analyzer counts the number of lines of source code in each function and analyzes each
function’s cyclomatic complexity, measured by the number of regions enclosed by the control flow
graph of the function. Anal also evaluates the total line count and sum of the complexities of all of

the functions in each file.

2.3.4 DepView

All the results, obtained from running DepAnal on software projects are represented as
text, and interpreting these text files is almost as hard as reading source code. We felt the need of
another way of representation, which would disclose qualitative information about the system in an
easily understandable fashion. We developed the 2D dependency viewer, DepView, to obtain
comprehensible views of large software systems.

Dependency Viewer, DepView helps us to see dependencies between files and strong
components, it gives another insight about how densely parts of the component interconnect, using
its 2D graphical interface. DepView provides mainly two kinds of view; one is component wise
dependencies, which gives the big picture of project; another is file level dependencies, which is
much denser. However, with file wise we can focus on a file and visually see dependencies
between it and other files.

Each circle represents a strong component, and at the center of circle, there is a number,

which indicates how many files are parts of this strong component, Size of the bubble is

47

Chapter 2 - Analysis of System Structure

proportional to the number of files in strong component. We assume that a file itself is a single

component with size of one.

Figure 2.15 illustrates how well the project is packaged into modules.

™ DepView 1.4 - 2D Dependency Viewer
View

T Show Dependency |18 Draw | [Allowpopup [Fanin [FanOut [~ ExtDep [Holriemal Dep E

TOK.CPP SymtaxZopp rempiZh Win cpp Companentd

Componert? Component1
* Grammarh

Companents Companents

Companentd TOKH

. el ludehingr h :

Companent3
oh

Companent 10

Companentd

Component2

o ® syntax2 h
vmm’
v

ITesth

-\LE\NFD H
expr2 opp

oflecto

Ready

A

Figure 2.15 — DepView of DepAnal, components

and files

On the left, it shows DepAnal’s files and
strong components, it does not show
dependency information in this view. Even
though it does not show dependency lines,
it gives insights about strong components,
as size of bubble proportional to number of
files in strong component. The larger the

strong component, the harder to adapt to a

change, the harder to test.

Figure 2.16 illustrates dependency relationship of component #6. It can be easily seen how

many files are using the services of the component, and how many files are being used by the

component to accomplish its tasks.

= DepView 1.4 - 2D Dependency Viewer

Wiew

[~ Show Dependency 113 Diaw | I &llowpopup W Fanln W FanOut W EtDep [Molntemal Dep

Clear

On the right it shows dependencies
of Component 6, which consists of
two files, Collector.cpp/.h. This

is useful information to get more

detail about interaction among

Componentd

ap

source files.

Ready...

L

Figure 2.16 —DepView, dependencies of component 6

48

Chapter 2 - Analysis of System Structure

In addition, generating frequent DepView images enable us to monitor the evolution of

dependencies among source files and monitor growth of strong components. This information can

be used to help avoid excessive dependencies.
As summary:
- Visualize the static structure in one picture

- Visualize the web of dependencies

- Realize mutually depended files and size of the mutually depended files

- Reusability of the files in the system (if a file is a member of a large strong component or

depend, on transitively many files, it is not a good candidate for reuse)

- Whom a file provides services

- From whom a file gets services

2.3.5 Dependency Analyzer User Interface

Dependency Analyzer is console application, which needs “settings.txt” to acquire
information about the project to be analyzed. To make use of DepAnal more user-friendly
graphical user interface developed which helps managing settings.txt and execution order of

developed analysis tools. There are three groups of information, titled Project Settings,

Environmental Settings and Applications as shown in Figure 2.17.

M Dependency Analyzer Manager Ver 1.6

File Tools Help

Envirohmental Settings I Applications 1

Settings File Mame

[settings.tat

Root Folder

Dulput Folder

WV LUse Input File

Input File Name for Full Path Praject's Source Files

|E:\M uratsFiles\PhD StudiessPapers\ChangelmpactF actorE stimation\U sedGraphic

Shared Path of Source Files

|ctolEstimalion\UsedGlaphics\FileDepAnaIys\s\FileDepFi\esD nlyEvalvedFiles. bt

|C:\M uratsFiles\PhDStudies Codes\FileDep

Consider During Dependency Calculation
Use preprocessed files

¥ Global Objects I with no includes during
averall analysis
¥ Types
|gnore in-scope |nchuded
¥ Global Functions M TypelObifFunc
Job Manager
Save Save s Generate Metrics

ﬂ v Run Preprocessor
Exhia Processing Oplion
J I Replace Missing Headers
3y Includes Already

[~ Remover (Defaull
Unchecked)

e

Cansider Duplicate
I Global Objects

[~ Types

[Global Functions

2D Dependencies ‘ m

Settings saved

49

Chapter 2 - Analysis of System Structure

Figure 2.17 — Settings for project to be analyzed and dependency options

Project settings contain the information regarding analysis project at hand, such as source
directory, output directory, which dependency types are to be considered. Environmental settings
contain additional preprocessor options specific to analysis project at hand, include and library path

information. Applications are the developed tools for the analysis.

2.3.6 Change Logger

Change logger is used to collect detailed change, dependency and metric information in a
database. All the information is dated to monitor evolution of change impact factor (details are in
Chapter 4 and Chapter 5). Figure 2.18 shows the screenshot of Change Logger application, which

records occurred change information together with reason of the change, if it is a consequential.

[Change Logger Ver 1.8 EEX

Settings Show Final Alphas Alpha Evolution

Change Logger

—Change Info

—No Fils Nams ——————————————— ~ChangsTyps —————————————————
DepRecorderh - Global Glbal
’V ’1 Tee © Fincion © Data | Ot

~Comments

‘addFuncTquedFuncTabls func dec added due to recard nvekedFunctions 1.5.¢ DepFin.cpp

- [Change Number in Maintenance History Change Date
¥ Do ’7|1 22 —‘ ’71/7/2005

FILE: DepFinder cpp - VER: 1.6.c - DATE: 1/6/2006 is caused by: 386, Change took place in' DepRecorderh
VER:1.2.3 DATE1/7/2006

Change History

) 4| [Fiename DepFinder.cpp
~ |Twpeoichange :Tpe Coused by: 365
390 o |Comments ecordinvokedFunctions func def added

v

Figure 2.18 — Change Logger, records change information for change-impact-factor (CIF)
estimations

Each change carries the following details: File name where change occurred, what is the
change about, what other change drive this change, change date, change number, type of change.
Additionally, while recording each change entire project is analyzed by DepAnal, current
dependency and metric information also recorded into database. It also calculates the alpha values

within given any two dates.

50

Chapter 2 - Analysis of System Structure

2.3.7 Matrix Maker

Matrix Maker is a C# application using DepAnal’s output to create matrixes for risk
analysis in Chapter 4. It generates importance, testability matrixes and their corresponding results
arrays, accepts dependency and internal metric information to create matrixes. The outputs of

Matrix Maker are used by MatLab Risk Calculator application to find out Risk values of each

source files.

Figure 2.19 shows the screenshot of Matrix Maker application, which generates text based

matrix files to be used during product risk calculation

To simulate the effect of interface insertions, it provides an option to use special alpha

value for the files, which are used by certain number of files. This feature is used mainly for

[matrix Maker v4.0 E]E]
Fan in file name, generated by Depdnal
|Fan\nFanachFiIE ini _
Fan out file name, generated by Depdinal
|FanDutFmE achFile ini
Metiic file, used for Beta value calculation, generated by DA
|ManyMetrics-EE-LD C-Etc.ini
Alpha
01

[Simulate Interface

Simulate Interface

Alpha for Interface Files 0ol
Far-in size for interface files 11

Ready...

Figure 2.19 — Matrix Maker — creates matrix for risk analysis

simulating constructive change covered in Chapter 6.

Moreover, Table 2.2 shows other small size handy applications for analysis.

Finds average change occurred to files based on metric
Averager

sizes.
CleanFiles Removes non C/C++ files from list of files to be analyzed.
DirWalker Walks recursively directories and grabs all source files

51

Chapter 2 - Analysis of System Structure

Going back from Mozilla 1.4.1 libraries to previous version

FindExistingFiles
of Mozilla to collect if the same file used in those versions.

It merges DepAnal generated metrics with change history

MergeMetricsWithHistory
by release.

If same files exist in different folder it identifies and prevent

RemoveDupFiles
same file to be processed by DepAnal several times

Table 2.2 — Helper tools for analysis

52

Chapter 2 - Analysis of System Structure

2.4. Summary

Without a detailed knowledge of the entire code base useful information about significant
problems can be identified. Screening static structure provides both quantitative and qualitative
information regarding structural problems, showing how pieces are interconnected with each other.

In order to get insight about a software project, assistance of analysis tools is a great help.
Especially, in the case of large software. Analysis tools provide quick, accurate information
directly from source code, which carries always up-to-date information. Therefore, we have
developed and applied these applications. Moreover, we analyzed the entire Windows build of the
Mozilla project, version 1.4.1, released in October 2003. There are 6193 files in that build, which
means that this build is indeed a large project, and we show in our analyses, in Chapter 3, is subject

to many serious structural problems.

53

Chapter 3 — Empirical Study

Chapter 3

Empirical Study

In this chapter, we focus on analysis based on static type dependency between source code
files. All of our data are presented as direct dependencies. That is, we do not show the transitive
closures of the dependency graph. Analysis is carried out this way because, for large systems, the
transitive closure becomes very dense and hard to interpret. Note that we do account for these
transitive dependency relationships in our Product Risk Model, discussed in Chapter 4. Our
primary interest is evaluating the quality of a system’s structure and implications of the structure
for project management, maintenance, and testing. We present and interpret results of an empirical
study of C/C++ projects and how to asses the quality of software systems from analysis of their

source code.

3.1. Empirical Study of the Open-Source Mozilla Project

All of our findings are based on a static dependency model outlined in the Chapter 1 and
Chapter 2. We present several different views of the dependency data and draw some conclusions
about what such data can disclose concerning a project’s implementation.

54

Chapter 3 — Empirical Study

Mozilla is a very large project developing browser tools for many different platforms. It
consists of many thousands of files, and so is a typical example of the large systems we wish to
explore [12]. The Windows-based version of this software was chosen for analysis, as we are
familiar with that as a programming environment and have all the tools to execute the various
builds required for this study. We have examined the entire Windows build as well as several
constituent libraries and adjunct tools, 6193 files in total, generating builds for each before
proceeding with our analysis.

The analysis results are presented for several data sets, in five views:
1. Fan-in: the number of files that depend on a file, for each file in the analysis set, and
related fan-in density histogram.
2. Fan-out: the number of files that a file depends on, for each file in the analysis set and
related fan-out density histogram.
3. Strong components: groups of files that are all mutually dependent and related strong
component density histogram.
4. Topological sort of the strong components.
5. Expansion of all strong components within the sorted data.
We examine each of these views and interpret their data with respect to measures of project
implementation strengths and weaknesses they reveal. Type dependency fan-in and fan-out have
been discussed before [13][14][15] with results presented similar to those shown here. We focus

explicitly on the structural aspect of program implementation at the file level.

3.1.1 Mozilla Data Collection

We downloaded version 1.4.1 of the Mozilla Win32 configuration [16] [12]. This included
the entire build, which makes many executables and libraries. We were able to build all the

libraries and executables in about a week’s effort, using the information provided on

55

Chapter 3 — Empirical Study

www.mozilla.org. This involved making a few recommended changes to makefiles', setting
environment variables, and settings in for the Visual Studio C++ compiler, used for all the builds
for this empirical study.

Note that our analysis pertains only to the Mozilla source code, but we wanted to ensure
that we analyzed exactly those files used to create individual executables and libraries. It took
some time to understand the required directory structure, make modifications to that to suit our
analysis, and then make trial builds, but the process went surprisingly smoothly.

We built some simple parsers to find all the files included in a specific build, based on
compiler output. This included all common code and header files. The statistics for this process

are shown in Table 3.1.

Number of executables: 94
Number of dynamic link libraries: 111
Number of static libraries: 303

Number of source files for Win32, v 1.4.1 6193

Table 3.1 — Summary of generated outputs and files from Mozilla built

The information provided on the Mozilla web site was very well prepared, easy to digest,
considering the size of this large project, and straightforward to use. We chose this project because
of the quality of its tools and the fact that it has a very large code base.

The analysis tools developed for this research were able to digest the entire code base of
6193 files and perform all the analyzes in approximately 4 hours after configuring the settings on a
PC with 1 Gigabyte of random access memory, running Windows XP Professional, with Pentium

IV Processor.

' A configuration file used by the make utility defining the location of source files, how they will be compiled and linked to create the
executable program. www.mccabe.com/iq_research_iqgloss.htm

56

Chapter 3 — Empirical Study
3.1.2 Fan-in Data Extracted from Mozilla GKGFX Library

Figure 3.1, below, shows fan-in for each of the files in the Mozilla GKGFX library. This
plot analyzes all of the dependencies on each of the 598 source code files in the library from within
the library. When we analyze the entire build, many of these fan-in numbers become larger.

Fan-in is the number of files that depend on a file. A file with large fan-in is desirable from
the perspective that it demonstrates high reuse of the types defined in that file. For instance, we
would expect to see high fan-in for some utility library routines. However, should that file have
less than desirable quality attributes one would expect to see a high probability of change, not only
for that file, but also for many of the large number of files that depend upon it [17].

Figure 3.1 and Figure 3.2 illustrate histogram of fan-in value and its corresponding density

values respectively.

N
IN]
=]
N
N}
S}
7
O

S
- SV
200 *4‘ WmFan In Size 200 74 @ Fan In Size
180 A 180
160 - 160
0140 9 140
& ® 120 o
0120 L cos
_2100 % 100 S
© w ©
“ 80 80 IN
60
°0 NOIBS
40 —OTN
0 OO ORRIRTVY S
2 | |‘ ' Ii ST ‘°°°i’||||IIII|||||||
nlfl
0 Ll L 1L ‘ 1. n Ll g l“‘“ U\ I 0+ ‘cn‘m‘r\‘ ‘m‘m‘o‘m‘«—‘m‘ﬁ-‘w‘m ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
oOonmN

Library Source Code Files Number of Files with Specmed Fan-In

Figure 3.1 — Mozilla GKGFX Library Fan-in Figure 3.2 — Fan-in Histogram for GKGFX
Library

There are scores of files, shown in Figure 3.1, with very large fan-in. All of these should
be important targets for quality analysis, in order to effectively manage the change process during
development. High fan-in coupled with low quality creates a high probability for consequential™
change [18]. We have also looked at the wealth of change data provided by Mozilla’s associated

change data log to understand this process better.

» By consequential change we mean a change induced in a depending file due to a change in the depended upon file.

57

Chapter 3 — Empirical Study

In Figure 3.2 we show fan-in density for the same library — simply a histogram for the data
in Figure 3.1. This plot shows that some of the source code files have high fan-in, characteristic of
a widely used library. A library with this profile should be given high priority for analysis by the
test team and quality analysts.

We explored the relationship between high fan-in files and high risk®' files. We analyzed
Mozilla’s GKGFX Library, and selected 100 files with highest risk value and 100 files with highest
fan-in value. And matched these two groups, asking the questions, how many of the highest fan-in
files are common with highest risk files. We observed that 45 out of 100 highest risk files are also
in the highest fan-in files, and 5 out of top 10 highest risk files are again in the highest fan-in files.

This showed us high fan-in files are likely to have high risk values.

3.1.3 Fan-out Data Extracted from the Mozilla GKGFX Library

Fan-out for the GKGFX library is shown in Figure 3.3, below. Fan-out is the number of
files that a file depends on. A file with large fan-out may be symptomatic of a weak abstraction.
We expect that a source file may carry out its assigned tasks with the aid of a few trusted delegates
and perhaps a few references to commonly used utilities. However, depending on scores of other
files may indicate a lack of cohesion — when the file is taking responsibilities for many, perhaps
only loosely related, tasks and needs the services of many other files to manage that.

Figure 3.3 and Figure 3.4 illustrate histogram of fan-out values and its corresponding

density values respectively.

2! Risk is defined in Chapter 4

58

Chapter 3 — Empirical Study

60 4‘ EFan Out Size 8
60 +-{_mFan Out Size
50 ?
50 ¥
o 240 ©
@ 40 4
1 Q30 &
£ 30 28 p
m cees
o=%n
20 10 — hal
S
10 “ | I L “ | I\.‘H |" | . 0:‘.“;i|||||| LI
BEINETRECTLO T T oML - s
0 - Number of Files with Specified Fan-Out
Library Source Code Files
Figure 3.3 — Mozilla GKGFX Library Fan- Figure 3.4 — Fan-out Histogram for GKGFX
out Library

Figure 3.4 shows a Fan-out histogram for the data in Figure 3.3. There are a significant
number of files with large fan-out. If one follows the classic test model, testing code that only
depends on already tested code, this profile suggests difficulty scheduling testing for this library.
Automated test schedule planning tools can provide significant help for this, but, we show below
that there may still be persistent problems creating a satisfactory test sequence for libraries with
many high fan-out files

Also we explored the relationship between high fan-out files and high risk files. We
analyzed Mozilla’s GKGFX Library, and selected 100 files with highest risk value and 100 files
with highest fan-out value. We matched these two groups, observing that 71 out of 100 highest risk
files are also in the highest fan-out files, and 7 out of top 10 highest risk files are again in the
highest fan-out files. This showed us high fan-out files are likely to have high risk values as similar

to high fan-in. And only 22 files are common between highest fan-in and fan-out files out of 100.

3.1.4 Strong Components in the Mozilla GKGFX Library

A strong component of a libraries dependency graph is a set of source code files that are
mutually dependent. Any given file from a strong component depends, either directly or

indirectly* , on every other file in the component. There can be no complete dependency ordering

2 Type-based dependency is a transitive relationship. For reasons discussed earlier, we chose to show only direct dependencies.

59

Chapter 3 — Empirical Study

within a strong component, so there is no way to prepare a classic testing schedule based on testing
only code that depends on already tested code. Essentially the strong component must be treated as
a unit. The larger strong components become, the more difficult it is to adequately test.

Figure 3.5 shows a strong component histogram for the GKGFX library. There are many
strong components of modest size, and one huge component, consisting of 60 files. Circles are in
topological sorted order; the order given is the best we can achieve for testing. Each file or strong
component is drawn from upper left corner (most dependent) to bottom right corner (most
independent). Above files depend only on files to their right or files below to them, but do not
necessarily depend on every file on its right or below. To save space on the screen when we draw a
small component after a large strong component we follow the following simple rule. If there is a
space, we draw just next to large component starting first available space closer to top. If there is
no space at its right, we start at top left most available space to draw our next component or file.
Therefore, to find out whether a circle is above or below, just compare upper left corners of the
bounding box containing the circle.

The dependency coupling that forms strong components may be due to the use of non-
constant global data [19], to callbacks that provide notifications to a caller distant in the
dependency tree, or to mutual dependencies on types defined across the strong component.
Whatever the source, they indicate problems with testing and possibly with change management,

due to consequential changes to fix latent errors or performance problems [18].

60

Chapter 3 — Empirical Study

(¥ DepView 1.4 - 20 Dependency Viewer

70 I~ ShowDependsrcy |7 Draw | I Alowpopup I~ Fanin I~ FanOu [~ EwDep [~ loiersi0op Gl
mmmmmmm
0 veovwewewew gveoewwewwwwwee
eo——(= Component Size VOV IVVIVVWWwe VoYYV IVTQGVVe
VOPUPPPPPUGUUUe YIIDDLLLRLy Bue

vew w vewwe
veweww e
mmmmmmm

™
bl 3 -

ol LYY, Yo YveeVeeweegotryyw
- SVeSe vv---v-@"'&.. ™ -6"
™ et T bl Bt

Strong Component Size

- ve TeeVee Yy

vevee v v -
vyow e e yye
s

s
-...'-'v----'..'-- R
vew . weew

vevewew Yy veveeyy -
v Yeoou ve
367 51 2 3 1 1 1
Number of Files with Specified Size

Figure 3.5~ Mozilla GKG.FX Library Strong Figure 3.6 — Mozilla GKGFX Library Strong
Components Histogram

Components by DepView

e
veoe ¥ oo Y. ...

Another issue that this plot illustrates is the lack of well defined modules. The dependency
model we use for this analysis recognizes mutual dependencies between declaration and
implementation of a type, global object, or global function. So we would expect, for non template-
based source code, to see most files appearing in strong components of size two, or a few more
perhaps, reflecting the design of a module with declarations of all types provided by the module in
a header file and implementations in a corresponding implementation file, ideally of the same
name. Here, we see that most of the files in this library do not fall into the classic module
structure.

Figure 3.7 focuses in dependencies among strong component for the two of the largest
components. If file dependencies were shown, we would see many dense lines than illustrated in

Figure 3.7.

61

Chapter 3 — Empirical Study

Iy — maE Each circle represents a strong

component; number on the circle shows
how many files are in that strong
component. In the figure, the largest
strong component consist of 60 files,
lines from center of the circle show fan-

outs and lines coming to the left corner of

4 the circle show fan-ins to this component.

Figure 3.7 — Dependencies of only two of the largest strong components with other components.

If strong component size gets larger, it reduces the ability to adapt to new changes, since
change may give rise to further, consequential, unexpected changes. This reduces the gain from
change. If the component gets large enough, the software library may reach the point where
change is no longer feasible, due to testing effort and consequential change. This is how an un-
maintainable legacy system is born.

As we stated above, we only show external dependencies among components, besides this
there may be a large number of dependencies between the members of a component.

We can draw the following conclusions about this library from Figure 3.8 and Figure 3.9.
There are dense dependencies not only within the strong components, but also among the strong
components. This is an indication of high coupling between many of the GKGFX files. High
coupling naturally causes mutually dependent components, which are undesirable, because then,
there is no effective file order for testing, as discussed in Chapter 2. Presence of the very large set
of mutually dependent files, defined by this strong component, indicates difficulties in carrying out
a classic testing program for this library. The figures above show that many files use many of other
files to accomplish their tasks, this makes it difficult to understand their functionality.

Consequently, it is harder to test and maintain those files than files accomplishing their task with

62

Chapter 3 — Empirical Study

the help of few other files. Additionally, due to dense dependencies making changes and tracking

the effect of those changes is difficult, therefore extensibility (new feature addition) degrades.

Component5?

e
I~ StowDeprdency [T 1o | I lowpopup 9 Eain 9 Fon0u 7 4 Dep I~ NotiraiDep

M@ oooreoerbipene

f

Ress.

Figure 3.9 — Internal dependencies of
Figure 3.8 — Internal - External dependencies of Component #57 consist of 60 files.

Component #57 consist of 60 files.

If we focus on the internal dependencies between the members of strong component 57, we
see that files are densely connected to each other as illustrated in Figure 3.8. If we add to the view
the external fan-out dependencies of strong component as well, it will reveal that if any other
depended-upon component changes; Component 57 also needs to be tested to make sure

component 57 still performs according to its requirements. This view is shown in Figure 3.10.

% DepView 1.4 - 2D Dependency Viewer
Vow
I~ Show Dependency |7 Draw | I~ Alowpopup ™ Fanin I~ FanOut M ExtDep I~ NolntemalDep Clear

Figure 3.10 — External dependencies to Component 57

63

Chapter 3 — Empirical Study

In GKGFX, looking at intermediate analysis results of DepAnal, we find there are only 15
files with template type definitions, but observe that in Figure 3.5 there are more than 300
components with only a single file. Some of these may be test drivers, but only 11 files have main
functions, so a quality analysis would conclude that module definitions need attention for this
library.

In Figure 3.11, we see Mozilla GKGFX library. As earlier stated, that dimension of the
circle is proportional to size of the strong component. Component #41 is the second largest strong
component with 45 source files. In the figure, it shows dependencies (Fan-out) of one of the files in
that component. As we see, it depends on not only the files inside the associated strong component
but also the files, which belong to other strong components. If any change occurs to depended files
or depended components, this file needs to be tested to make sure, introduced change does not have

an effect on the functionality of that file.

In this figure, smallest circles represent
individual source files; others are strong

components, which are sets of mutually

B DepView 1.4 - 2D Dependency Viewer.

view
I™ ShowDependercy |7 Draw | I Alowpop up ¥ Fanin ¥ FanOut ¥ EDep [~ NolntemalDep Clear
.‘"."".‘"..‘..‘"-""-‘""‘H-'

::::::::;‘:’;;‘;::::::::::::::: The number at the center of each circle

PP PVIY L epeee YOVIPIIOLINEG @
VIV PU U e eee?Y PYVIIVEeRe v o)
ettt L L L L LTSt P ntintintutietintind,, P indicates the size of a strong component

dependent files.

(number of files).

oy vo ooy A line between circles shows

veweovew dependency among files.

Two possible navigation levels exist in

DepView. One is focusing on strong
components; the other is focusing on

individual files.

Figure 3.11 — A strong component member file’ s fan-out to other files in GKGFX Library

64

Chapter 3 — Empirical Study

In Figure 3.9, above we see the internal dependency relations within the component #57;
our risk analysis, discussed in Chapter 4, shows this component is responsible for a major part of
test risk for GKGFX.

Note that we have studied many of the libraries contained in the Mozilla project, as well as
analyzed the entire Windows build of Mozilla, version 1.4.1. The results we obtain from all of the
library parts and the whole project are very similar to those we find for GKGFX. We cite GKGFX

often, because it is, in fact, representative of the project as a whole. (See Figure 3.14)

3.1.5 Topologically Sorted Dependencies for Mozilla’s GKGFX Library

As mentioned earlier in this section, a classic testing strategy organizes source files into a
topologically sorted dependency order, starting with files that depend on no other. We test those
and continue by testing files depending only on previously tested files. This is not possible in the
presence of strong components. However, we can condense all files in each of the strong
components, and provide a topologically sorted view of the components, as in Figure 3.12, below.

This provides us with a testing schedule that is as close as we can get to a classic test order.

450 To interpret this diagram,
SBIBNBUVE & o0 'a.“p.‘gw
uu.&o........ W e ¢ ‘mmsoommnn oo :] .’0‘ e o .0.93 Select any mark on the plOt
. 350 L . - $o* s 4 g .0

g— w.s’?'o.... g . . 2,.‘0‘ DR
G300 | Wt v “ . i KA For that mark, the strong
c -, 3 2 AP *es
2250 o .t 3=’ : .
- * . o component vertically below it,
S 200 - : .
5 . :
2150 |, bo on the abscissa (x), depends
Q.
[¢ . >
(=} Se Bo !"'

100 7= o upon the strong component

. ’.
501 ¢
o Ls horizontally to its left, on the
0 50 100 150 200 250 300 350 400 450 _
Depending Library Strong Component ordinate.

Figure 3.12 — Topologically Sorted Strong Components before Expanding

65

Chapter 3 — Empirical Study

Because all the elements of this diagram are strong components™ their dependency graph
can be topologically sorted — we have condensed away all of the cycles within that graph. This is
apparent from the diagram, as all elements, except the ones lying on the abscissa®, are all above
the diagonal. Any file depends only on the files indexed by points in the diagram vertically above
it. Therefore, all components depend only upon files to their right in this order®.

The dense horizontal lines represent components with high fan-in. Each of the many
distinct abscissa values depends on the corresponding single strong component on the ordinate.
Similarly, a dense vertical line represents a strong component with high fan-out. The single strong
component on the abscissa depends on the many unique corresponding strong components on the
ordinate. Thus, structural problems for the library, as a whole, are evident in this diagram.

In Figure 3.13, we show the data from Figure 3.12, with all of the strong components
expanded into their individual files. There, of course, will no longer be a topological order
throughout, because individual files from a strong component cannot be put into sorted order, due
to their circular dependency relationships.

Approximately half the files in this library (Figure 3.13) cannot be put into a classic testing
sequence. This indicates a high probability of repeatedly testing a given file.

The top row shows a utility file, since many files depend on it. These kinds of files increase
reuse, however files with high fan-in have low changeability, because they are being used by many
others. If any change is made, the developer needs to make sure that the new change does not
introduce any breakage to all these depending files, which increases testing effort.

High-fan out files use many other files to accomplish their defined tasks. This reduces the
comprehensibility of the file and makes the job of the developer harder because interpretation and
change now involve many files. Additionally it reduces reusability, since in order to reuse one file,

developers have to include depended files into the project.

3 Many, of course, composed of only a single file.

** By convention, we have plotted all components that depend on no other component on the abscissa.

5 This order is not unique. There may be many such orders, and some may be more useful than others. We are currently pursuing this
idea, with interesting results we expect to publish subsequently.

66

Chapter 3 — Empirical Study

Approximately half the files in this library cannot be put into a classic testing sequence.
This indicates a high probability of repeatedly testing a given file. If the file belongs to a strong
component and any other file in that component is changed, rigorous testing dictates that it be
retested. This makes a compelling argument in favor of continuous regression testing using test

harnesses, as proposed in [20][21] , and [22] .

67

89

Surpuedxq 103e sjuduodwo)) Suong parros Aeordojodo] — ¢1°¢ 931

s9|14 924nog Aselqi] Buipuada
00. 009 00g 00t 00¢ 00¢ 00l 0

00l

00¢

00€

s9|l4
juapuadaq Ajjenynpy

S9|14 821n0S "qI7 uodn papuadaqg

ul-uey :m__._

Jusuodwo) buong jJo uoisuedxy - L'y L X4OMO

Apmg Teoundwy — ¢ 1dey)

Chapter 3 — Empirical Study

Ideally, we would like to see the data in Figure 3.13 clustered just above the diagonal.
That would indicate that most dependencies were local, e.g., nearest neighbor in the sense of the
sorted dependency graph. We also would like to see only a few dependencies below the diagonal,
representing necessary mutual dependencies, perhaps due to event callbacks or intimately related
class structures, as in the mutual dependency between a graph class and its node class.

Figure 3.14 shows the expansion of strong components after topological sort for entire

Mozilla version 1.4.1 with 6193 files.

Expansion of Strong Components
Entire Mozilla Ver. 1.4.1

6000 8

5000

3000

ot

zto “*e + -
2000 14+
+
P,
1000 f———*—
-t
0 o f e e b ot . A e (s A
0 1000 2000 3000 4000 5000 6000

Figure 3.14 — Expansion of Strong Components after Topological Sort, Entire Mozilla

The purpose of this analysis is to demonstrate that our tools are capable of analyzing
more than six thousands files within 4 hours. The figure also shows that it is difficult to interpret
the structure of the entire system, except in very broad terms, due to the density of its dependency
relationships. This is why we focus mostly on individual libraries, in this chapter.

For comparison, we show below, in Figure 3.15 a similar plot for expansion of strong

components for Microsoft Foundation Class Library (MFC) module [23].

69

Chapter 3 — Empirical Study

hatd AB' & -
25 l..t 0. ‘I AV ..F..a.%a Wi ff‘m

Depended Upon Source Code Files

many files with high fan-in and high fan-out, and large strong components.

N
o
O

N
N
o

-
o
o

MFC .Net 2005

- 666 o f X TN Y

1. s

z‘ $oool of B 1 EX 10
1.

3
R
S

0 50 100

Depending Source Code Files

. DN
07&0—0—0-“—0*—“—0—0—,0”—,—,—4”—

Mutually Dependent

Files

150

200

250

Figure 3.15 — Expansion of Strong Components after Topological Sort, MFC

We see similar undesired structural property in MFC as in GKGFX library. There are

Figure 3.16 is

DepView of the MFC; strong components and dependency among strong components can be seen

clearly.

B DepView 1.4 - 2D Dependency Viewer,

A

Figure 3.16 — Dependencies between components of MFC

70

Chapter 3 — Empirical Study
Figure 3.17 shows the fan-in chart of MFC. Tooltip shows the value of fan-in size along
with file name, as we see wincore.cpp has high fan-in value of 104.

Fan-in Chart of MFC
120

100 |

Series "Fan In Size" Point "wincore, cpp”
Value: 104

80

60

Fan-in Size

40 f '

20 4 | ||I Iy I

File Name

Figure 3.17 — Fan-in chart of MFC

o “I it ol i ||‘

In Figure 3.18, we show the fan-out chart of MFC. As stated earlier, high fan-out
degrades the comprehensibility of a file. We see some of the files are using services of many

files.

Fan-out of MFC
60

50 | |

T T
Series "Fan Ot Size" Point "olesvrL.cpp”
Walue: 52

IS
=)

Fan-in Size
o)
o

‘ H Ll ‘ | |
A WWWW _____ WMWWW _____

File Name

Figure 3.18 — Fan-out chart of MFC

[
o

As we see figures above, all these information can be extracted without semantic

analysis. And all disclose different aspect of structural quality of software project.

71

Chapter 3 — Empirical Study

3.2. Summary

In summary, static structure provides both quantitative and qualitative information regarding
structural problems. Type-based dependency analysis is a useful tool with which to direct
implementation and testing of large projects, and even for not-so-large projects. We can draw
conclusions about:

= Quality of abstractions used in the project, based on fan-out of individual files.

= Potential for consequential change when files with high fan-in have poor quality, as

indicated by internal metrics.

= Difficulty preparing effective test plans when files have high fan-out, especially in the

presence of mutual dependencies.

= How well the project is packaged into modules.

The empirical study has demonstrated that useful information about significant problems in
both large and small systems can be identified without a detailed knowledge of the entire code
base. In the following chapter, we present how we can identify precisely which files are

responsible for weak structural quality.

72

Chapter 4 - Software Product Risk Model

Chapter 4

Software Product Risk Model

This chapter focuses on both the risks associated with complex software structures and
the ability to identify components for potential reuse. We developed a file-rank procedure that
orders the entire system’s file set by increasing risk, the product of importance and test risk, both
defined in this chapter. This ranking process should prove to be useful while managing the
development of large systems, indicating where attention should be focused to improve testability
and product risk. Another contribution, discussed in this chapter, is a model that indexes software
components according to their potential for reuse. This reusability index provides help to
developers by ranking source code in existing systems, based on its place in the structure of the
system and internal metrics. This enables developers to evaluate a file for reuse before looking at
its code.

As we have shown, in Chapter 3, development of large software systems creates many,

often thousands, of source code files with complex inter-dependencies. Clusters of mutually

73

Chapter 4 - Software Product Risk Model

dependent files introduce the possibility of a chain of forced consequential changes when a single
cluster member file is changed. We have applied this model to a library from the 1.4.1 release of
the open source Mozilla project, to the well known Microsoft Foundation Class (MFC) library
(MFC analysis is in section 6.1.2 at page 128), used to develop windows applications, and to our

own analysis software, all with interesting results.

4.1. Risk Model

We observe, in this chapter, that clusters of mutually dependent files introduce the
possibility of a chain of forced consequential changes when a single cluster member file is
changed, perhaps to repair a latent defect or improve system performance [55]. The model shows
that density of dependencies within such clusters plays a crucial role in this behavior. Increasing
density leads to increased risk of essentially unending sequences of change, known as thrashing.
Our model is derived from a notion of test risk, based on the work of Jungmayr[8], combined
with a measure of importance, for each file. We develop a file-rank procedure, which orders the
entire system’s file set by increasing risk, the product of importance (a measure of the number of
files that depend on it) and test risk (a function of its internal quality and the testability of the files
it depends upon), both defined in the following sections.

This ranking process should prove to be useful while managing the development of large
systems, indicating where attention should be focused to improve project risk. We have applied
this model to a library from the 1.4.1 release of the open source Mozilla project, composed of 598
files of source code, with the results, presented in Section 4.2.

The contributions of this research will, we believe, be useful for any of the disciplines
that depend on large complex code bases. Computational Biology, Aerospace Systems, and
Medical Imaging Systems, among many others, depend on large software toolkits, analysis
systems, and display technology. Because much of the current work in these areas is new
research or advanced product development, the codes that support those disciplines are

continuously evolving and new software tools appear frequently.

74

Chapter 4 - Software Product Risk Model

The methods of this research provide direct support for management of large developing
code bases. Not only are weakness discovered, but the model provides direct prescriptive

guidance to improve the quality and reduce project risk of these systems.

4.1.1 Dependency Structure

In Figure 4.1, each square represents a source file and the arrow between the squares
shows dependency relationship between two source files. If the arrow points from file A to file
B, then file B provides services to A and A depends on B. In this example, files 6 and 7 are the
most independent files since they do not use any other files” services. It is straightforward to test
them, at least in terms of these structural relationships. However, this does not imply that these
files are unimportant. On the contrary, files 6 and 7 provide services to many files above them, so

their importance in this example is high.

In this sample project, file 1 has high test risk, due to its

dependence on all the other files except file 3, either directly or

indirectly. Any change to these files will require file 1 to be

J L
il

4 retested. However, its importance is low, in that no other files

depend upon it for services. The opposite is true of files 6 and 7.

o
ol

Files 2, 3, 4, and 5 are intermediate cases that we will analyze

<

7 below.

Figure 4.1 — Simple dependency between files

To discover the state of software system, we develop a file-rank [45] procedure, which
orders the entire system’s file set by increasing risk. The risk of a file is the product of its

importance and its test risk, which are described in the following sections.

75

Chapter 4 - Software Product Risk Model

4.1.2 File Importance

Here we define importance from the perspective of change impact. Importance of a file
is based on the number of other files that directly or indirectly depended upon it. The degree of
importance is based on the likelihood of a chance in this file causing change to the files that use
its services (or Change Impact Factor, CIF value covered in Chapter 5). Importance, I, can be

greater than or equal to 1. File 1 has importance 1 (/, =1), since no other files depend on it - it

can be changed without worrying about anything other than its internal implementation. If we
select another file, which is being used by other files, it will have higher importance, since any
change applied to that file may affect the files using it.

Figure 4.2 shows the formula of importance calculation of file i, and the arrow indicates

the direction of the dependencies.

I =1+ Y oyl a;

AllCallers

Figure 4.2 — Example of importance of a file and formula of importance calculation.

Here we use coefficient alpha (¢), which indicate change impact factor between file i
and j. «; is the likelihood of a consequential change in file j when a change occurs in file i. If

there is no risk that a change in file i will affect file j, then a;= 0, and there is no contribution,

from that file, to the importance of file i.
The smaller (closer to 1) the importance value for file i is, the better, in terms of impact
of modifications to this file on the remaining files in the system.

Table 4.1 demonstrates step by step calculation of importance of file 1 through file 7.

76

Chapter 4 - Software Product Risk Model

I =1
L, =1+a,l
I, =1+a,,
I, =1

I, =1+a,l, +a,l,

Iy =1+al,

I, =1+a,(+a,l, +a,l,)

Is =1+ a5, (1+a,(+0y) + agly)

Is =1+ 0y + 0y 0y + 0\ Oty + 00,
I =1+ayl,

Ig =140, + a0, + 0y A0, + A0,

L =1+a,l,

15 =14 05 + 0y 0 + 0y Oy Qs + 0 04y Olsy Olgs + 01430854 O

Table 4.1 — Calculation of importance, I of files in Figure 43.

a; is the impact strength, which indicates the affect on upper level files of changes in

called files. If it is certain that a change in file 2 will cause a change in file 1, &,,= 1, and the
importance of file 2 is 1 + ,,= 2, e.g. the number of files changed when file 2 changes. If

evaluates close to 1, it indicates that upper level files will be affected significantly by changes

occurring in lower level files which provide services, so importance will increase rapidly. If «; is

close to 0, it indicates upper level files will not be affected much by changes occurring in low

level files and the lower level files are not so important™.

*% This might be due to the used file offering an interface it implements. If all callers bind to the file’s types using the interface
contract, it is far less likely that changes in the called file will result in consequential changes in the callers, than if they bind directly
to the concrete types within the file.

77

Chapter 4 - Software Product Risk Model

Let’s assume, for a moment, that all « values are identical and elaborate on the

importance of file 7. Consider the importance equations, shown below, for the path from file 1 to

7. The effect of file 1 on importance of file 7 isar*, this indicates that a change in file 7 is less
likely to require one or more changes in file 1 than in files 3 or 2. Since the effect of change in
file 7 will likely be handled by other files before reaching file 1. Consequential change becomes
progressively less likely. Before reaching upper level files it has to pass through many other files.
Consequently, change is most likely to affect immediate callers.

I, =1+a(,+1;)
I, =1+al, I;=1+al, I, =1+al,
I, =1 I,=1+a(l+a+1)

L =1+a I =1+a+2a’+a’ | I,=1+a+a’+2a’ +a’

I,=1+2a+a’

We see, from the equations above, that file 5 contributes by ¢ to importance of file 7.

This shows that the most likely file to be effected by change in file 7 is file 5.

4.1.3 Brief Discussion of Alpha Value Calculation

As we see above, each dependency has an associated pair of values,; ande ;. That is,

given a dependency of file i on j, a change to i may affect j and vice versa. If file i needs
additional services, that may cause file j to change, and a change in j, perhaps to fix a latent error
may require a change in its caller i, perhaps due to a changed formal parameter. ¢ values may be
different for each file dependency.

Alpha values depend, in part, on a project’s development process and on the skill of its
developers. A skilled developer often uses techniques to ensure loose coupling between

components, while a less skilled developer may design in a way that causes many concrete

bindings. As a result, average & values differ for each project. Since the values of ¢ have to

be measured for a given set of developers and project environment, it would be desirable to

78

Chapter 4 - Software Product Risk Model

implement an, at least partially, automated process for estimating thea,s as part of a

- 27
configuration management process™ .

4.1.4 File Testability, T

Testability is the degree of relative effort required for a file to be tested based on number
of files it is using and its strength of interconnectedness with them, as well as internal
implementation quality. “A lack of testability contributes to a higher test and maintenance effort”
[8]. Testability or Test Risk of a software file is an important issue in assuring that required
functionality is implemented without errors. Testing a file that uses services of others is harder
than testing a file that performs its required task without depending on other files. In Table 4.2,
Test Risk of file 6 and 7 are the lowest rank. The smaller T (close to 1) is, the more testable the
file.

Below, we introduce implementation quality (), which is described in section 4.1.5

]—;1 :ﬂn + ZamnTm

AllCalled

The magnitude of Test Risk metric, T, varies according to the depended upon files’

s Ly
internal structure, as represented by £, and the project’s dependency structure. [, is the test
risk of file n in isolation. 7, is the test risk accounting for retesting necessary when one of the

file’s dependent files changes and it must change.

Table 4.2 demonstrates step by step calculation of testability of file 1 through file 7.

?7 This is a research topic being addressed by another member of our research group.

79

Chapter 4 - Software Product Risk Model

I =p+a,T,

T = B+ 0y By + 0y @ By + 0y Gy O, s + 0 Xy Qg B + Oy 0y O, s By

T, =B, +a,T,

T, = B, +apfy + s, ffs + QO B + 0y 05,0 By

T, = B +a,T,

T = B+ a3 By + s, Bs + sy s B+ s 0, B

T, = B, +asTs +ayT

T4 = ﬂ4 + 0{54ﬂ5 + 0{540675ﬂ7 + a64ﬂ6

Ts = ﬂs + 0‘75T7
Ts = ﬂs + 0‘75137

T6=186

T7:ﬂ7

Table 4.2 — Example of testability, T of files in Figure 43.

For simplicity, assume o values are identical and S s are all 1°*, and let’s calculate the
testability of file 1. As we see in Figure 4.3, file 1 depends on all the other files except file 3,
therefore internal complexity and dependency density of file 3 does not affect file 1. If we look at
the effect of file 7 on testability of file 1, it has coefficient of 0{4, clearly it has little impact,
assuming « is small compared to 1. However, testability of file 2 has coefficient of & , which has

the highest impact. Once file 2 is changed, file 1 has to be re-tested again to make sure change in

file 2 does not cause breakage in file 1.

* The lower bound on ﬂ is 1 as shown in section 4.1.5.

80

Chapter 4 - Software Product Risk Model

T,=1+a(l,+T,)
I,=1+a(l+a+1)
_ 2 3

-
T, =1+al, ::E:

T =l+a+a’ +2a° +a*
CHR T B P

T, =1+al, I=1+oaT;

T,=1+af,

T, =1+a+2a"+a L=l+a

Figure 4.3 — Calculation of Test Risk of files, assuming / is 1 and ¢ values are identical.

Without considering circular dependency, immediate dependencies have strong effect on
testability of a file, and dependencies that are more distant have lower effect on testability.

Nevertheless, it is never zero.

4.1.5 Implementation Metric Factor,

Test Risk of a file depends not only on its internal implementation quality, but also on the
quality of the files that it depends on. For this reason, metric factor, £, of many other files in the
project may affect the test risk of any specific file. A number of metrics may be chosen to
evaluate . For this research, we use average lines of code per function and average cyclomatic
complexity per function. For our own work, we take 50 lines of code and cyclomatic complexity

of 10 as upper bounds of desirable values for these metrics. We use these bounds to normalize the

metric factor, as follows:

1 m,. m,, m..
i =1+—J(—“>2 r (e g (P
N\ M, M, M,

—1+—/ (
N JE(ZI:N)

81

Chapter 4 - Software Product Risk Model

Lowercase m is the measured metric, uppercase M is boundary value metric. The smaller

[value is the better. In Appendix 1, we study relationships between code metrics and change

count histories for a large project. This way we can use appropriate metrics during the

calculation of S value.
There are other potentially useful quantitative metrics that can be utilized during S

calculation, such as
= Number of function declarations
= Strong component size
= Number of global object declaration count
= Total line of code

= Number of change occurred during a change period

4.1.6 Case of Circular Dependency

In the case of circular dependency, testability of each member file of a mutual
dependency set affects testability of other members of the set. Also, each file is important for
other files, since they either directly or indirectly depend on each other. Figure 4.4 shows the

mutually depended files of three and importance calculation of file 1.

1 </ =1+a,l I =1+a;l,

‘ I, =1+a,(1+a,l,)

2| =1+, I =1+a,,(1+a,(1+ay 1))
3] 1 =1+ayl, h= 11“2 ;alé%

3 13030,

Figure 4.4 — Effect of circular dependency on importance.

82

Chapter 4 - Software Product Risk Model

Figure 4.5 shows the calculation of testability value for file 1. Dividing a number by a
number less than one causes multiplication affect. As a result, it increases the testability value as

in the case of importance above.

1«7 =5+o,T, T =B +a,T,

v T =B +ay, (B, + a,Ty)

2| L=praxly T =B +ay (B, + oy (B + a3 1))
T = B+ oy f, + a0 4

3| L=p+asl, l l-ay a3,

— |

Figure 4.5 — Effect of circular dependency on testability.

In Figure 4.4 and Figure 4.5, we see the effect of circular dependency over Test Risk and

importance. As identified, o; are always less than 1, dividing importance by 1-a,a5,,, or

Test Risk by 1—a,,a;,a,; makes Test Risk and importance increase. Thus circular dependency

increases Test Risk, since a change in any file may affect every file in the mutual dependency set.

I, =1
@ l After breaking circular dependency at Figure 4.4,
v I, =1+a,l, importance value of file 3 reduced
@ XIZ =1l+a,, from 1, = 1 ;r Oy + 0Ly,
2 I, =1+a,l, IE LA OE
— | I, =1+a, +ta,a, to I, =1+a,, +as,a,,

Figure 4.6 — Importance, after removing circular dependency in Figure 4.4

83

Chapter 4 - Software Product Risk Model

1l L=p+aT,
T =pB +a,p,+o,0,p, After breaking circular dependency at Figure 4.5,

v testability of file 3 reduced
2 L=p+ayl;

(T2 :ﬁz +0632ﬂ3 from T. = 0‘13181 +05120513ﬂ2 +:B3
3
3 l-aja;a;
T, = p
- to f;.

Ng

Figure 4.7 — Testability, after removing circular dependency in Figure 4.5

4.1.7 Representation of Importance and Testability

In order to calculate importance and testability of large software systems, we developed the
representation of the Importance and Testability equations, as shown below. Representing the
importance and testability as matrices enables us to compute results for large projects. Figure 4.8

and Figure 4.10 show the matrix representation of importance and Test Risk for Figure 4.4.

f T 1 0 — 11 1
s —a,, 10 |5 |=]1
I=a'l 0 -a, 1 |L]| |1

Figure 4.8 — Matrix representation of importance

In Figure 4.9 the arrow shows the dependency direction. In the importance matrix, file i

on the abscissa (x-axis) depends on file j on the ordinate (y-axis) and « ; describes how likely it

is that change n] would require Change m 1 aCausing file,consequential change ocurred file

84

Chapter 4 - Software Product Risk Model

Figure 4.9 — Reading Importance Matrix

aTx;’:} R K
N . 0 | —ay, || T,
T=a" xp —a, 0 1|

B

=1 5,

P

Figure 4.10 — Matrix representation of testability

Reading testability matrix used in product risk analysis

Figure 4.11 — Reading Testability Matrix

In testability matrix, file j on the ordinate (y-axis) depends on file i on the abscissa (x-

axis) and ois the value how likely change in 1 would require change in j;

aCausing file,consequential change ocurred file

Formulated as;

0 - Number of consequential changesin jduetoi
v Number of changesin i

85

Chapter 4 - Software Product Risk Model

When there are more than a single cyclic path there is a critical value for ¢; at which the

solution for importance and Test Risk becomes singular, e.g., the risk becomes unbounded. This
indicates that a change made on a component with unbounded risk is likely to cause an unending
sequence of changes® .

It can be clearly seen (Figure 4.6 and Figure 4.7) that:

= (Circular dependency reduces the software system's testability,

= Less important files are given elevated importance. Consequently,

= Small changes can affect many other files.

Figure 4.12 illustrates this for three mutually dependent files, and we use this example to
illustrate finding the critical alpha value along with calculation of importance and testability

values.

I =1+apl, +aplyand T, = f, + o, T, + oy, T,
1~ 2| L=l+ayl

A T,=p,+a,T,

‘3 I, =1+a,1,
T, =B+ a1,

Figure 4.12 — Three mutually depended files.

In Figure 4.12, if for all 1, j, o, are greater than 0.7071, behavior becomes undefined, as

the change sequence becomes unbounded.

jan I+a, +a;
=
l-aya, —a,a;

and

T = B+ oy py +as,p
1
l-aya, —a;

% Essentially, our risk model is a Markov process that becomes unstable at the critical value for al.j .

86

Chapter 4 - Software Product Risk Model

It can be clearly seen in Figure 4.12 that circular dependency increases the software
system's Test Risk and file importance. Importance increases since a change in any given file
affects all files in the mutually dependent set, including possibly itself. A few more simple cases

with increasing numbers of paths show that, as the density of dependency paths increases, the

critical value for a; decreases.

4.1.8 Critical Dependency Density

Software components with high dependency density have several undesirable attributes.
First, it is very hard to reuse files from the component because they depend on so many other files
that extracting them is very difficult. Second, it is hard to test files in the component effectively
because every time a test uncovers a defect, which we fix, we have to retest all the previously
tested files in the component because they are all mutually dependent. A change in one may
break the design or implementation of many others. Third, as it was demonstrated above, and
further elaborated below, as the density of dependencies increases in a set of mutually dependent
files we approach a critical point at which a single change causes, on the average, more than one
other file to change, causing a chain reaction of changes. This behavior has been noted by others
in large complex systems [55], but, until now, has not been satisfactorily explained.

Examining Figure 4.13 through Figure 4.16, we see that there is a critical value of & at
which the solution for importance and testability becomes singular, e.g., the risk becomes
unbounded. This indicates that a change made on a component with unbounded risk is likely to
cause an unending sequence of changes. For the sake of simplicity, here we assume ¢ values are

equal among the files and S values are taken 1.

87

Chapter 4 - Software Product Risk Model

T =1+al, 1| I =1+al,

_l—a
I=1+al, | 2|1, =1+al,

Figure 4.13 — Two mutually depended files, assuming £ is
1 and o values are identical.

1+ 2
IIZTI 2
I, =1+a(l,+1;) 1-2a
1~ 2 [, =1+d |
1 > 2 1 12:[3:T2: 3:1_2a2
Y
3 L,=1+d,

If alpha is greater than 0.7071,

behavior becomes undefined, as the
Figure 4.14 — Three mutually depended files.

change sequence becomes unbounded.

I =1l+a(l,+1,+1)) 143
(04
I=l+al, 4" 1A 121, =1+a, L=h=17373

=7
3 ,=1+a, I=3a

Critical values is 0.5773
Figure 4.15 — Four mutually depended files

Iy =1+al,

I,=1+al, | 4

-
d

21, =1+al,

5

T L=l+a(l+I+1,+1) | h =T
Y

1

A

3|1, =1+a,

Critical values is 0.5

Figure 4.16 — Five mutually depended files.

All these critical values are upper bounds for feasible ¢ for the configurations discussed

Since at the critical Alpha value consequential change grows explosively, the higher the value is,

88

Chapter 4 - Software Product Risk Model

the better. As we see from the figures, if size of the strong component gets larger, critical value
of a gets smaller. If critical value of «& is closer to 0, this indicates the project is fragile. New
changes, fixes, and new feature additions are likely to initiate many other required changes in the
project.

The chart, in Figure 4.17 shows strong component size versus critical & value,
indicating increase in strong component reduces the flexibility of software project for change.

If critical & value is large, it

Mutual Dependency vs. Critical Alpha
11\

0.7 0.7074

implies the project can

-
- 4
|

o
©

accommodate changes, fixes, and

o
(-]
L

new features. If not, an original

o
o
I

0.57

o
@
°
(]

change becomes risky, due to

Critical Alpha

e o
w h
-

chains of consequential change.

o
N

0.1 =&—Critical Alpha

0 1
0 1 2 3 4 5 6
Number of mutually depended subsets

Adding an additional closed path

Figure 4.17 — Change in strong component size vs. change in | Within the mutually dependent set

o for Figure 4.13 thru Figure 4.16
will decrease the value of @ .

Recalling that ¢ is the probability that a change in a component will cause a change on a
file that depends upon it, this means that as the dependency density increases, in a set of mutually
dependent files, the system gets closer to, or reaches, the point of unending changes™. Only
mutual dependencies can cause singular behavior. Mutual dependency sets with a single closed

path are singular only when ¢ =1, as in the case shown Figure 4.13.

¥ Note that representing likelihood of consequential change with a single probability across all files in a library is a simplification
that allows the construction of risk equations, but diminishes the accuracy the model. Surely (X will vary from file to file due to
differences in the way it couples with other files. This situation is analogous to biological and cosmological modeling where one
makes approximations that permit effective modeling, and then compare the model results with specific measures of reality.

&9

Chapter 4 - Software Product Risk Model

This is a very interesting result. Our risk model exhibits behavior that many developers
have observed in practice but understood only as being some unpredictable aspect of system
complexity. Using risk analysis, we can estimate how prone a real evolving software system is to

unbounded change.

4.1.9 Product Risk Model, R

In order to narrow down our focus to files, which need close attention, we rank files
according to internal implementation and external interaction with other files in the project. We
call this ranking a software product risk model. Files with high ranks are targets for software
engineers to use great care while re-using, enhancing functionality, or fixing latent errors, since
any change to that file may force a chain of new changes.

Risk factor is calculated by product of importance and Test Risk metrics.

A file with high Importance and high Test Risk will have a high project risk, while a file
with low importance but the same high Test Risk will have lower Risk Factor.

Now, we have a file-rank procedure, which orders the entire system’s file set by

increasing risk, R, , the product of Importance and Test Risk. This ranking process should prove

to be useful while managing the development of large systems, indicating where attention should
be focused to improve Test Risk.

Risk factor provides feedback about individual files, and also provides insight about the
global state of a software project. For instance, if developer needs to test a file, risk factor will

give an idea how much time to allocate for that task. Ranking files by Test Risk shows project

90

Chapter 4 - Software Product Risk Model

management where to focus effort to reduce overall risk by redesigning and re-factoring high risk

files.

4.2. Empirical Study of Risk Model on Mozilla Library, GKGFX
We downloaded version 1.4.1 of the Mozilla Win32 configuration [16][12] . This

included the entire build, which makes many executables and libraries. We were able to build all
the libraries and executables in about a week’s effort, using the information provided on
www.mozilla.org.

We built some simple parsers to find all the files included in a specific build, based on
compiler output. This included all common code and header files.

The information provided on the Mozilla web site was very well prepared, easy to digest,
considering the size of this large project, and straightforward to use. We chose this project
because of the quality of its tools and the fact that it has a very large code base.

We applied our risk model to Mozilla GKGFX library and it gave us important insights
about potential problem files, on which attention should be focused. This information was
obtained without diving into implementation details. This attribute is very important for the
software project’s testers, developers, and managers, since project complexity may make it very

difficult for any but the original developer to understand in detail a given set of files.

First, we explored the variation of maximum importance with @, =c, making the

simplifying assumption that it is a single probability across all files in a library. Essentially, we
are treating ¢ as the average probability of a consequential change in a depending file when we
change the depended file. Thus, these results will be qualitatively useful, but not numerically
precise. We see, from the plot in Figure 4.18, that Importance grows without bound above
a =0.1032. This indicates that changes are very likely to propagate throughout the system since

one might expect the value of « to be of the order of 0.1. [55]

91

Chapter 4 - Software Product Risk Model

Alpha vs. Max. Importance GKGFX Lib. Ver:1.4.1

9000

Y 8087.46
8000 Alpha Value .
-=Max Importance

7000

w B)] [e2]
o o o o
o o o o
o o o o

Max. Importance Value

2099.7)0/
2000

736.69

1000
25.43 42.46 173.63
0 T : T

0.0800 0.0900 0.1000 0.1025 0.1030 0.1032
Alpha Value

Figure 4.18 — Max Importance vs. Alpha (&) value for Mozilla GKGFX Library Version 1.4.1.

Next, we calculated product risk factor values using average cyclomatic complexity’'

(AvgCC) and Fan-out® values for each file in GKGFX when calculating ; upper limits were 10

for AvgCC and 5 for Fan-out. We took these values since it becomes harder to manage a file,
which uses several other files’ services, accordingly, it is hard to understand and test a file with
high complexity functions.

Figure 4.19 shows the risk rate of all the files in Mozilla library, GKGFX, in increasing

order, still estimating the alpha value to be 0.1.

*1 AvgCC = Sum of CC of each functions in a file divided by number of functions in that file.
32 Fan-out is a number of depended files whose services are employed by a file.

92

Chapter 4 - Software Product Risk Model

Risk Values for Mozilla GKGFX Lib. Files - ver. 1.4.1
Alpha=0.1
100000

-
o
o
o
o

1000 + g

100 /
10

-

Risk Values (Log scale)

1 S
Rl R e T © > TN Vo T Sl N 0 T © > B (o B ol S B <> T o B el L o B ©> B Yo T ol B o0 B)
N IO M O MW 0O M W W «~ M O© W v~ F © O N S K~ D
~ - - - N N N N OO OO F & F S 0 0 v o
File Sequence Increasing Risk Order

Figure 4.19 — Risk values for files in GKGFX Library

Note that about %10 of the files have most of the Risk in the library code [9] [51].
Interestingly, not all the files with high risk are part of a large strong component (shown in Figure
6.1). This shows that the high-risk files are not guaranteed to be part of the largest set of mutually

dependent files.

4.3. Improving the Risk Model

One concern is the values used for alphas. Others have implicitly, or occasionally
explicitly, assumed that alpha is either zero or one [8]. Simple constructive arguments, given in
Chapter 1, show that this is not realistic, and our model attempts to provide better predictive
capability by assuming alpha in the range [0, 1].

In Chapter 5, we develop a process and an experiment for calibrating a project’s alpha
values. The probability of change in a dependent file due to a change in the depended file will
vary, in part, on how well both files are implemented, e.g. on the skill of the project’s architect
and developers. In order to use the model to provide accurate assessments of risk the project’s

change history needs to be instrumented to provide project specific alpha values.

93

Chapter 4 - Software Product Risk Model

4.4. Reusability Index, RI

Development of software systems requires intense labor. The larger the software project
gets, the more labor it demands due to development of numerous source code files with complex
interdependencies. This makes reuse of previously developed software components desirable to
avoid some of the development effort and cost that would otherwise be required. Software reuse
is one of the important factors to save development effort to reduce cost [67]. We describe, in
this research, a model that indexes software components according to their potential for reuse.
This “reusability index” provides help to developers by ranking source code in existing systems,
based on its place in the structure of the system and internal metrics. This enables developers to
appraise a file for reuse before looking at its code.

Below is our model of a “reusability index” to grade files according to their level of
reusability. The purpose of this index is to examine files, in an existing product, for potential
reuse. If a file is called by many others in the product, e.g., has a high fan-in, then it has
demonstrated its usefulness, at least within that product by this in-situ reuse. If, however, it has a
high fan-out, then it depends on many other files, which makes it much harder to reuse.
Moreover, if the called files, in turn, call other files, then it is even less likely that the file in

question can be effectively reused. For this reason, we expect the reusability to decrease as the

closure, FO, of the files fan-out increases. Finally, if the implementation metric factor, £, of a

file is large, that is an indicator of poor quality, which means the component should not be a good

candidate for reuse. With this reasoning, we arrive at the model shown below.

B € (0,)
B FI o ’
 FI+FO+ B FO transitive closure of fan-out,
RI €[0,1)

This Reusability Index (RI) provides help to developers when they need to reuse a

candidate source file, giving a value between 0 and 1. If reusability index is close to 1, it shows

94

Chapter 4 - Software Product Risk Model

this file can be considered for reuse. This will enable developers to evaluate a file for reuse
without initially looking at its code. Looking at code to determine potential for reuse is labor
intensive, especially for the large projects, and may be almost impossible to accomplish manually

due to complex interdependencies.

4.5. Applying Reusability Index to a New Design for DepAnal

We applied this reusability Index model to our own dependency analyzer with
encouraging results, as shown below in Figure 4.20. The indexed results agree well with our
designer’s knowledge of the reusability of our individual source files. DepAnal is a relatively
small and simple project, so we can make fairly accurate assessments of the reusability of its
parts. It is encouraging to get this kind of correspondence between our automated tool and

personal assessments in this simple case.

95

Chapter 4 - Software Product Risk Model

Reusabilty Values
New Design DepAnal Ver:1.9

0.9 DS D
' LCONS o
0.8 - o o O
207
> 0.6
2
= 0.5 -
<
g0.4 o o
o 0.3 —
(14 0090 OO
0.2 - S~
OO0 OO
011999 0©°
S e Rele)
0,
o Qo C O C OcCc OcCc oo cCc oc o N L Cc Cc O cCc c
Q_Q_N&Q_L‘Q;Q;Q_Q.;Q_;QIN&Nx-dQ.,AI-I-&.._:E&
0050305080050 80=>2VF5REL0PX05855
CNQ._L'OLCL'E:-L"GQ]EQ{Q..mmEu);:,OLI_.&Lu_.
TREXEEDPSY S CLOS5EEZE>E0=EFZOERS
T 50 2iL o 20 EO= = XS opoEE =@ W
=<9 £ o= o @ ® 0 X O o Co=2 il] L
€S -k © g2 o = DZ O = oz
[72] ON T o5 O g o) Q w o W
8§ 3£%E80° = 4 =
2= go o
o File Names

Figure 4.20 — Reusability Index of New Design DepAnal Ver. 1.9

Let’s pick a couple of files from DepAnal and elaborate on their index values. Tok.cpp
and Main.cpp are test stubs, they are certainly not intended for reuse and their reusability value is
zero in accord with indexed results. Nevertheless, Tok.h, Semi.h and Semi.cpp are designed for
reuse not only for DepAnal but also for C/C++ source code parsers. Encouragingly, all these files
have high reusability index. The rest of the files are ranked about as we, as implementers of the

code, expected.

4.6. Summary

In this chapter, we presented a new software product risk model and have shown that the
model can be used to predict problem areas, as concentrations of high risk files. The model
predicts that, as the density of dependency relations increases in strong components of the
dependency graph, Risk factor grows and becomes unbounded at critical densities. We have

applied the model to a library from a real open-source project, Mozilla, ver 1.4.1, where the

96

Chapter 4 - Software Product Risk Model

model predicted that most of the development risk is in about 10% of the library files. This
useful information was probably unknown to its developers. In addition, we describe a model
that indexes software components according to their potential for reuse. In the following chapter,
change impact factor estimation between files is studied. This empirical study provides precise
product risk values. Additionally, it enables us to compare using our estimated alpha values and
calculated alpha values and their effect on product risk order.

We have shown that, when the density of dependency increases, the ability to
accommodate new changes decreases. There is a specific density value at which this behavior
becomes unbounded. The Product Risk model demonstrates that removing some dependencies
reduces the size of large strong components and reduces the average risk per file. Dependency
density can be trusted as a reliable indicator of the quality of the system. Excessive dependency
increases complexity of software projects and diminishes ability of the developers to apply
changes successfully. Software code becomes difficult to understand and reuse. Developers
avoid reusing a component, which accomplishes some needed functionality with many depended

components.

97

Chapter 5 - Change Impact Factor Estimation

Chapter 5

Change Impact Factor Estimation

Change in software is always an essential part of software development and maintenance.
Controlled management of change is achieved by being able to estimate impact of changes. This
empirical study serves mainly to help understand the impact of a change in a software source file
on other source files. We present the design of an experiment to measure these affects, describe
its application, and show measured results of the change impact. We monitor evolution of change

impact over one project’s lifetime.

5.1. Introduction

In this research, we report on measurements of the impact of change in one file on other

files, in a small design project, called DepAnal®. We will describe this measurement as change

impact factor, ¢ and define that as:

33 DepAnal is one of the tools that we monitored its evolution from scratch for this research.

98

Chapter 5 - Change Impact Factor Estimation

Zchanges in file j due to a change in file i
o. =
!) changesin filei

Thus, Change Impact Factor (CIF) is the relative frequency of required consequential
changes in files in the project. In an earlier research effort [60], we developed a product risk
model that uses change impact factor for every dependency relationship between files in a
project, but we could supply only rough estimates for the values of these parameters. The goals
of this effort are to measure the CIF factors, as functions of time, for a real project, and also, to
develop a measurement process that can be applied to other projects, as well. In this way, a more
accurate assessment of risk is obtained, in real time, as a project unfolds.

We present the design of this experiment, describe its application, and show measured
results of the change impact factors. These results help one to estimate propagation [70][71] of
changes and calculation of the magnitude of change, CIF, for a project. The results of the study
will improve accuracy of our Risk Analysis model calculation presented in Chapter 4 and a
previous paper [60] by using systematically measured change impact factors, derived from an
annotated change history. Consequently, all this information provides help to developers and
project managers to find parts of their product that are at risk. Not only that, but it also guides
them to make effective decisions with regard to implementing new changes and scheduling work

activities.

5.2. Background Study
Michelle L. Lee [71] defines the objective of change impact analysis, this way:

“A major goal of impact analysis is to identify the software work products

impacted by proposed changes. Evaluating software change impacts requires

99

Chapter 5 - Change Impact Factor Estimation

identifying what will be impacted by a change and relies on the “impact
assessment” to determine quantitatively what the impact represents.”

Her dissertation [71] considers the impact of change on types, global functions and global
data, such as how many classes are going to be affected by a change. Similar analyses are also
found in [73].

In this study, we are interested in a coarser level of impact analysis, that of file-to-file
change impact. Our choice is motivated by the conventional process of managing projects by
files. Files are the unit of configuration management and analysis. Our risk model is based on
file dependencies, calculated from the same kinds of static relationships used in [69],[71],[73] and
[74], e.g., type, function, and global data. But, change impacts are empirically determined by

carefully monitoring and recording original and consequential changes made to files, during
development.
5.3. Change Impact Factor and Risk Model

The granularity of change impact factor in this experiment is focused on software source
files. We are interested in determining the degree of interconnectedness between source files, to
be able to estimate consequences of a change. The degree of interconnectedness is represented
by« .

In Figure 5.1, arrows show directions of change causality and ¢ is the likelihood of a

consequential change in file j when a change occurs in file i.

a,=[01] a,=0]]

Figure 5.1 — Alpha value representations

100

Chapter 5 - Change Impact Factor Estimation

Given any two files, i and j, there are two different alpha values between them. One is

@, and the other is& ;. ;=0 is the lower bound, which value implies that changes in file i are
not going to affect file j. «,; =1 is the upper bound, indicating any change in file i is going to

affect file . «; and o, are inherently two different alpha values, as we will see in the following

section.

An alpha value is the ratio of the number of consequential changes made to a file to the
total number of changes in a source (of change) file. The total number of changes is the sum of
original and consequential changes. In the Figure 5.2, alpha calculation is carried out by dividing
the number of consequential changes occurred in files E, F... X via file D by the total number of

changes in file D.

File E File F File X

Figure 5.2 — Alpha values between file D and depending files.

In Figure 5.2, a sample alpha value calculation is illustrated. File D is providing services
to files E, F and X. There are total of ten changes occurring in file D and two of them required
file E to change. The calculation is shown here.

2 _ Consequential changes to E caused by changes in D
10 Total changes in D

aDE -

101

Chapter 5 - Change Impact Factor Estimation

The Product Risk Model ranks files according to internal implementation metrics and
external interaction with other files in the project [60]. Risk factor, R is the product of

importance and testability for file i, R, = /.xT;. Both importance and testability of file i, /, and
T: respectively, use alpha values during their calculation, as shown in the formulas below. (See

Chapter 4, pages 76 and 79)

I =1+ > a,l, T,=B,+ Y a,l,
AllCallers AllCalled
Importance of file i Testability of file n

In Figure 5.3, we show risk, importance and testability values for each file of DepAnal
[59], our tool that analyzes static dependencies between files. The benefit of product risk factor
[60] is that it provides feedback about both individual files and insight about the global state of a
software project. For example, in Figure 5.3, we see the risk contributions of each file to project
and see immediately files, which pose high and little risk for the project.

Before testing a file, its Product Risk Factor provides an idea of how much effort to
allocate for that task; also, it shows where to focus effort to reduce overall risk by redesigning and
refactoring high-risk files.

Product Risk
Used semi-educated guessed Alpha =0.1

@ Risk
B Importance

O Testability

A 00 o N

w

Main.cpp

Utilities.cpp |
Utilities.h
Grammar.h
Collector.h

=%
Q
o
o
[]
°
£
[
[=Y
[
o

Grammar.cpp [
Scopelnfo.cpp |
Collector.cpp |EE———T—

IncludeMngr.h
IncludeMngr.cpp
Scopelnfo.h
DepFinder.h

DepRecorder.h
DepRecorder.cpp [T

102

Chapter 5 - Change Impact Factor Estimation

Figure 5.3 — Risk chart of New Design DepAnal [60]

In the earlier research [60], alpha values were modeled as a single constant, 0.1; this was
just an estimation. One of the goals of this research is to obtain experiment-based alpha values to
strengthen the Risk Model. In addition, this will enable us to compare the results obtained
through constant alpha with empirically obtained ones to observe whether differences in alpha

value radically affect the ranking of files by risk values. We show, in Figure 5.15, a revised
calculation using measured alpha values and in Figure 5.16 using measured Q... » described in

the paragraph, below. We see over 62% of the files stay either in place or at most two-places
moved, comparing with file risk order obtained by individually calculated alpha values, as shown

in Figure 5.15 and Figure 5.16. Details are presented in Section 5.9, below.

5.4. Experiment Design to Determine Alpha (&)

We designed an experiment to empirically determine alpha values and observer their
changes over time. There are two essential points in this experiment design. The first one is to
determine what is meant by a “change”; the second is to have a large enough software project to
be a reasonable yardstick with which to measure other systems, but small enough to monitor
implementation from start to end. Thus, we attempt to obtain a sufficient number of sample data
points to carefully represent more general software systems.

By change, we mean a modification/addition/removal of code for any purpose (feature
addition, bug removal, commenting, and cosmetic changes) to a file. In addition, making a group
of cosmetic changes at once is a change. Each file has its own change history and each change is
part of a daily file release in our project. Until first release, the changes made to a file will be
counted as one change. First release will be counted as first change. Consequential change is a
specific change, required to accommodate a previous change in another file. All other changes

are by default original changes, indicating they are not initiated by another change.

103

Chapter 5 - Change Impact Factor Estimation

One exception with consequential change is that in the same version, if a change requires

more than one consequential change to a particular file, only first change to particular file should

be recorded as a consequential and rest will be recorded as original changes.

2)
®@®

B In Figure 5.4, changes labeled C2, C3, C5 are due to

As an example consider the case where a single

change in file A causes one or more changes to file B.

change Cl, however only C2 is recorded as a

consequential change, the rest are as original change.

Figure 5.4 — Change driving many changes.

consequential changes.

Only direct changes due to a source change, not the transitive closure, are counted as

change.

Note that a consequential change may cause another consequential

C2-
\V4

CR
o

Dependency

C1

Dependency

4

C7

C6

B

A
Dependency-—

=1

E

Figure 5.5 shows sample
dependency structure and changes.
In this figure, C1 is an original
change; C2 through C5 would not
happen if CI did not occur.
Nevertheless, we record C3 and
C5 caused due to C2 not due to
Cl. C4 is recorded as
consequential change too, however

C6 and C7 are recorded as original

changes.

Figure 5.5 — Sample change flow and dependency between files.

104

Chapter 5 - Change Impact Factor Estimation

List 1. - Process for Defining Change

1. A file release can exhibit one or more changes.

2. After each successful compilation, all the tests should be exercised to make sure there is
no breakage. If the breakage requires a fix in other files, this is recorded as a
consequential change(s).

3. Each change is recorded in a maintenance page (comment section within each file) with
date and change number. Such as Ver 2.1.a, 2.1 represents the version number of that file
and “a” indicates the first change in this version. This is also done for implementation
files (.cpp etc). Since our granularity is file level, we do not record changes for modules
but always for individual files.

4. If anew function’s declaration and definition are added to different files (header and
implementation), we record each as a change in the Maintenance History page of the
corresponding files. To be consistent we always accept declaration as original change
and definition as consequential change.

5. During a fix, or a new feature addition, if several changes are required in the same
function, this will be counted as one change, providing previously developed
functionality remains intact.

6. During a modification or a fix, if a new global function is created, there will be at least
two changes, one is the fix/modification, and the other is the new function. Nevertheless,
it is not a consequential change, since both reside in the same file.

7. If a new class-member function is created, there will be total of three changes;
declaration and definition of the new function both will be consequential changes,
declaration will be consequential change of the fix, and definition will be consequential

change of the declaration.

105

Chapter 5 - Change Impact Factor Estimation

8. Addition of a new member variable is a consequential change of declaration required by
implementation.

9. Adding/Removing an existing source file to/from a system is a change

10. Removing an already added file is not a change, providing that it is not supplying any
services to others. If it does supply services, it will cause several external changes;
therefore, file removal will be a change.

11. While Adding/Removing an existing source file to/from a system, all are original
changes. We do not differentiate such as A.h is an original A.cpp is a consequential

change.

5.5. Expected Outcome Prior to the Experiment

In the Product Risk Analysis in [60], we showed that alpha values above a critical point
may make Product Risk become unbounded. This is due to a change causing a cascade of
consequential changes, which, in turn cause other changes in an unstable fashion. Several alpha
values were used for Risk calculation. Our experience with Mozilla libraries’ Risk analysis
showed that alpha values should be of the order of 0.1, to remain stable, and, as a first
approximation, we took alpha value to be 0.1 for all files. This analysis result was qualitatively
interesting, but not numerically exact.

A study, related to ours, was carried out by Jungmayr [8] were he calculated a system’s
testability based on interconnectedness; he did not take into account the degree of
interconnectedness between source files. In other words, the alpha value in his research was one,
since no coefficient is used to adjust the strength of dependency. However, dependency between
files does not imply that every change in depended file causes change in a depending file. Most
of the time changes remain local to a file.

Excessive consequential change indicates that it will be difficult to make future changes,

due to the effects of the change on testing and additional consequential change, an undesirable

106

Chapter 5 - Change Impact Factor Estimation

property. During our analysis of Mozilla [60], we observed that small increases in alpha value
can cause unbounded product risk.
It is the purpose of this experiment to evaluate alpha values experimentally, to avoid the

foregoing “ad hoc” adoption of specific values, even though we believe them to be reasonable.

5.6. Empirical Study Process Description

In section 5.4 our experiment design was disclosed. This section covers some practical
details of the experiment. The sample data for this experiment came from a reimplementation of
our C/C++ file level dependency-analyzer, DepAnal. The analyzer’s first external release has
7796 lines of developed code, 5580 of these are code within functions. Implementation took

three months, and 503 changes were recorded.

Statistical Information of the Analyzer
Total code lines 22553
Total developed code lines 7796
Total developed line of code in functions 5530
Total cyclomatic complexity in evolved code ’12
Time to first external release (months) 3
Number of changes recorded 503

Table 5.1 — Information Regarding the Experimental Project

Each change is recorded in a maintenance page for each file, where the change occurred. A
change record contains the following information:

- Date

- Change number, qualified with internal release number

- Brief information regarding the nature of the change

- Whether it is a consequential change

107

Chapter 5 - Change Impact Factor Estimation

We also created a Change Logger application, shown in Figure 5.6, to keep data in an
organized fashion in order to query later. The Change Logger carries extra information regarding
each file, shown in Table 5.2. This extra data is used for exploring correlations between metrics

(structural or internal) and changes. This will be a topic of future research.

- Change type
B ChangelogTable : Table]
Field Mame Data Tvpe - Number of depending files (Fanln)
% [ChangeMo Autorumber
| |FileMame Texk
|| ChangeType Text - Number of depended on file (FanOut)
|| Comments Memo
| [CausedBy Murmber . .
[|Fanin Text - Cyclomatic complexity
| [FanCut Text
| [MawxcC Texk . . .
[[Totalce Text - Maximum and average function size
| [AwaCC Texk
| [MaxFunsize Text .
| |AvgFuncSize Text - Total line of code
|| MumOFFunc Texk
ST Siee Tewk
- Ete...

Table 5.2 — Information in database regarding a file, where change occurred.

Change Logger Ver 1.8 EE

Settings Show Final Alphas Alpha Evolution

Change Logger

- —Change Infa
Auto-increment \% B e Eiveres Tope
change number 73 BepFiecorderh e - Gobal o Gobdl O
spE Function Data &
—Commerits
addFuncTolsedFuncT able func decl added due to recordinvokedFunctions 1.5.c DepFin.cpp

M- Change Mumber in Maintenance History Change D ate
o — Lonsquential-Esterna
Original or g —_— (1_2_5 —‘ ’71;?;2005
Consequentlal FILE: DepFinder.cpp -%ER: 1.5.c - DATE: 1/5/2006 iz cauzed by 386. Change took place in: DepRecorderh
change YER:1.2.a DATE:1/7/2006
Change History

| |File name : DepFinder.cpp

| Type of change :Type Caused by 385

— | Comments : record nvakedFunctions func def added

Retrieved from | — _

database Cancel | Edit I Save |

Editing

108

Chapter 5 - Change Impact Factor Estimation

Figure 5.6 — Screen shot of Change Logger

Once a developer implements a change, he has to record it both in the database by using
change logger (Figure 5.6) and in the maintenance page, before working on other parts of the
software. To record a change, the following information is needed: filename where change
occurred, brief textual explanation regarding the change, change number, type and date. If it is

consequential change, the developer has to select which file caused the change.

Alpha Calculator 1.2 E]E]
Beain Date End Date
[113/2008 |2/7/2008
Sun Mon Tue'wed Thu Fri Sat Sun Mon Tue 'wed Thu Fri Sat
1 2 B 4 5 1 2 3 4
E 7 8 9 10 11 12 5 E & 2 9 10N
13 14 1% 18 17 18 1§ 12 13 14 15 18 17 18 . .
200 23 M B/ B 19 20 21 22 23 24 8
el e He Alpha values evaluation can be monitored
between any period of time during the
Alpha Calculation Method
DaF;e - &lpha Extraction for Matrix deVCIOpmel’lt.
24702006
" Regular
" Weaighted Conseq Change
 eigtod by Totl Cherge Alpha values between any two files can be
R e extracted to see their interaction in time.
|
File name, which caused consequential changes to file above
[
Get Daily Change Counts
Ready...

Figure 5.7 — Alpha value calculator

Figure 5.7 above shows Alpha Calculator, which can extract alpha values between

anytime during project development. In addition, it generates matrix files to be used for product

risk calculation.

5.7. Our Results

This research provides several graphical outputs. One graphical output type is evaluation
of alpha (Change Impact Factor, CIF) values chart for each individual file. Another one is
evaluation of project’s alpha values chart throughout development. CIF charts for a file have two

forms; one form shows the number of consequential changes charged to file A due to changes in

109

Chapter 5 - Change Impact Factor Estimation

other files. We show this CIF value asa,,. X is files causing consequential changes to file A.
Another form of chart is the number of consequential changes caused by file A to other files. We
show this CIF value as«r ,, . Changes are cumulative change counts in a given time interval.

A file’s alpha evaluation chart discloses information about how likely this file will be

affected by the changes in other files,, , or how likely changes in this file will affect other
filesary,. The chart below (Figure 5.8) shows alpha value of file Collector.cpp, such

as aGmmmarAcpp,Collector.cpp . We read aGmmmarAcpp,CollectorAcpp as a Change occurred in Grammar‘cpp

how likely will require change in Collector.cpp. File’s alpha evaluation charts below do not
disclose dependency information.

When we mention consequential change, generally, the scenario is like the following. If
file A is using services of file B, change in file B causes A to change. However, some cases it
can be just the opposite, such as, while file A using feature of file B, it can encounter a bug, and
request file B to change. Another example file A can request new feature addition from file B. In
the former case, consequential change is just the reverse direction of the dependency, but in the

latter cases in the same direction of dependency.

110

Chapter 5 - Change Impact Factor Estimation

In this chart we see, first sharp rise in

AlphalA file][Collector.cpp]

1
0.9 alpha’ value (aCollectonh,Collectar.c’pp) then
0.8 -
07 becomes stable. In most cases, a
206 —+— deprecorder.cpp
= 05 ~=grammar.h module’s header and implementation
’ grammar.cpp

< 04 ——depfinder.cpp
1AL ——collector.h

zf 3 other files. This is expected, since they

file has higher alpha value compared to

O bon—pommme——yo 1 e -6~ e ——— . . .

WoLLOLLooOwoLooDo oo oo ooooo are intended to accomplish assigned

O O 0O 0O 0O 0 0 00 00 Q00000 Q0 Q00000 Qoo o

Sgeoosogesggeogee9ese98e90989

OARNTCTBUISIAORC-CWUWIOBTRN-OUIAOSTFTIJO O DR

R S S R o L o S B i B L N

FFFFFFFFFF A N NN e tk t th tl th d .
””””” asks together Unti e design

Date

matures, frequent changes are normal.

Figure 5.8 — Alpha value evaluation of Collector.cpp throughout the first release.

Mostly changes between modules (header file and implementation file/s) are due to
function signature change, adding/renaming/removing member data or function. All these
changes are legitimate as are frequent changes between modules at early stages of a development.

z Consequential changesin Collector.cppdueto A
a . =
A,Collector.cpp Z Changesin A

To be consistent while recording changes, we use the rule that definitions always depend
on declaration. AS Wee€ S€€ Q¢yyeeior i Collectorcpp 15 quite high; implying almost any change in
Collector.h affects Collector.cpp. Because, any member function addition starts with its
declaration then its definition. This means all the function definitions are consequential changes,
and as a result high alpha value between header and implementation file are expected.

The lower the denominator is the higher the fraction. If there are not many internal

changes recorded in file A, or all the internal change causes changes to the same file, this can

111

Chapter 5 - Change Impact Factor Estimation

cause « value to be high. Lower alpha indicates files’ level of independence from external

changes. Therefore, the lower alpha value is the better.

When there is an increase in the alpha value, it indicates that consequential changes are

occurring to subject file. Reduced or no change in alpha value indicates no consequential change

is occurring to it.

Charts also disclose information regarding file’s creation or inclusion time in the project.

By looking at time line in Figure 5.8, it is seen that collector.cpp is created at the early stages of

the project.

Alpha Value within a Period of Time

—— Considering the Past
- @- 1 Month Slice

0
[
I

11/23/05
11/25/05
11/27/05
11/29/05
12/1/05
12/3/05
12/5/05
12/7/05
12/9/05
12/13/05
12/15/05
12/17/05
12/19/05
12/21/05
12/23/05

Figure 5.9 — Alpha value evaluation in 1 month
period between Collector.h and .cpp

paragraph of this section, e.g. 5.7.

112

Figure 5.9 shows changes in

aCollector.h,Collector‘cpp durlng the time frarne Of

1 month. The solid line uses all the change
history from the beginning of the project.
The dotted line uses no change history prior
to the initial time of the graph. This figure
allows us to observe alpha value in some

time interval. See the discussion in the last

Chapter 5 - Change Impact Factor Estimation

Figure 5.8 and Figure 5.10 are both Alpha

AlphalA file][Collector.cpp]
1 Month Period - Past ignored

values for Collector.cpp. In spite of the

fact that both figures show the alpha value

0.6 —+—deprecorder.cpp
0.5 -=—grammar.h
' depfinder.cpp for the same file grammar.cpp does not

0.4 —collector.h

appear in Figure 5.10. This is because no

consequential change was occurred in

2 2 L 2 L 2 2 L 2 L

4 4 N N O & & ¢ & T T T T T o 4

S Collector.cpp by that file during the time

Figure 5.10 — Alpha values evaluation for 1 month period covered. Moreover, alpha values in

period. Figure 5.10 are different than the values in

Figure 5.8 on the same days. That is due to ignoring past changes.

The sliding window time frame is useful for monitoring the evolution of alpha values in a
certain time period. Another benefit is to eliminate the effect of history and see the real alpha

values during a given period of time.

Z Consequential change countin A dueto Collector.cpp

aCallector.cpp,A -

Z Changesin Collector.cpp

113

Chapter 5 - Change Impact Factor Estimation

Alpha[Colector.cpp][A file]

——scopeinfo.h

039 -=—scopeinfo.cpp
0.8 utilities.h
0.7 — depfinder.cpp
—*- grammar.cj
So06 9 PP
:>v —e—grammar.h
© 0.5 —— collector.h
<
S
= 0.4

11/3/05
11/7/05
11/11/05
11/15/05
11/19/05
11/23/05
11/27/05 7 |
12/1/05
12/5/05
12/9/05
12/13/05 7
12/17/05
12/21/05
12/25/05 31
12/29/05
1/2/06
1/6/06
1/10/06
1/14/06
1/18/06
1/22/06
1/26/06
1/30/06
2/3/06
2/7/06

Date

Figure 5.11 — Alpha value evaluation of Collector.cpp
throughout the first release.

In this chart, we see how changes in
Collector.cpp cause other files to change.
As we saw previously, in Figure 5.8,
alpha values between a header and its
implementation file are larger than other
alphas. Typical alpha values for non
header/implementation pairs are low, of
the order of 0.1, as we have been using,

earlier in this research.

Alpha[Colector.cpp][A file]

——scopeinfo.h
—=— utilities.h

1 Month Period - Past ignored Figure 5.12 shows Alpha wvalues of

depfinder.cop Collector.cpp for 1 month. Similar to

—< grammar.cpp

—grammar.h

- collector.n charts in Figures 5.9 and 5.10, earlier

12/23/05
12/25/05
12/27/05
12/29/05
12/31/05
1/2/06
1/4/06
1/6/06
1/8/06
1/10/06
1/12/06
1/14/06
1/16/06
1/18/06
1/20/06
1/22/06 }

Figure 5.12 — Alpha value evaluation for 1 month
period

change history is totally disregarded here..

If there is no change in alpha values, (after January 10 in Figure 5.12) there is no change

occurring in causing file. It could be an indication that file met its planned functionalities and is

fulfilling its requirements or it could be the project manager’s decision not to make changes until

a particular project release to meet with schedule and budget.

114

Chapter 5 - Change Impact Factor Estimation

5.8. Computing an Effective Single Alpha Value for a System

In this section, we derive a single ¢p..... vValue, which represents the whole system. It is

calculated by summing non-zero consequential change counts occurring in a time unit (day) and
averaged over the number of changes occurring on that day, as described in the formula below.
All the changes are cumulative. In the formula, m is the number of files in a project, n;is

number of files to which file i causes consequential change.

m n;
Z Z Consequential change,
__ Filei Filej

Xifrective — if Consequential change,; # 0

i Change,

Thus, O 15 the relative frequency of consequential changes with respect to all changes.

Figure 5.13 and Figure 5.14 show the evolution of ¢4, ;.. In Some time interval. Figure
5.13 covers the time frame starting from the beginning of the project up to the time of the
project’s first release. At the beginning of the project, (yg.q. Value is low, since very few

consequential changes have occurred. Figure 5.14 covers one month time-slice of the
development, ignoring the number of changes at the beginning. During the time period covered,
files began to use other developed file’s services. Due to use of these services, we found latent
errors or conceptual misunderstandings that required change. Testing uncovered bugs and the
need for additionally functionality. As a result, consequential changes occurred, so larger alpha
values are observed in Figure 5.14. We chose to ignore the earlier history here, so that we could

clearly see alpha values that represent current activity, not weighted by past change inactivity.

115

Chapter 5 - Change Impact Factor Estimation

Project Alpha
1 Month - Pruned Average Alpha

Project Alpha
Pruned Average Alpha

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

LWL WV VDLW IWLWIWWL L OO OO O O © © © © LVLVVLVVVVLVLVVVVVVVWVWDW WYL WLWYLWWOLWO OO
=N = IR = N =N = B = = B = = B = = I~ = N~ B = B = B = B = B = S = B = B = B =1 [SR=R=R-R-R=-R-R-R-R=R-R-R-R-R-R-R-R-R-R-R=f-R-R=N=R-R=N=R-R-R-N-]
R R I = R I = B R~ B B < B = B~ B = I = B = B = B = B = B = R = I = I = R =1 S80S0 S80S00S580S55S986S988598899989S
N N N N N N N N FIIIIIIIIIIIIIINIAINIINIANNIINNA
FPET-TBOARNRCT BSOS BRN-WBIAIOBSTDI IS O O K T ORN PP O T NN TN ORI IO ANNINERNDIO = ND
s @93 dadaz s dgdedsrsrs 99 2AQad FIIAAANI SIS S oo AN AAANNANND Q===
rrrrrrrrrr S 3 d A SSs s ss < Frrr e e dAAAINNNNNAAANNNNIIIA A

Figure 5.13 — Qv €Valuation throughout the Figure 5.14 — &y, €Valuation for one-month
first release. period.

5.9. Risk Analysis with Measured Alpha Values
Figures below show the product risk [60] of files in our experimental project (DepAnal)

calculated using measured alpha values. Figure 5.3 above is also product risk, but the alpha value

is an estimated constant, 0.1. Risk values in Figure 5.15 are obtained by individually calculated

alpha values, meaning eacha,; value (Change Impact Value) used is measured using change

history.

Final Product Risk
Individual Alpha Used (Sorted by Risk)

@ Risk

7
6

B Importance
S 1 OTestability
4
3
2

0
S £ &8 § ¢ &85 &8 £ &8 £ &8 ¢t £t & &
5 ¢ o g o £ o § ¢ 5 9 B & o 9
e £ 5 § 2 £ £ 8 £E 5§ % 5 2 B & B
= 3 £ £ 5 8 3 £ g £ 2 3 8 & B ¢
T 2 E 2 = g ¢ & £ 8 & @ & g £
2 8 3 $§ & O = s x & 3 &
5} = a 0
c 3 3 o © 9 xr 2
= © a Q 0O
= [
- =]

Figure 5.15 — Product Risk with individually calculated alpha

116

Chapter 5 - Change Impact Factor Estimation

We know that the risk values obtained with individually calculated alpha values are the
most precise ones. On the other hand, we would wonder that if we use single alpha value for
overall analysis, how closely single alpha represents real risk values. As we saw in previous

paragraph, comparison of actual versus estimated constant value was not very precise. For that
purpose we calculated the risk values by using ¢p.....» Which is a single alpha measured using
change history as in the formula, above in section 5.7. Figure 5.16 shows the risk values

calculated measured project alpha value.

Product Risk
Pruned Average Alpha = 0.1317

@ Risk
B Importance

O Testability

O =~ N W b~ 00O N 0 ©

Main.cpp S ——

Utilities.h

Grammar.h

Collector.h
Collector.cpp |E——T—

Utilities.cpp
Scopelnfo.h
DepFinder.h

Grammar.cpp

Q
Q
o
=
]
°
£
o
[=}
o]
o

IncludeMngr.h
Scopelnfo.cpp

DepRecorder.h
DepRecorder.cpp [T T

IncludeMngr.cpp [

Figure 5.16 — Product Risk using &g .ive

As we see in Table 5.3 and Figure 5.16, more than 62% of the files stay in the same order

or at most two-places moved as in Figure 5.15. Therefore, the order difference between using

single measured ... and individual alphas can be disregarded for this experiment.

117

Chapter 5 - Change Impact Factor Estimation

Ordering change with regard to individually calculated alpha
Estimated Alpha Calculated Effective
Alpha
Order Change Count Percentage Count Percentage
Same Place 6 37.50% 7 43.75%
1 Space Moved 2 12.50% 1 6.25%
2 Space Moved 2 12.50% 3 18.75%
3 Space Moved 2 12.50% 1 6.25%
4 Space Moved 3 18.75% 3 18.75%
5 Space Moved 0 1 6.25%
6 Space Moved 1 6.25% 0

Table 5.3 — Change in risk ordering of files calculated by measured & and estimated alpha,

Effective
compared to risk calculated by measured individual alphas.

The effort spent for obtaining individual alpha calculation is not negligible. If alpha
calculation is automated, this will be great help to obtain precise risk values, which is an

interesting future research area.

—&— Risk (Estimated Alpha Used =0.1)

9 —@— Risk (Individually Calculated Alpha Used)
--A - Risk (Effective Alpha Used = 0.1317) A
8 Aok
A
7 A---- A
A&

Risk Value
B (6] [}
»

>

4

»
\ |

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
File Sequence Increasing Risk Order

Figure 5.17 — Comparison of outcome of Product Risk with alpha variance

Figure 5.17 shows the comparison of product risk results. Of the three methods of
evaluating product risk, the individually measured risk is the most accurate representation, since
it is based on real measured change propagation, just as the model uses it. We expected the

effective alpha model to approximate the same risk values, but in fact, our ad-hoc estimation of a

118

Chapter 5 - Change Impact Factor Estimation

constant alpha gave better risk value results. But, the important issue is the ordering of files by
risk, as we wish to use the model to decide on which files to focus our corrective actions. From
this point of view, using a single effective alpha gives quite reasonable results, as indicated in
Table 5.3. There we see that approximately 40 percent of the files keep the same position,
compared to individually measured alphas, and 75 percent of the files moved no more than 3
places.

Since the ad-hoc estimation also performed well, with respect to file order, we are lead to
believe that there may be an alternate process for computing a single effect alpha that may, in
fact, be better. We have not discovered that yet, and so this is a topic for future research.

We believe that our process for measuring and using individual alpha values, is important
and useful for evaluating product risk, and can be of very real benefit to project managers and

developers.

5.10. Contributions of this Study

The contribution of this research can be summarized as follows. An experimental design
was developed, which can be applied to other software development projects, to assess their
change impact factor (CIF). Measured CIF values enable one to obtain a precise measure of
product risk. This study provides a unique definition of change impact model, which is based on
file to file change history. One of the aims of this research is to help large-scale software
developers analyze the current standing of their software’s structural quality. That is why
granularity of CIF plays an important role. Another contribution is the empirical study and its
quantitative results for CIF calculation and risk prediction. For example, we witness the
evolution of alpha values over a project’s lifetime. Additionally, we observe how closely a single

project alpha can estimate product risk value, compared with individually measured alphas.

119

Chapter 5 - Change Impact Factor Estimation

5.11. Concluding Comments

Change in software is an essential part of software development and maintenance.
Estimating a proposed change’s effect on the later phases of the development helps project
managers and developers with decision-making, and predicting future progress. During
development, on some occasions, speedy solutions are necessary to meet project schedules.
These sudden changes may cure local problems at that time, but in the future, may cause
significant quality defects [68]. For example, software can acquire a tendency to consequential
changes, or unintended dependencies can arise. Management of change is achieved by being able
to estimate the impact of changes; this study serves mainly to support that need. Calculated risk
profiles disclose each file’s vulnerability to external changes, as well as project’s overall
vulnerability. Software managers can use these charts to monitor and control the change process.
Understanding impacts of a change is one of the methods for guarding against software quality

degradation.

Calibrating change impact factor parameter values for a project from change history is
applicable to any software development project. These quantitative measurements are superior
to estimated alphas. High change impact values are not a desirable property of a file or a project.
If a file is inclined to change due to external changes this increases effort required for
implementing changes. As a result, it increases bug fix time and new feature implementation
time. Knowing the system’s sensitivity to change and estimating the effect of a change enables
controlled and well-planned change activity.

Using change history enables us to:

Understand degree of connectedness between source files,

Provide controlled change activity.

- Monitor software quality

Understand the evolution of change impact value (CIF) over a project life time

120

Chapter 5 - Change Impact Factor Estimation

- Determine the quality of software via CIF; high CIF indicates low quality or immature
software project.
- Alpha values help to predict the role of change of a file and the project, consequently this
helps during;
= Decision making.
= Effort estimation.

= Project scheduling

121

Chapter 6 - System Structure - Simulating Constructive Change

Chapter 6

System Structure - Simulating Constructive Change

In this chapter, we examine the affect of changes we may make to improve the structure
of systems analyzed with the help of DepAnal and DepView. These changes are simulated using
our generated structural metrics, by making changes to the discovered dependency data. We are
not redesigning Mozilla, for example. That would be impractical. Instead, we are simulating the
effects of changes like removing global variables and inserting interfaces between components
with high fan-in and their many clients. We also have a more concrete example in our analysis
tool, DepAnal, for which we have two versions. We redesigned this relatively small project to
help us evaluate the prediction process™*.

Simulation is not perfectly accurate — it provides estimation and in some cases upper
bounds on the improvements that can be made. However, it is critically important that a software

manager or architect can estimate the affects that proposed changes may make, before embarking

3* We also undertook this redesign in order to experimentally evaluate the Risk Model alpha factors, for a real project.

122

Chapter 6 - System Structure - Simulating Constructive Change

on an expensive and time-consuming redesign. For example, we have previously shown that the
GKGFX library of Mozilla has serious structural problems. Because it consists of 598 files, it is
very desirable to investigate potential improvement before investing in a lot of changes. This
estimation is the subject of this chapter.

Dependencies between files are determined by declaration or definition of types, global
functions, and global data, as indicated section 1.5.1. We show in this chapter that it is useful to
make distinctions between the types of dependencies between files. One reason for doing this is
that only dependencies based on simple types and global function usage can be manipulated
without breaking code, simply by rearranging code packages. Type to type and global function
dependency type can be optimized by moving types or global functions from file to file subject to
maximum number of types/global functions per file. This may help, for example, to reduce the
size of a strong component that contains these files.

Introduction of a non-constant global data definition always introduces mutual
dependencies between every file that accesses that datum. These invoking and defining files, by
default, depend upon each other. For instance when a global variable changes (e.g. rename) both
files will be affected. If a global datum is renamed or deleted, every file that cites the global
variable needs to be updated accordingly.

In addition, the affects of dependencies on types can be reduced and mutual couplings
can be diminished by using interfaces to bind components together rather than binding to concrete
types. This does not eliminate a dependency, but it reduces the likelihood that a change in a
component represented by an interface will affect a component that uses the interface. This is so,
because the interface hides all the implementation details of the component that supports the

interface. The following sections explore candidate improvement techniques.

6.1. Eliminating Global Variables

Non static global variables are accessible from anywhere in the program. A non-constant

global variable has the potential to cause large mutual dependency file sets. We would like to

123

Chapter 6 - System Structure - Simulating Constructive Change

observe what we may gain by elimination of them, and what we gain by assuming the global
variable as constant. Removing global variables is simulated by simply removing their entries in
the dependency table. This does not account for finding ways to communicate the same
information by less dangerous means. As a result, we are finding an upper bound on the possible
benefit. When we put back the needed parts of the communication, some of the dependencies
will also come back. In the following, we investigate how much of this potential can actually be
realized.

In this section, we explored the affect of a specific change - removing global variables -

on GKGFX Library and MFC project’s structural quality.

6.1.1 Analysis of GKGFX Library of Mozilla

Here, we explore the Mozilla GKGFX library to discover the change in dependency
structure by eliminating global variables. Figure 6.1 shows a dependency view of the GKGFX
library with the original dependency analysis on the left, and after removing global object

dependencies on the right. We see decrease in size of one of the largest strong components from

o o
I~ ShowDependency [T Diaw | I Alowpopup I Fanin I FanOut I~ EDep I~ /1o /o0 I~ ShowDependency [7 Draw | I~ Alowpopup I~ Fanin ™ Fanu [~ EtDep [~ 100 00y Clea
e L ettt ol VOV VVIWWee VVWWEYSVELLLY
L T L L T T L et T P T T - D eetathtidid
T T T ™ e ywww
L T L peepeepeepeepmed 1] - T T T T -~

T LT B bbbt bbb dd b T e T T Tt
A L T T ™) 4 - -
.-'-'.'.."."". w .-..'.-.'....-"'.-"'-..'

ve
GVGGG YW s I b A BB R A Sl T T T T o L
vgeeswew T Veewveovweoovew L L T e T T et
™ oy @ Psoe | | | oee—=— peiped
Ve "". ...'. '. ..".." vew i POvYYYWVVe '--..'-
T T o Yeoooo Yoo weow . ", o, v - -
- - e’ We'e ® s . e Pe Yevug C@v ey
v veo @ o Yogeeoeue vew vy @ (™ -
- - = ™ ® veove - o Ve,
T T vVe, voCeuy wew v o W eee (Y
P T T D LT TR Dt L L P Ped Yoo vew cec’@vo®ve® We
- wewel Y - -- Ve o e e v - - g
— e
vevevwwe e, @ @S Gy ™ P Py @YY, V99 %Yo e
", oW oveveve T Dt Yy Vo Yo" i
Yoo wwe . ee Yo ™ .o ™ ve we
= - ve vevee L A4 s @ Gge --"v" (]

o ®*’" & T T T I T et 4 4
™
o ve ¢ vevevweewe Yee

Ready. Y Feady.

Figure 6.1 — Components of GKGFX Library, on the right after removing global object
dependencies

124

Chapter 6 - System Structure - Simulating Constructive Change

As we know, each circle represents a strong component, and the number on each circle
shows how many files are in that strong component. When we remove dependencies caused by
global variables, component #57 on the left in Figure 6.1 is broken into pieces, and largest
remaining piece has 27 files on the right titled component #59. . This indicates that use of global
variables should be avoided as much as possible’’[63]. And, also indicates that use of global
variables increases systems complexity and strong component size.

Component #41 on the left and component 42 on the right in Figure 6.1 have the same
member files constructed with global functions and type invocations. When we further analyze
this component individually considering only type dependencies, that is, by removing global
function dependencies, we get a strong component broken into smaller size as shown in Figure

6.2.

™ epView 1.4 - 2D Dependency Viewer

View
¥ ShowDependency [0 Draw | I~ Allowpopup ¥ Fanln W/ Fan Out ¥ EstDep [~ NolntemalDep _Clear

Consider During Dependency Calculation
™ Global Objects

W Types

™ Global Functiors

Fca. v

Figure 6.2 — Analysis of the component with size 45 in Figure 6.1

As it is seen in Figure 6.2, removing global function dependencies causes the strong
component with 45 files to be sliced into smaller parts. This shows that dependencies on global
functions are also causing large mutual dependencies.

Figure 6.3 shows logarithmic scale risk values of GKGFX Library before and after

removing global object dependency, we see a large reduction in risk values.

% This is “common wisdom” in the development community [63].

125

Chapter 6 - System Structure - Simulating Constructive Change

Risk Values for GKGFX Lib. 1.4.1

Dependency Reason

1504 1559

| 1408

100000
10000 —— Risk (Original) e .
. - Risk (Global Object Dependency Removed) =y N
[} B
2 :
O
? 1000 |
(2]
o)
=
o
=
g 100
X
)
o
10

Member Object

Global Global Object Member
Function Function

Dependency Type

Dependency Reasons

Figure 6.3 — Product Risk for GKGFX Lib, simulation of global obj. dep. removal

As it is shown at Figure 6.1, after removing global variable dependencies, we see the

strong component size has shrunk by about 55 percent. However, this made a big impact on

maximum risk as in seen Table 6.1, where max risk reduced from 34619.89 to 54.35.

With global objects Without global objects
Maximum Risk 34619.89 34.35
Average Risk 10.87 3.65
Max. Strong Comp. Size 60 45

Table 6.1 — GKGFX risk values

All the files with high risk are members of strong components [58]. This also

demonstrates that risk analysis is providing useful information.

126

Chapter 6 - System Structure - Simulating Constructive Change

TP DepView 1.4 - 2 Dependency Viewsr

Vew
I™ ShowDependency [7 Diaw | I~ Alow popup ¥ Fenln ¥ FanOut ¥ ExtDep I~ NolemalDep

T
-@bv-.-v.--v---v---v---

- \LA A A A A A A d 22 A 22 24 22 2 4 2/ Dependency Reason
o Yevevwvveeeeewweeveeee 1600 1504
N T T T

1400

1200

1000

800

Occurrences

400

200

0 0 0 0

Global Global Object ~ Member ~ Member Object Type
Function Function

ﬁ Dependency Type

v

Figure 6.4 — Shown dependencies caused by only global objects for GKGFX, two-way.

In Figure 6.4, the largest strong component, consisting of 45 files has internal
dependencies just due to global data. Type and global function dependencies are not included to
observe the affect of global data. One fact to remember is that non-constant global variable usage
causes two-way dependencies; one from a declaring file to invoking file and the other from the
invoking file to declaring file. Two-way communication causes immediate circular dependency,
since a change in a global object affects both. There are 1504 calls that occur due to global
variables in this scenario. Between groups of two files, there can be several dependency links via

a single global variable.

127

Chapter 6 - System Structure - Simulating Constructive Change

[® DepView 1.4 - 2D Dependency Viewer

ew
W ShowDeperdercy [7 Diaw | T~ Mlowpopup ¥ Fanin ¥ Fanut [V ExtDep [NolmtemalDep _Clea |
R PR T R R
\\ U R R T
vo NYvevveweweveweeveeeeveeeee . Dependency Reason
ey N i rrttntethedind ettt 0 784
voge vvv-vvvv.vvvvvv-vvvvv
."'- o 700
."..w VeovebewebbVVVVBVBVBVBVBVVG , 600
'...U-U VeveovevvewwbbVV %500
..'.vvvv U £ o
P vevew a4 4 2 2 TR) g
o v.-v'v".vv-v. 300
ow vuvvvu-vvu-vv 200
o® Covvvveewevew 00— o o o
‘ e o
o L& veue N . 4o wseovew Global Function Global Object Member Member Object Type

..U.U Function
Veeveveee
o L T el
LD DT e D

LTI L PP DD D

Dependency Type

Figure 6.5 — Dependencies of GKGFX, caused by global objects only, one-way.

After treating all the used global object as constant, we obtain the Figure 6.5. Also,
notice that number of dependency occurrences reduced from 1504 to 784. This indicates non-
constant global data is causing almost twofold more dependency density than a constant one. In
this experiment, constant global object causes only one-way dependency, which is from an
invoking file to the declaring file, as in the case of type or global function invocation. We see
that the component with 45 files disappeared; as a result, many external dependencies appeared.
This demonstrates non-constant global variable can increase dependency complexity

significantly.

6.1.2 Analysis of MFC

Using our tools, we analyzed Microsoft Foundation Class files, and find dependencies
among MFC files with and without global objects. “Microsoft Foundation Classes, or MFC, is a

Microsoft library that wraps portions of the Windows API in C++ classes, forming an application

128

Chapter 6 - System Structure - Simulating Constructive Change

framework for developing Windows programs. Classes are defined for many of the handle-
managed Windows objects and also for predefined Windows and common controls”. *°
We explored the MFC library to discover whether similar behavior would be observed.

Interestingly, MFC files do not use global objects as heavily as GKGFX library, as is seen in

Figure 6.6. Removing global variable dependency for MFC does not change the structural quality

radically, as is shown in the analysis below.

™ De pView 1.4 - 2D Dependency Viewer

View
T~ ShowDependency [10 Draw | I Alowpepup ¥ Fanin ¥ FanOut ¥ ExtDen ¥ NalntemalDep Clear

Dependency Reason

4000
3500 3385

3000

2500

2088
20001 1708

Occurrences

o
3
3

1000

599
= N
0 |
Global Global Object ~ Member ~ Member Object Type
Function Function

Dependency Type

Figure 6.6 — MFC Dependency reason and external dependencies of Component #6

Figure 6.6 shows the results of a first run considering global variable dependencies; we
see one big component consisting of 133 files. When we exclude dependencies caused by global
variables, we obtained Figure 6.7. This shows that the largest component size is reduced from 133
to 128. Interestingly files involved in the large strong component are not due to global object
dependencies. Even though it did not change the strong component size much, global object
dependency caused a big reduction in overall risk value. This indicates when strong component

size gets larger; each addition of a new file to a strong component can significantly increase risk.

¢ http://en.wikipedia.org/wiki/Microsoft Foundation_Classes

129

Chapter 6 - System Structure - Simulating Constructive Change

With global objects Without global objects
Max. Risk 30542.54 9131.51
Avrg. Risk 1497.85 447.61
Max Strong Comp. Size (files) 133 128

The MFC library exhibits Test Risk singularity for alpha very close to 0.07, due to dense
dependency in strong component. This means that its code would be extraordinarily sensitive to
change. When we reduced alpha to 0.06, the singularity was avoided, leading to the analysis here.
Since MFC is a viable commercial product, we believe that typical values for alpha in

commercial systems may well be significantly less than 0.1, due to the expertise of its developers.

Table 6.2 — MFC risk values

E® DepView 1.4 - 2D Dependency Viewer

ew
I ShowDegendency 10 Diaw | I~ Alow popup W Fanin ¥ FanOut ¥ ExtDep ¥ Nolnemal Dep

[BEE]

Ready.

Figure 6.7 — MFC, Internal - External dependencies of Comp(;nent #6

The highest risk value, shown in Table 6.2, reduced from 30542.54 to 93.83. Figure 6.8
shows risk values with, and without, global object dependencies. After removing global object
dependency, the file order changed slightly. If this library’s strong component were constructed

by heavy use of global variables, we would see the order of files would change significantly, as

well as risk magnitude.

130

Chapter 6 - System Structure - Simulating Constructive Change

100000

“-Risk oemoooooooooooooooooooooos ek h /
10000 - —

—=Risk (Global Object Dependency Removed) - fiii

1000 -

o
S

Risk Values (Log. Scale)

1 -
1 15 29 43 57 71 85 99 113 127 141 155 169 183 197 211 225 239
File Sequance Increasing Risk Order

Figure 6.8 — Risk values for files in MFC Library, before and after global object dependency
removal

The data for Figure 6.8 was calculated with the simplifying assumption that « is
constant. To improve the accuracy of modeling, each project will want to calibrate their
organization’s software model using a process we have developed as part of this research in
Chapter 5. Alpha measures the probability that a change in one component causes changes in
another component that depends on it. One would expect lower values of alpha for components

with solid, robust designs.

6.2. Insertion of Interfaces and Factories

One technique that can be used to reduce the size of large strong components is to use
interfaces and object factories to move dependencies from volatile implementations to immutable
interfaces. Object factories are needed to avoid reintroducing dependencies on implementation,
removed by binding to interfaces. This technique helps us decompose large strong components
into a series of smaller components. We show, below, that that has a net, and often quite
significant, improving effect on software quality. Deciding where to place interfaces is part of
our current research, but initial results are quite encouraging. One approach that looks very
promising is based on a partitioning process developed by another member of our research group.

In order to investigate the affect of using interfaces instead of some specific concrete

classes to reduce dependency risk for the system, we simulated the use of interfaces by reducing

131

Chapter 6 - System Structure - Simulating Constructive Change

the predicted potential for change factor, alpha. Using GKGFX library, which has 598 source
files total, we first applied risk analysis with alpha of 0.1 for all files as in Figure 6.9, and highest
risk value for this analysis came out 34619.89.

To simulate the affect of inserting interfaces, we selected 24 files with high fan-in values
(fan-in value 14 and greater) and for these files, we reduced the alpha value to 0.01, simulating
the insertion of interfaces. As we know, alpha value indicates the potential for change of one file
due to a change in a file on which it depends. If it is smaller, change in one file is less likely to
cause change in other files. We picked high fan-in files, since these files are being used heavily
by other files, and these high fan-in files play a key role in introducing interdependency on others.

After introducing these changes and applying our risk analysis to the same Mozilla
library with these interface simulations, we found the highest risk value was reduced from

34619.89 to 3151.80, as shown in Figure 6.9.

Risk Values for GKGFX Lib. 1.4.1

100000
——Risk (Original) — = ——— i N
10000 — (Original)
—— Risk (Interface Simulated) _|-._._. ...)
3
O
“ 1000 |
(2]
o
S
()
=)
S 100
X
»
4
10 4
1 - T

— 0 I N O © M O N I T 0 1 N O ©O© M O N I T 0w
N 1D 0 © M © O «~— T M O N IO N O M © O - F © O
T v v N NN AN OO MO S Y T 00N 0w

File Name Increasing Risk Order

Figure 6.9 — Risk Analysis of GKGFX Library

In summary, modifying a relatively small number of files (24 files out of 598) to use

interfaces, resulted in the highest risk value being reduced from 34619.89 to 3151.80. This

132

Chapter 6 - System Structure - Simulating Constructive Change

indicates the use of interfaces will increase testability of the system and reduce importance of
files; consequently, risk will be reduced.

By introducing interfaces, we can eliminate some structural problems in the software
system. Another, critically important outcome is that without resorting to semantic analysis of
code, but simply simulating the addition of interfaces we see the results in terms of system risk.
This task would be extraordinarily difficult without the file rank based risk analysis we have
developed. Thus, without adding a large analysis load on developers, but just using simulation,
we can locate files to focus on, which contribute the highest benefit to remedy structural
problems.

6.3. Redesign and System Quality

Beside simulation, we redesigned our relatively small DepAnal tool. Below we compare
analysis results of the new design DepAnal program with the old one. This will let us gauge
whether the risk model will be useful for smaller systems as well as large systems like Mozilla.

Figure 6.10 and Figure 6.11 show the risk values of files that construct the new and the old

DepAnal respectively.
New Design DepAnal Product Risk
Alpha Value = 0.165
40
E Risk
35 1
B Importance
30 1 O Testability =
™
5251 totos‘go';g
g RIS So =T
LLooLeee
'1III
n
ga ccccocIarroc£gQgoecscgecIraccsogsogg
SN o008 p988885=8¢58;889%8
o © © g) S = = < c s = O
XY EGEES5Z>2FZ0=S208 0 ¢clisc052388¢
SO o S Xo < mu.oEEOSf:m T ST=8L28 S
[<S i [z =zZzT £ 0 = & Q Q 0Oa=00
> o = /= 3>S0 g 50 » O 0 OJa)LI_BQ.
] 9] LWoT oo 2} xa g3 3
- T£3°3 § 4~ o
L-g o g
File Name

Figure 6.10 — Analysis of Risk of new design DepAnal, sorted by increasing risk order

133

Chapter 6 - System Structure - Simulating Constructive Change

Figure 6.10 and Figure 6.11 show not only changed files for the projects, but also the
files that are reused, without change. During computation of risk values, an alpha value of 0.165
was used for both analysis. This alpha value is calculated by carefully recording change
information of the new design DepAnal. Details are given in Chapter 5. In the new design, we
see the largest risk value is 20.84, in old one it was 35.34 as shown Figure 6.11. Knowing all the
implementation details, as the developers of the both projects, before seeing these Product Risk
charts, our choice would definitely be the new design. Since it has better dependency structure,
well defined job partitioning, and less complex implementation. Addition of new features and
understanding the whole the system is much simpler than the old one. Having stated that, the risk

values magnitudes express the same fact. This is matching what we are expecting as designer of

the both projects.
Old Design DepAnal Product Risk Analysis
Alpha Value = 0.165 Na
40 S
B Risk N oy O
35 e
B Importance &
4 L o ©
30 O Testability o O RN~V
S 25 BB SV A
® N T
o N N & o o § N
> 90 fl?‘\!‘?to"':&)&)“
2 S 10
< N ™
© v g
10 '\'\‘\vgr'
Ly wo
5T G v N
0,
accggIcSges22cgss25I0<2808<
E5LB00XE5E0650020¢880555L206080¢§
- 5 2 2 60 at 5= < 9 O = o £ - £ 00 c &
¥X2=9=s=F g6 2E 60 S5 =9 y=UW o E 5 0 ®
028 L5 yroSEssC8ERL>2EN=2305 8= 9
FES35 D gZocE56-23T88 Hgaege
» 2 S8%8°238 p£<% 5 g5¢8E
o 823 5¢ 5 » 3 E
5 F o e w c
[ing > T
(= w
File Name

Figure 6.11 — Analysis of Risk of old design DepAnal, sorted by increasing risk order

6.3.1 Discussion of Old DepAnal Design
In the old design DepAnal, almost half of the files have risk value more than 20, which

are relatively high values comparing with the new design. Even though both programs are
intended to accomplish the same mission, by comparing risk values, we can come to some

conclusions about their implementation quality.

134

Chapter 6 - System Structure - Simulating Constructive Change

In Figure 6.11, risk values (sorted in increasing order) are shown, along with importance
and testability for each of the files of old design DepAnal. Invocation.h has the highest risk, due
to large fan-out, size of 13 out of 25 files. It is almost impossible to keep in mind all 13 files, for
what reason Invocation.h is accessing them, and it is very easy to forget the job of each of these
files. Another issue is testing Invocation.h, we need to make sure all 13 files are tested
thoroughly before testing Invocation.h. One another reason, why Invocation.h has high risk is
that it is a member of a strong component of size of four with dense communication (Figure 6.13,
below on page 137).

When we look at the lower left of chart 6.11, we see Tok.cpp to Report.cpp. All these
files have low risk values compared to the other files involved in the project. This is so because
all these files have relatively less complex implementation, and they depend on only a few
number of files in order to accomplish their tasks. Tok.cpp even has importance of one, this
points out no other file is using its services; this also indicates it is either a test stub or main
executive. In this case, we know Analyze.cpp is the main executive so Tok.cpp is a test stub.
Analyze.cpp is one of the high-risk files, since it depends on 17 other files. This is certainly not a
desired property, given that it is directly communicating with too many files. That indicates it is
taking too many responsibilities; therefore, abstraction is not partitioned well. As developers of

DepAnal, we know the inner quality of the project, and this chart is confirming our knowledge.

6.3.2 Comparing Old vs. New DepAnal in Detail
In this section, we compare the dependency structure and product risk values of each

DepAnal. In Figure 6.12 and Figure 6.13, we see strong components expanded into their
individual files, each dot represents a dependency relationship. For any dot, the file vertically
below it (x) depends upon the file horizontally to its left, on the ordinate (y). Any dot under the
diagonal indicates the existence of a strong component. Each rectangle represents the strong

component. The table, on the right of the figures shows the topologically sorted files.

135

Depended on Library Files

[RSN S, Koo Rt Ke vl (u]
1

Chapter 6 - System Structure - Simulating Constructive Change

This diagram discloses the quality of the project’s dependency structure. Dots closer to

diagonal are better, indicating local communication between the files. The number of dots in

each square shows how densely these strong component members communicate with each other.

DepAnal WVersion 1.7 .a

*

* BN

* e e

LR R

LR N R R O 3

* *

* *

* *

+

* *

* * ¥ »
* * ¥ »

*
*
LR B B
*

*

-+
+*

*

Least Dependent ->

9

T T T T T T T T T T T

T

10111213 14151617 181920212223 24 25 26 2728 29 30 31

Depending Library Files

Topologically
Sorted Files

Most Dependent

1 TOK.CPP
2 syntax2.cpp
3 reimpl2.h
4 Main.cpp
5 DepFinder.h
6 DepFinder.cpp
7 DepRecorder.h
8 DepRecorder.cpp
9 Collector.h
10 Collector.cpp
11 Scopelnfo.h
12 Scopelnfo.cpp
13 Grammar.h
14 Grammar.cpp
15 IncludeMngr.h
16 IncludeMngr.cpp
17 Utilities.h
18 Utilities.cpp
19 SEMILH
20 SEMI.CPP
21 TOK.H
22 NAV.H
23 NAV.CPP
24 FILEINFO.H
25 FILEINFO.CPP
26 syntax2.h
27 restack.h
28 regexpr2.cpp
29 regexpr2.h
30 ITest.h

Least Dependent

Figure 6.12 — Expansion of Strong Components — New Design DepAnal Ver. 1.7.a

Figure 6.12 show this project is nicely packaged with small strong components and most

files communicates with nearby files. The number of dependency paths in this strong component

is less than the strong component in Figure 6.13, e.g., the old design.

One of the strong

components in old design has four files but 10 dependency paths. There are more than twice as

many (6-extra) dependencies between members of its files. This reduces the flexibility of the

136

Depended on Files

26
25
24
23
22

e e e e e B e e e i B |
—

O—=rI =m0 O—= R in o - 00w s
P T T T N T

Chapter 6 - System Structure - Simulating Constructive Change

files for change, since a change may initiate other changes to occur due to strong connections

between them.

- * * .
i . . Old Design DapAnal
= *
-1 *
- * * * ¥ ® # ¥ ¥ # * *
-1 - * # # * # F + # * &
- & F 4+ F 2+ o+ & *
- * + ¥ o+ » * *
-1 * * #* *
= * L * »
- & # * & % &
- - & & o+ o+ & -
- L] & & ¥ * & * 0w
* * * -
L] L
L * *
- L] *
L] LI L
- L] *
- - - > -
-
. Depending Files
T T T T T T T T T T T T T

Least Dependent ->
T

Most Dependent

1 TOK.CPP

2 Analyze.cpp

3 Report.h

4 Report.cpp

5 Invocation.h

6 Invocation.cpp

7 FunctionTable.h
8 FunctionTable.cpp
9 TypeTable.h
10 TypeTable.cpp
11 FunctionMngr.cpp
12 Scopelnfo.h
13 Scopelnfo.cpp
14 FunctionMngr.h
15 TypeDefinition.h
16 TypeDefinition.cpp
17 Utilities.cpp
18 Utilities.h
19 SEMI.H

20 SEMI.CPP

’1 TOK.H

012345678 910111213141591617181920212223242526 22 StringUtils.h

23 StringUtils.cpp
24 redirect.h
25 redirect.cpp

Least Dependent

Figure 6.13 — Expansion of strong components, old design DepAnal

Using Figure 6.12 and Figure 6.13, we can obtain the data listed in Table 6.3, showing

new design has a significantly better static structure.

Category Name Old Design | New Design
Number of dots above diagonal 124 119
Sum of distance to diagonal (Dots above) 44 719
Number of dots below diagonal 15 18
Sum of distance to diagonal (Dots below) 27 25

137

Chapter 6 - System Structure - Simulating Constructive Change

Table 6.3 — Comparing structural quality of old and new design DepAnal

The sum of the distance of all the dependency dots in old design, from the diagonal, is
866 (844+22), and in new design this number is 744 (719+25). We noticed that the number of
dependency dots is almost equal; stressing that, from a risk point of view, local communication is

more desirable than more non-local, as is shown in Figure 6.14.

Risk Values
New Design vs Old Design (Alpha=0.165, Interface Alpha for Old Design =0.01)

40

—#- Risk (New Design)
35 4+ —a—Risk (Old Design)
—®— Risk (Simulated)

N
)]

Risk Value
N
o

-
(6)]

10

29 31

1 3 5 7 9 11 13 15 17 19 21 23 25 27
File Sequence Increasing Risk Order

Figure 6.14 — Product Risk Values, Old Design vs. New Design DepAnal

Figure 6.14, above, shows the simulation of interfaces for old design DepAnal to
compare with new design. We assumed that files with fan-in size 10 or greater are good
candidates for use of interfaces. This resulted in five interfaces to the system with 25 files. For
the simulated interfaces, alpha values are taken as 0.01. As we see, new design has better risk
values than simulated one.

Before the analysis, we were expecting the chart below, which is matching the result

above. Renovating a project on top of an existing architecture does not give as much flexibility as

138

Chapter 6 - System Structure - Simulating Constructive Change

redesign. Moreover, after gaining experience from the previous design, the designer can avoid

making the same mistakes.

Original '

Risk Value

File Sequence, increasing risk order
Figure 6.15 — Expected risk values before and after constructive changes.

In Figure 6.15, we see three curves above; the one at the top is the original risk before
constructive steps are taken. In the middle, after applying suggested fixes, we see what would be
the overall risk values relative to the original risk. Finally, the bottom one is the expected risk
values after completely redesigning the project.

6.4. Strong Component and Product Risk

Strong components are the groups of files, which cannot function with the absence of any
other member file, due to mutual dependencies between them. Traditional testing order is to test
first files, which depend on no other files, and then test those files, which depend only on already
tested files. However, in the case of mutual dependencies there is no such order. Therefore, we
have to treat strong components as a unit during testing; this also reduces testability and increases
importance of each file and consequently the risk of files gets higher. Let us examine these

statements with the basic example below.

139

Chapter 6 - System Structure - Simulating Constructive Change

@ Risk
B Importance
O Testability

D.h |main.cpp| E.h F.h G.h H.h B.h C.h Ah

mRisk

1.1677 | 1.2609 | 1.2854 | 1.3741 | 1.3756 | 1.401 | 1.5877 | 1.6085 | 1.8061

B Importance | 1.1121 1 1.2242 | 1.1121 | 11112 | 14111 | 11211 | 11211 | 1.2111

O Testability 1.05 1.2609 1.05 1.2356 | 1.2379 | 1.2609 | 1.4162 | 1.4347 | 1.4912

Figure 6.16 — Dependency graph and its corresponding risk chart.

In this example, files do not have any complex implementation; they have empty classes
and function bodies. Therefore, testability value of files is only affected by the dependency
relationship between files. Here, we take the « value of 0.1. For importance values, without
analysis, we may think file H should be the most important file among all the files, since it is at
the lowest level and many files depend on it. Additionally it is a member of strong component.
Nevertheless, file E has the highest importance value, since strong component with 5 members
and additionally file B depends on file E. Implicitly file H is also dependent on file E. All these

factors causes file E to have high importance.

® DepView 1.2 - 2D Dependency Viewer

Figure 6.17 — DepView for basic project above.

For the testability, by looking at the dependency graph we might jump to the conclusion

that the main file should be the hardest file to test, because it depends on all the other files

140

Chapter 6 - System Structure - Simulating Constructive Change

directly or indirectly. However, we see that file A has the highest testability score. There are
several reasons for this to be so. Both the main file and file A depend on the same files, since file
A depends on itself because of the feedback call from file H. File A has two direct dependencies
(B and C), but the main file has only one direct dependency, therefore change propagation caused
from lower level files encounter file A before reaching the main file.

One interesting fact is that file B also has high testability value, which is higher than the
members of the strong component. As stated above, we take the « wvalue 0.1; this means
changes are not likely to affect files with distant indirect dependencies. In AppendixA.4, at page
170 we took « value 0.9 to better observe the relationship between & and strong components.
In that the appendix we see that members of strong components, and files directly depending on
strong components, always have high testability values and consequently high-risk values. In the
case above, due to low & value and high direct dependency, B has higher risk value than F, G

and H, which are members of the strong component.

6.5. Global Variable and o

Global variables provide an easy way to communicate with other files, but brings risk
along with convenience. If a global variable is non constant, it not only makes the using file
depend on declaring one, but also makes declaring one depend on the using one. This two-way
dependency always causes mutually depended file groups. All the analysis in this research is
based on static dependency relationships, therefore whether a global variable actually remains
constant or non-constant does not change the dependency structure, provided that it can change.
However, we would like to observe how this dynamic property may affect dependency structure.
Figure 6.18 shows file B declaring a global variable, named “isFull” and both file A and Z are
using that global variable in their internal calculation. In the Figure 6.18, file A and file Z do not
depend on each other, since they are not using services of each other. On the other hand, the

global variable declared in file B is non-constant, this causes file A to depend on file Z via file B

141

Chapter 6 - System Structure - Simulating Constructive Change

and vice versa. Since, if any of the file changes the value of that global variable, it will affect the

flow of control in other invoking files.

£ DepView 1.2 - 2D Dependency Viewer A= £ DepView 1.2 - 2D Dependency Viewer

e ew
[ShowDependency |55 Diaw | I~ Alowpopup ¥ Fanin @ FanOut [~ ExtDey ¥ ShowDependency [65 Diaw | I~ Alowpopup [~ Fanin ¥ FanOut I~ ExtDep I~ 110
nnnnnnnnn 27 AR
File A File Z .
if(isFull) while(isFull)
Xy \—l l—‘ Xz
File B
bool isFull = false;

Non-constant global variable Constant global variable

Figure 6.18 — Global variable dependency and alpha value ()

Any change to the value of a global variable affects all the depending files, as seen in
Figure 6.18, global variable in file B causes a strong component with size 3 in the middle. For
testing, a strong component must be treated as a unit. The larger a strong component becomes, the

more difficult it is to adequately test. Mutual dependency increases likelihood of cascading
changes - it causes &, and &y, values to be large (close to 1). For example, it is close to 1, due

to the fact that if file B renames or deletes the global variable, depended files no longer can
function. Altering the value of global variable in B may change decisions made in using files,
which is another reason that global variables cause strong dependency relationships between files,

and consequently high & value.

6.6. Summary

We explored the effect of different dependency types over the static structure of a large
system, Mozilla 1.4.1, without a detailed understanding of its internal semantics. We simulated
possible changes to observe the affect on its static structure via our research algorithms and tools.
Simulation is not perfectly accurate — it provides estimates and in some cases upper bounds on the

improvements that can be made. However, it is critically important that a software manager or

142

Chapter 6 - System Structure - Simulating Constructive Change

architect can estimate the affects that proposed changes may make, before embarking on an

expensive and time-consuming redesign.

143

Chapter 7 - Conclusions and Future Work

Chapter 7

Conclusions and Future Work

In this dissertation, we have studied systems that are so large that no one person can
understand their entire semantics. After examining existing open-source projects and code
developed for this research, we concluded that static dependency structure is an important
characteristic of a system. It provides an abstraction over all the details within a complex code
base, needed to understand the current state of a large project. Due to the size of systems on
which we focus, we needed to develop methods that do not require semantic analysis. We
developed structural quality assessment metrics to uncover potential or existing structural
problems in software, and we developed tools that can analyze large software systems and
provide quantitative and qualitative results. For example, to compute the dependency structure of
the entire Mozilla project, version 1.4.1, consisting of 6193 files, required about 4 hours of
running time, on a moderately powerful desktop machine. In addition, we simulated constructive

changes to observe improvements in the structure of the systems we analyzed.

144

Chapter 7 - Conclusions and Future Work

In this chapter, we summarize our results and discuss methods that we use, and give

directions for further studies.

7.1. Study Results and Contributions

After analysis of the source code for Mozilla, Microsoft Foundation Classes, and our own
DepAnal, we are able to uncover potential or existing structural problems in software from source
code. We developed a novel source file ranking algorithm using notions of product risk,
importance, and testability of a file. Risk rank of a file is determined by both its position in the
static dependency structure and also on its internal implementation quality. This ranking process
is useful while managing development and maintenance of large systems, indicating where
attention should be focused to improve testability, and reduce product risk.

The granularity of analysis output is important, in order to provide information that is
simple enough to understand, but detailed enough to provide a critical analysis of the system. For
that reason, we conducted our analysis at the file level, but based on internal types, functions, and
their dependencies. Additionally, this dependency information can be obtained automatically,
which is a key attribute for this analysis.

One of our goals is to provide immediate feedback to software developers about the state
of a software development project. We are not depicting type-to-type or function-to-function
dependencies, although our tool examines them, for the reason that we are dealing with large
numbers of source files. Every file can define several types, and this will increase the volume of
information to the extent that it would be difficult to draw conclusions about it. For instance, one
of the libraries of Mozilla project, GKGFX has declaration of 6423 types (e.g. class, struct),
within its 598 files as shown in Figure 7.1. Visualizing or trying to draw conclusion with the

relationship of 6423 items would be arduous, and almost impossible to comprehend.

145

Chapter 7 - Conclusions and Future Work

6423

Counts

598

Types Files
Item Name

Figure 7.1 — GKGFX Library item counts

Another reason for exploring dependencies at the file level is that files are widely
accepted as units for software testing, configuration management, maintenance, reuse etc. The
granularity of dependency among files lets us observe qualitative characteristics of large software
systems with adequate detail.

We have also presented a novel metric that indexes software components according to
their potential for reuse. This reusability index provides help to developers by ranking source
code in existing systems, based on its place in the structure of the system and its internal metrics.
This enables developers to evaluate a file for reuse before looking at its code. This reusability
value could be useful information for classical software configuration management systems
(SCM).

Without the help of analysis tools, it is difficult to understand a large project, evaluate its
quality, and track progress effectively. Therefore, we developed several tools capable of
analyzing large-scale software’’. These tools enable a software manager to monitor a software
project rapidly without waiting for documentation files to be produced, obtaining structural
quality information directly from source code. Two major applications developed for this
research are DepAnal and DepView. Automated dependency analyzer, DepAnal scans each file,

collecting user defined types, functions and variables along with their invocations, to find

*7 The first version of our DepAnal tool required more than 24 hour to analyze all the 6193 files in Mozilla, 1.4.1. The redesigned tool
now accomplishes that in about 4 hours.

146

Chapter 7 - Conclusions and Future Work

dependencies among the source files. Dependency viewer, DepView displays 2D graphical
interactive file relationships together with strong components. Beside these tools, there are other
helper tools, which are developed to assist software people to understand their large code base
and determine where corrective action is needed, and to continually monitor the progress of the
system.

After identifying potential dependency problems, we also explore effects of different
dependency types over the dependency structure of a large system, without a detailed
understanding of its internal semantics. We simulated possible changes to observe the affects on
static structure. This way we can estimate how much improvement we can obtain if we apply any
of the techniques before engaging time and effort making changes. Subsequently, with the
generated algorithms and tools, we monitored the improvements to observed structural defects.

Controlled implementation of change is achievable by being able to estimate impact of
changes. One of our research goals was to understand the impact of a change in a software
source file to other source files. Since change impact value will depend, in part, on how well
both files are implemented, e.g. on the skill of the project’s architect and developers, we created
an experiment to estimate change impact factors; describe its application; and show measured
results of the change impact factors. All these processes were carefully recorded and documented
so that others, following our example, can calibrate their change impact factor values for a project
based on its change history. Before the experiment, we were expecting that the risk values
obtained using calculated alpha values would be in the neighborhood of risk values obtained
using constant alpha values. We observed that this was not the case - the real risk analysis should
be accompanied with a semi-automated change chain recording mechanism, to obtain real change
impact values of each file.

Table 7.1 shows summary of main contributions and results of our study that we

discussed above and in detail in the dissertation.

147

Chapter 7 - Conclusions and Future Work

1 We developed a source file ranking algorithm using notions of product risk,
importance, and testability of file.

- This identifies components that need individual attention and suggests
possible ways to avoid impending problems before they become chronic.

- The product risk model predicts that as the density of dependency relations
increases in strong components of the dependency graph, risk factor grows
and becomes unbounded at critical densities.

- We applied the model to a library from a real open-source project where the
model predicted that most of the development risk is in about 10% of the
library files (a very useful result, probably unknown to the projects’

developers).

2 We introduced a model that indexes software components according to their

potential for reuse.

3 We designed and conducted an experiment to investigate the impact of change in one
file on other files, in terms of consequential changes they require. The results of this

are a record of the probability of change over time, during the software development.

4 We designed and developed tools implementing these algorithms and methods. The
importance of this is that they are capable of analyzing very large sets of files in

reasonable time, e.g., all of Mozilla (6193 files) in about four hours.

Table 7.1 — Results and contributions

In Table 7.2, we listed the results obtained as consequence of our study. These are

byproduct of the main results listed above in Table 7.1.

148

Chapter 7 - Conclusions and Future Work

1 The study enables a software manager to monitor a software project rapidly without
waiting for documentation files to be produced, directly obtaining structural quality
information from source code. Such as:

= Visualize the static structure, as a whole

= Visualize its web of dependencies

= Determine mutually dependent files and size of the mutually dependent file

set,

2 Our empirical study demonstrated that useful information about significant problems
can be identified, in both large and small systems, without a detailed knowledge of

the entire code base.

3 We applied our tools on industrial projects to observe and report on the applicability

and quality of estimation and to evaluate the overall effectiveness of our approaches.

4 We can determine how well the project is packaged into modules, and provide

guidance about how a project can improve that.

Table 7.2 — Consequential results of the study

Some of our research in progress has yielded other tentative results. In Table 7.3 — we

show those early results of the work that will continue.

1 We explored the effect of different dependency types on the structure of large
systems without requiring a detailed understanding of its internal semantics.

These analyses expose possible corrective procedures and our tools support
simulation of improvements in observed structural defects, when these corrections

are made.

2 Statistical analysis of file properties versus change potential from Mozilla change

database.

149

Chapter 7 - Conclusions and Future Work

Table 7.3 — Initial results of work that will continue later

7.2. Future Work

One interesting new thread of research would develop semi-automated methods to
calibrate change impact factors for specific projects using smart configuration management tools.
This is important because the alpha factors are determined in part by the nature of the code being
developed, and also by the skill of the developers and management team.

It would be useful to explore the optimization of system structure by repackaging
“location tolerant” dependencies. Employing “penalty weights” to decide which types and global
functions to move and where they should be moved. One reason for doing this is that only
dependencies based on simple type usage can be manipulated without breaking code, simply by
rearranging code packages — an interesting partitioning problem. Exploring insertion of
interfaces and class factories to loosen coupling between concrete classes has the potential to
decrease the probability of long chains of consequential change. Code in files communicate via
couplings to other classes, either through interfaces, or by binding directly to implementation
details. But change inside of any file is less likely to affect others that bind to an interface instead
of'its concrete implementation.

It is expensive to parse all the source code to observe an effect of elimination of an
object, type or function to overall dependency structure. For this reason, it would be timesaving
to store all the declarations and invocations of types, global functions and objects for later to use.
This way we can observe changes in dependency structure, and strong component size, when we
remove one or a group of types, or global variables, or global functions. This will enable
developers to see the contribution of any type, function or global variable over dependency
structure. Moreover, it will quickly demonstrate the effects of any dependency elimination and

what causes particular dependencies without lengthy analysis over the entire project.

150

Chapter 7 - Conclusions and Future Work

It would be useful to have a run time dependency analyzer, which is always active during
development. If a developer introduces a strong component it would pop up in the developer’s
computer environment, indicating that you have just created a strong component with the size of
some number. It can display how many people are using the current file a developer is working
on. When somebody just refers to his file, at that time he will be notified about it. This add in
feature in development environment would provide immediate feedback to developers, so that

they may enable quick decisions about a design strategy.

151

Appendix

Appendix

In this section, we present our initial studies that served to shape the research focus of
this thesis, and we present supportive inquiry showing the need of this study and additional basic

samples demonstrating efficiency and preciseness of the analysis results.
A.1.Relationship between Code Metrics and Change History

In this section, we study relationships between code metrics and change count histories
for a large project. The analysis is file based. That is, we compute a variety of metrics for each
source code file in several large libraries from the open-source Mozilla project, and relate them to
the number of cumulative changes for each of those files in several builds. We use files because
changes are recorded for files in the data we examined; and because files are the units of
configuration management in large software projects.

Others, German [29] and [30], Huntley [31], have examined open-source project data but
we’ve found no modeling of the reliability of metrics to measure potential for change, as reported
here. Graves, et. al. [32] analyzed relationships between change metrics and predicted faults,
using data from a telephone switching system. Our focus is on modeling change history using

code metrics.

152

Appendix

We chose Mozilla because it is large®, accessible, and has provided a wealth of change
data in its source code repository (CVS) database. Most of the data presented here is drawn from
the Windows build of Mozilla [12], for several releases, spaced approximately one year apart.

We downloaded the CVS archive for these releases and, using make tools provided by
the Mozilla project, built Windows executables for one specific release, 1.4.1. During the build,
we captured all the files being compiled and used that file set for our analysis of variation of
metrics with time™.

In the next section, we show how changes and the total number of files have grown over
the life of the entire*® Mozilla project. We then show how changes, number of files, estimated
defect counts, and metric values, have varied over the four releases and one CVS check-out we
analyzed.

In the third section of Metric Analysis, we analyze four libraries and the entire Windows
build for the 1.4.1 release, 10 October 2003. The analysis uses Multiple Linear Regression
(MLR) [33][34] to model production of changes as functions of the metrics set, described below.
The results are evaluated in terms of resulting t-test and adjusted R-square statistics. In all
analyses, we find statistically significant relationships between some of the metrics used and
change history, for each of the four libraries, and for the entire Windows build. The results show,
however, that not all of the change is related to these metrics and is dominated by two of them,
fan-out and total lines of code. As we look further, we see fan out is the best predictor even better

than files size, other have all secondary effect.

*¥There are 6193 source code files in the Windows build for version 1.4.1

#Mozilla code management is based on libraries that contain files for all supported platforms. We used the output of building 1.4.1
for Windows to identify the source code for the Windows build, and used those files present in each of the other builds to analyze
changes in average metric values with time.

*_Entire means all files and all changes for all of the platforms supported by Mozilla.

153

Appendix

A.1.1.Project Wide Measure of Size and Change

All change and defect data were extracted from the CVS change logs of the Mozilla
project. Figure 1.1 shows the number of files and cumulative changes over the lifetime of the
entire Mozilla project, as of 10 September 2004. The latest data consisted of 36,800 files, of
which, 14,210 are C/C++ source code*'. Mozilla CVS captures changes, with and without bug
numbers. In the metric analysis, we count only changes for source code files with an associated

bug number in its change log. The numbers for the entire Mozilla project are shown in Table 1.1.

Changes All Files Source Code Files
All Changes 502,753 305,844
Changes with Bug numbers 255,904 156,903

Table 1.1 — Cumulative Change Counts, 10 September 2004

To quantify defects, we counted the number of unique bug numbers for all the changes
against a specified file. The results for defects were far less statistically significant than for
change counts. We observed aggregate file check-ins with shared logs, which may inflate
estimated defect counts. So, we believe our construction of defect counts, based on this data, is
not very accurate, but find no other data in the CVS change logs or Bugzilla database used by the
Mozilla team, that relates to defects. For that reason, we will not consider defects further in this
study, other than to show variation of our definition over several releases in Figure 1.5.

For large projects, like Mozilla, the volume of files and their rate of change make it
virtually impossible for one person to understand the structure and semantics of the entire project.
It is crucial that the tools we develop to analyze systems of this size do not require detailed
understanding of all the lines of code in the project, or even the lines of code in a single build for

a single platform.

! Files that are not source code include files with extensions ini, mk, idl, html, css etc.

154

Total Change Count

Appendix

Our goal is to develop tools that program managers and architects can use to understand
when a large program is developing problems in its code base. One measure of these problems is
the volatility of its changes. Making changes are expensive in schedule time and staffing costs.
Managing change is an essential part of managing budget and schedule.

We show, in Figure 1.1, the history of cumulative change, number of source files in the
code base, and, in Figure 1.2, the number of changes per file, as a function of time over the entire
history of the Mozilla project [35], starting on 28 March, 1998, as measured from the first CVS
check-in, through our last data extraction on 10 September, 2004.

The level of effort required to manage hundreds of thousands of changes, as experienced
in the Mozilla code base since the project began six years ago, would be difficult to sustain for
any project, but especially for projects that do not follow the open-source model with large
numbers of volunteer developers. Project managers need mechanisms to predict and control
change. We show, in the following, that changes experienced by the Mozilla code base are

significantly related to only a few of the metrics analyzed.

Figure 1 - Total Buggy Change Count, Number of Source Files Figure 2 - Average Number of Buggy Changes over Life of All Alive Source Files
160000 16000 2
140000 14000 o
120000 12000

100000 10000

80000 8000

60000 6000

40000 — Total Buggy Change Count| 1000
/ —— Number of Source Files 5

20000

Number of Source Files
IS

2000

\

0 0 2 8 8 8 3 23 3 3 38388835555 8 888338 gsg s

998
908
998
908
999
999
999
999
000

2000

2000

2000

2001

2001

2001

2001

2002

2002

2002

2002

2003

2003

2003

2003

2004

2004

28]
28]
/28/
28]
/28/
/28/
/28/
8|
8
8
8
8|
8
8|
8|
8
8|
8|
/28/
28]
/28/
/28/
/28/
28]
28]

§ 8§ § 8§ g gggggggys s gy s s g d g g

28]
28]
28]
28]
28]
28]
28]
28]
28]
28]
/28]
28]
28]
28]
/28]
/28]
28]
28]
/28]
28]
28]
28]
/28]
/28]
/28]
28]
6/28

3
6l
9
12/
3
6l
o
12/
3
6l
9
12/
3
6l
9
12/
3
6l
9
12/
3
6l
9
12/
3
6l
g
b

Figure 1.1 — Total buggy change count number of Figure 1.2 — Average number of buggy change of all

alive source files.
source files

155

Appendix

A.1.2.Metric Analysis

For analysis of the relationship between various metrics and change counts we use only
source files for the Windows platform build. There are 6,193 source code files in release 1.4.1
for Windows, for example, and we count the changes with bug numbers for those files.

Several of the metrics we examine, e.g., Fan-In, Fan-Out, and size of strong components
(groups of mutually dependent files), are based on the dependency graph between files in a
project [10]. This dependency graph captures static type and function calling dependencies. It is
built using a dependency analyzer tool we developed based on a modest subset of the C/C++
language grammar. We also examine size and complexity metrics evaluated with a tool used by
one of us for grading graduate software design project assignments*>. We have also looked at
maximum function cyclomatic complexity, maximum function size per file, average function size
per file, and complexity per line of code, but settled on the metrics in Table 1.2 as being the best
measures of those we examined.

The modeling tool used here is Multiple Linear Regression Analysis (MLR), which

attempts to predict historical change counts as a linear combination of the metrics in Table 1.2

Fan-In: Global declaration count per file (GblObjDec):
Number of files that depend on a given The number of global data declarations in a
file. specified file.

We think of metrics global object declaration count, average cyclomatic complexity, and average function size per file, as measures
of code quality, but have not demonstrated that they are associated with defect counts, so we avoid use of that term in the paper.

156

Appendix

Fan-Out: Total lines of code (TLOC):

Number of files a given file depends on. The total lines in source file, including white
space, declarations, executable code, and
comments, e.g., every line in each function

body, summed over all the functions in each

file.
Instability 8. Lifetime
I = Fan-Out / (Fan-Out + Fan-In) The number of days that the file has been under

CVS control.

Size of strong component (SCSize): Average cyclomatic complexity # per file
Number of files that have mutual (AvgCCQ):

dependencies with a given file. Every file | The number of regions defined by the control
in a strong component has a direct or flow graph of a function, e.g., one plus the
indirect dependency on every other file in | number of loops and branches™® per function,

the component. averaged over all the functions in each file.

Table 1.2 — Metrics used in this Analysis

Clearly, change counts are not synonymous with quality. A file with excellent quality
may change because its requirements change or because the interface presented by some file on
which it depends has changed. Also, a file with low quality may not change often because it is so
big and complex that developers are reluctant to make any but the most urgent changes to its

code.

#_ Similar to the class-based model of Martin [37].
* Our complexity measure is similar, but not identical, to the McCabe Cyclomatic Complexity metric.
* This includes continue, break, and goto statements.

157

Appendix

However, change effort is directly related to a program’s ability to meet its budget and

schedule obligations [36]. It would be interesting to examine change effort directly, but the data

available in Mozilla CVS does not support deriving effort, only change count, so we have used

that information throughout this study.

A.1.3.Analysis of Windows Build Releases

In this section, we analyze five Mozilla builds for the Windows platform, separated by

approximately one year, each.

Release Date

0.6 06 December 2000
0.9.7 20 December 2001
1.0.2 07 January 2003
1.4.1 10 October 2003
CVS Check Out | 10 September 2004

Table 1.3 — Analyzed Mozilla Releases

First, we show the number of files, cumulative changes, and defects, for each build, in

Figure 1.3 Figure 1.4 and Figure 1.5.

Figure 3 - Number of Files in Library by Release

of
- - ® - -MozFindDIl
— 4 — RdfiDIl

700 — - - XmlExtrasDIl

>l

Figure 1.3 — Number of files in libraries by release

Figure 6 - Variations of Metric Averages over all Files in Gkgfx Library, By Release

Release

1 2 3 4 5
10000

’\0—.\./0

1000

g 100

{

—8—FanOut
——Avg CC

Avg Func Size
—%—SC Size
—#—Glob Obj
—e—Lifetime
|——Instability

Figure 1.4 — Variations of Metric Averages over all

Files in GKGFX Library, By Release

158

Appendix

8000

7000

6000

5000

4000

Defect Count for Each Library

3000

2000

1000

Figure 5 - Defect Count by Release

— % - XmlExtrasDIl

Release

Figure 1.5 — Defect count by release

Figure 1.4 shows that metric values are
fairly stable over the four years of code
base evolution captured by these releases.
It would be interesting to observe a
project where these measures were used
to direct corrective effort to see if
corrections had a significant affect on

their average values.

Figure 4 - Cumulative Changes in Library by Release

9000

8000

—+—Gkaix

- ® - - MozFindDIl
7000

— -4 — RdfiDIl
— % - XmIE

ges

8
2 6000

5000

Number of Chas
\

H
4000
H

Cumulati
@
8
8
8
I

2000 =

1000

Figure 1.6 — Cumulative changes in library by release

A.1.4.Some Techniques Used As Part of This Analysis

Multiple Linear Regression [33] [34] is a widely used statistical data analysis technique

to find relationships between several independent variables and one dependent variable. We used

MLR analysis to model production of changes as functions of several possible metrics sets based

on change data from Mozilla project. In the analysis, we try to predict relationships between

software metrics as independent (known - because they are computed by our tools) variables and

the number of changes experienced by the code as the dependent (unknown) variable. By using

159

Appendix

change history and metric information, we try to model these relationships, and assess the
model’s prediction accuracy for estimation of future change based on past history.

The results are evaluated in terms of resulting t-test and adjusted R-square statistics. In
all analyses [11], we try to find statistically significant relationships between some of the metrics
used and change history. Figure 1.7, at page 152, shows predicted and actual changes for
Mozilla's MozFindDIl library, showing good correlation between predicted and actual values.
The results are, however, incomplete, because the data was incomplete. To elaborate on this, for
example, a file with high cyclomatic complexity is expected to require a lot of effort to change,
since it is challenging to get it right the first time due to large numbers of control paths.
However, in some cases the data unexpectedly shows a low number of changes. Mozilla only
provides change count, but does not record how much effort is spent to perform those changes.
We believe that effort information would be much more suitable than change count in this case.
Unfortunately, that is not available from the Mozilla change logs.

Regression analysis has been applied in [40] [46] to find the answer to the parallel
question “how internal software metrics relate to external software attributes”. In these studies,

fault-proneness was taken as dependent (unknown) variable.
A.1.5.Multiple Linear Regression

Our goal is to determine if the metrics, shown in Figure 1.4, are related to changes shown
in Figure 1.6. In Table 1.4, we show a sample set of results from a Multiple Linear Regression
Analysis (MLR) for the MozFindDII library. This models cumulative change for all files in this
library, using MLR, as a function of the eight metrics shown. The Adjusted R Square statistic
indicates that this model accounts for about 73 percent of the actual changes observed. The t
statistic magnitudes greater than 2 indicate that the metrics Fan-out, Average Cyclomatic

Complexity, and TLOC are statistically significant. Taking into account typical values for each

160

Appendix

of these metrics and the coefficients from the model, we find that Fan-out and TLOC dominate

predicted change.

In Figure 1.7, you will see plotted the actual changes, and the changes predicted by the
linear regression model. We have sorted the file sequence by actual change value to make the
plot easier to interpret. When the model predicts small change the actual changes tend to be small
and when predicted changes are large the actual change tends to be large. The results are similar
for each of the four libraries examined, as indicated by the plots in Figure 1.8 through Figure

1.10. When we analyze the entire Windows build, the Adjusted R-Square statistic and actual

versus modeled change improves.

Table 1.4 — Results of Multiple Linear Regression, MozFindDIl, Release 1.4.1

SUMMARY OUTPUT Predicted and Actual Changes for Mozilla's MozFindDII Library
Release 1.4.1, 10 October 2003
Regression isti
Multiple R 0.858457045
R Square 0.736948497
Adjusted R Square 0.731926034
Standard Error 9.752451239
Observations 428
ANOVA
df SS MS F Significance F
Regression 8 111644.6583 13955.58229 146.7304964 1.9991E-116
Residual 419 39851.21786 95.11030517
Total 427 151495.8762
Coefficients _Standard Error t Stat P-value
Intercept 2.630161 3.649069 0.720776 0.471449
Fanin -0.001011 0.046063 -0.021958 0.982492
FanOut 0.949522 0.078886 12.036699 0.000000
AvgCC -0.545876 0.165891 -3.290572 0.001084
SCSize 0.001222 0.003771 0.324012 0.746090
GObjDeclCount 0.023998 0.101890 0.235531 0.813912
TotalLOC 0.016478 0.001033 15.944396 0.000000
LifeOn_2003_10_10 0.000095 0.001898 0.050215 0.959975
Instability -2.514524 1.726392 -1.456520 0.145998

In the correlation matrix, given in Table 1.5, we see that Fan-out is most strongly
correlated with predicted change, and also to a lesser extent, correlated with TLOC and Average

Cyclomatic Complexity. Predicted change most strongly correlates with TLOC, followed closely

by Fan-out.

Table 1.5 — Correlation Matrix for MLR Model MozFindDII, Release 1.4.1

Predicted and Actual Changes for Mozilla's MozFindDlII Library

Release 1.4.1, 10 October 2003

Fanin

FanOut __AvgCC

SCSize ___GObjDeclC TotalLOC _LifeOn_20(Instability Cumulative

Fanin 1
FanOut 0.071353
AvgCC -0.000963
SCSize 0.099422
GObjDeclCount 0.059384
TotalLOC 0.176208

LifeOn_2003_10_1C 0.183703
Instability -0.372109
Cumulative Change 0.153469

1
0.39313

1

0.423766 0.306617 1

0.21411 0.025957 0.139319
0.588954 0.593417 0.341359
-0.090313 0.067559 0.030067
0.413485 0.197215 0.166101
0.731609 0.412359 0.357888

1
0.140996
0.008245
0.025796
0.180698

1
0.147321 1
0.143086 -0.242959 1
0.784982 0.053095 0.201202

161

Appendix

Actual and Predicted Cumulative Change Count

Figure 7 - Predicted and Actual Changes for Mozilla's MozFindDII Library Figure 8 - Predicted and Actual Changes for Mozilla's XmIExtrasDII Library
Release 1.4.1, 10 October 2003 Release 1.4.1, 10 October 2003
160 160
o | « Predicted Cumulative Change Count Unti 1.4.1 0] * Z’e‘"c"etf’ C;’:“"""“iiﬁ"ii Until1.4.1
—— Cumulative Change Count Until 1.4.1 ‘g’ umulative Change Until 14,
/| o
120) L; 120 1 Fanin, FanOut, AvgCC, SC, GObjDecICount, TotalLOC, a
=4 Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1
s
100 4 Fanln, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC, L S 100
Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1 . ,2
o S w0
4 E
S
o
T 60
g .
£ a0 * -
= . . v A
s . M ¢ oo, Lo e
5 20 . . e s B
H P R N A s S TR
18 35 52 69 86 103 120 137 154 171 183 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460 477
-20

File Sequence Ordered by Actual Change Count

File Sequence Ordered by Actual Change Count

Figure 1.8 — Predicted and actual changes for Mozilla’s

Figure 1.7 — Predicted and actual changes for Mozilla’s XmlExtrasDII library

MozFindDII library

Figure 9 - Predicted and Actual Changes for Mozilla's GKGFX Library Figure 10 - Predicted and Actual Changes for Mozilla's RDFLDLL Library
Release 1.4.1, 10 October 2003 Release 1.4.1, 10 October 2003
160 160
140 * Predicted Cumulative Change Until -1.4.1 ol + Predicted Cumulative Change Count Until 1.4.1
—=— Cumulative Change Until -1.4.1 —=— Cumulative Change Count Until 1.4.1

120

100 Fanln, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC,
Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

120

100 | Fanin, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC,
Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

Actual and Predicted Cumulative Change Count

Actual and Predicted Cumulative Change Count

e
14 27 40 53 66 79 92 105 118 131 144 157 170 183 196 209 222 235 248 261 274 287 300 313 326 339 352

20 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 301 313 325 337 349
File Sequence Ordered by Actual Change Count File Sequence Ordered by Actual Change Count

Figure 1.9 — Predicted and actual changes for Mozilla’s Figure 1.10 — Predicted and actual changes for Mozilla’s
GKGFX library RdAfIDII library

In Table 1.6, we show results of an MLR on the entire Windows build for Mozilla,
release 1.4.1. The model accounts for about 80 percent of the variation in cumulative change
count and Fan-out, Average Cyclomatic Complexity, number of Global Object Declarations,

Total Lines Of Code, and Instability are all statistically significant.

162

Appendix

Table 1.6 — Results of Multiple Linear Regression. Windows Build of Mozilla, Release 1.4.1

SUMMARY OUTPUT Predicted and Actual Changes for Windows Build of Mozilla
Release 1.4.1, 10 October 2003

Regression Statistics

Multiple R 0.901019564
R Square 0.811836255
Adjusted R Square 0.811388379
Standard Error 17.03564781
Observations 3370
ANOVA
df SS MS F Significance F

Regression 8 4208412.589 526051.5737 1812.637741
Residual 3361 975406.8887 290.2132962
Total 3369 5183819.478

Coefficients Standard Error t Stat P-value
Intercept -0.890092 2.180555 -0.408195 0.683156
Fanin 0.000173 0.007200 0.024007 0.980849
FanOut 1.371579 0.026634 51.496815 0.000000
AvgCC -0.873727 0.090125 -9.694663 0.000000
SCSize -0.002014 0.000218 -9.240209 0.000000
GObjDeclCount -0.264539 0.034726 -7.617985 0.000000
TotalLOC 0.018727 0.000542 34.543551 0.000000
LifeOn_2003_10_1C 0.003227 0.001258 2.565292 0.010352
Instability -5.578067 0.946077 -5.895994 0.000000

Table 1.7 — Correlation Matrix for MLR Model. Windows Build of Mozilla, Release 1.4.1

Predicted and Actual Changes for Windows Build of Mozilla
Release 1.4.1, 10 October 2003

Fanin FanOut __AvgCC SCSize GObjDeclC TotalLOC _LifeOn_20t Instability Cumulative

Fanin 1

FanOut 0.036412 1

AvgCC -0.00219 0.260892 1

SCsize 0.056421 0.34662 0.212668 1

GObjDecICount 0.016996 0.12169 0.088853 0.077633 1

TotalLOC 0.08118 0.721062 0.406104 0.249548 0.188281 1

LifeOn_2003_10_10 0.125683 0.035249 0.134067 0.11667 0.046017 0.152023 1

Instability -0.198229 0.402716 0.22057 0.184166 0.020203 0.184365 -0.157599 1
Cumulative Change 0.064236 0.850391 0.218924 0.216204 0.082584 0.795019 0.090537 0.240712 1

Note that Cumulative change correlates most strongly with Fan-out, then GblObjDec and TLOC.

Figure 11 - Predicted and Actual Changes for Windows Build of Mozilla
Release 1.4.1, 10 October 2003
700

600 | Predicted Cumulative Change Until 1.4.1
—=— Cumulative Change Until 1.4.1
500 + Fanin, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC,
Lifetime Until 10/10/03, Instability, Cumulative Change Until - 1.4.1

400

300

200

Actual and Predicted Cumulative Change Count

147 293 439 585 731 877 1023 1169 13151461 1607 1753 1899 2045 2191 2337 2483 2629 2775 2921 3067 3213 3359

-100

File Sequence Ordered by Actual Change Count

Figure 1.11 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1.
10 October 2003

163

Appendix

Figure 11 - Predicted and Actual Changes for Windows Build of Mozilla
Release 1.4.1. 10 October 2003
1000

Predicted Cumulative Change Until 1.4.1

.+ Cumnulative Change Unfil 14 1 81,490 Correct Classification

Good vs Bad

Fanin, FanOut, AvgCC, SC, GObjDeclCount, TotalLOC,
Lifetirme Until 10/10/03, Instability, Curnulative Change Until - 1.4.1

100

382
False Alarms

Actual and Predicted Cumulative Change Count

Failed to detect
o

1
142 283 424 565 706 847 988 1129 1270 1411 1552 1693 1834 1975 2116 2257 2396 2539 2680 2821 2962 3103 3244
1732 File Sequence Ordered by Actual Change Count

Figure 1.12 — Predicted and actual changes for Windows Build of Mozilla Release 1.4.1.
10 October 2003 (Log)

Comparison of Multiple Linear Regression Analysis Results
Library AdjR-Sq Fan-In Fan-Out AvgCC SCSize GblObjDec TLOC Lifetime Instability

Gkgfx 0.65353 significant significant significant significant
MozFindDIl 0.7325 significant significant significant

RdfiDIl 0.69269 significant significant significant
XmlExtrasl 0.70157 significant significant significant significant significant
All Mozilla" 0.80665 significant significant significant significant significant

Note: Blank entries indicate that metric had no significant affect on predicted change

Table 1.8 — Summary of MLR Statistics

In Table 1.8 , we show the significant metrics for each library and the entire Windows
build, along with their Adjusted R-Square statistic for the fit to each library. Note that the
significant metrics were not the same for each library. Only Fan-Out and TLOC are significant

for all analyses.

A.1.6.Summary of Metric Analysis

Only Fan-out and Total Lines Of Code (TLOC) are strong predictors of cumulative
change for the Mozilla Windows 1.4.1 build code base. Surprisingly, Average Cyclomatic
Complexity (AvgCC), the number of Global Object Declarations (GblObjDec), and size of Strong

Components (SCSize) have virtually no modeling power for cumulative change in that code base.

164

Appendix

The Mozilla data provides no measure of effort expended to make changes. It would be
very interesting to examine a code base for which such data was available. It is possible that
complexity, use of global data, and large mutual couplings may be more highly correlated with

effort than we found for change.

165

Appendix

A.2.Software Development Effort

Fred Brooks, Program Manager for IBM System/360 and Operating System/360, and
later Chair of Computer Science Department, UNC at Chapel Hill, uses this example in his

famous “Mythical Man Month”.

X3 5

program product
a Completely
tested
X3

program system

consistent in program

format system

and function with

Most of us conceive of a program as implementing a specific function, running on the
platform on which it was developed. Customers want a program product and often a program
system product. Note that there is, by Brooks’ estimate, a nine to one factor in effort required to
build the later over the former.

I develop reasonably well tested code at the rate of about 300 lines per day. So for
system products I should expect to generate only about 33 lines of code per day - perhaps 2/3 of
that in a team environment!

Here in Syracuse at least two very large software systems have been successfully implemented:
- Over The Horizon Radar (OTHR) contained about 3,000,000 lines of code, written
mostly in FORTRAN with some C and some assembly language as well.
- BSY-2 submarine battle management system software is several times larger than OTHR,

written mostly in Ada.

166

Appendix

A 5 million-line system would require something like:

5,000,000 lines . 1
22lines/day 240days/ year

=947 person years of effort

Therefore, to complete the project in 2.5 years would require the services of at least 380
well trained software developers.
Two points are almost self-evident:
- asystem this large must be partitioned into many relatively small, nearly independent
components in order to get it to work
- it would be much better not to create such a large system at all, but rather, to build most

of it from reused software components, reserving new code for new requirements.

167

Appendix

A.3.Correspondence with Professional Interested in Tools like DepAnal

This email received inquiring tool featured exactly DepAnal, although DepAnal is not

publicized yet.

From: <lucaferra@tiscali.it
To: "Murat Gungor" <mkgungor@ecs.syr.edu
Sent: Wednesday, May 05, 2004 11:27 AM

Subject: Re: C++ static dependency analyzer

Hi Murat!

Very kind of you answering to my e-mail!

No, I'm not a student (anymore :)), nor a researcher. I'm working for a company (I'm a software
engineer) and [was looking for any commercial (or free) tool to get out that job. My problem is
that I have to refactor a project composed by about 250 files with awfully grown dependency
relationships that absolutely need to be simplified. I know it's not a trivial matter, because it
implies finding out, for each.cpp and .hpp file, every symbol it references, understand if it's
necessary to include the file where it's defined or it's enough to declare a foreward reference, then
catch the file where the symbol si defined, and so on. If the file is a .cpp or a .hpp with embedded
code, the things get worst, because for every called method or accessed attribute of foreign

objects called, the respective .hpp where the object is defined has to be identified.

Then I may want to decompose compiling units to break down too complex dependencies.

Another problem arises with templates, as long as the template definition class and the actual

168

Appendix

parameter definition file of the template object have to be included. Then, of course, I have to

deal with defines, macros, global and external symbols, nested classes and so on.

I found some C++ source management tools (for example Source Insight or Understand for C++)
that carry out some work, such as gathering all the symbols referenced by a file or a class, or a
method, or depict a dependency graph, but none of the ones I tried was able to address every goal;
for example, if I inspect a method with Source Insight, it's able to move through a pointer chain
finding out the classes involved (ex.objl ptr-obj2 ptr-obj3 ptr-method()) but doesn't, at the same
time, find the classes involved in parameter passing or automatic objects. Thus, [need to explore
first the list of symbols of a file, then each method of my classes, and so on, moving from tool to

tool!! I think I will get mad before finishing!!!! :

So, if you didn't get asleep....

maybe you had the same problem, or you know some workaround or...

who knows... a tool that, fed up with my project files, calculates, file by file,

the right dependencies....?

Thanks a lot,

Regards,

Luca

169

Appendix

A.4.Demonstrating the Effect of Alpha

In the example below, the project has one strong component with size of five. And we

will observe the risk, importance and testability with respect to alpha and strong component.

B Risk
B Importance
O Testability

D.h main.cpp E.h B.h F.h G.h C.h H.h Ah
I Risk 12.3692 | 19.5053 | 23.6884 | 37.0857 | 211.0034 | 216.5728 | 218.8581 | 223.1788 | 249.2883
B Importance | 11.7802 1 22.5604 11.978 11.7802 | 11.6022 11.978 11.4419 | 121977
O Testability 1.05 19.5053 1.05 3.0962 17.9117 | 18.6666 | 18.2717 | 19.5053 | 20.4372

Figure 4.1 — Dependency graph and its corresponding risk chart, alpha = 0.9

In the Figure 4.1, a value is taken 0.9 to make more perceivable the effect & values and
S value is taken 1 to mask the effect of internal implementation quality and just focus on
coupling between files. If we look at the files with high-risk values, all of them are member of
the strong component. In addition, there is a big gap between the risk values of strong component
and other individual files. From the perspective of importance, E has the highest value, since not
only file B and C depend on file E, but also file A, main, F, G and H depend on file E indirectly.
And file A’s importance follows file E. However, from the dependency graph, it looks as if only

one file depend on file A, which is main file. Because, file A is member of strong component all

170

Appendix

the files in strong component directly or indirectly depend on file A. Consequently, this increases
importance of file A.

It is straightforward to test file D and E, since they do not depend on any other file. Main
file depend on all the files, nevertheless it does not have highest testability, but file A. Again, we
see the effect of strong component, file A depends on all the other files, including itself. One
interesting fact is that main file and file H has the same testability value, since both of them

depend on identical files.

171

Appendix

nsicomponentregl

<trar h
nsidirectoryservic

e h

N

»[nsifile.h

w

wu|nsilocalfile.h

nsreadableutils.h

x| —|nsreadableutils.h

nsicomponentregistrar.h

x

nsidirectoryservice.h

nsifile.h

nsilocalfile.h

X[|[X[>

nsembedstring.cpp

nsembedstring.h

bufferroutines.h

nsstr.cpp

O[NP |W[N|—=

nsstr.h

nsstring.cpp

nsstring.h

nsstring2.cpp

nsstring2.h

nsstrprivate.h

nsaflatstring.h

nsasinglefragmentstring.h

nsastring.h

nsbufferhandle.h

nsdependentsubstring.h

nsasinglefragmentstring.cpp

nsastring.cpp

nsdependentsubstring.cpp

nsreadableutils.cpp

nsxpcom.h

nsgredirserviceprovider.cpp

nsgredirserviceprovider.h

XX [>

nsmemory.cpp

nsxpcomglue.cpp

XX

X

Table 4.1 — Dependency table of a strong component with 29 files from Mozilla.exe component from
Mozilla Project Ver. 1.4.1 processed by DepAnal and then proved manually.

nsembedstring.cp

nsstring2.cpp

nsaflatstring.h

nsbufferhandle.h
<|nsdependentsubs
Oltrina h

_.|nsasingletragmen
Nltatrina h

-
oo

nsstring.cpp
nsstring.h
nsstrprivate.h
nsastring.h
tatrina cnn

x| N [nsastring.cpp

nsstr.h
w|nsasingletragmen

e

o [nsdependentsubs

Lltrina ann
N nsreadableutils.cp

xR,
< |nsgredirservicepr

lavider cnn
o nsgredirservicepr

~[nsembedstring.h
o |bufferroutines.h
Nlavider h

%8 [nsxpcomglue.cpp

»[nsmemory.cpp

©|nsstr.cpp
=[nsstring2.h
N nsxpcom.h

o
-
o
N
-
-
N
-
w
=y
[9)]
-
[}
-
©

x
x
x
x
x

XX
XX

x

XXX <[> >
XXX [><[><

XX XX

XX ([>x

XX XX

X|X| XX

XX |[>

XX |[X]X

XX |[X|>X

XX

XX

X|X[>x

Appendix

Component# 1
Report.cpp
Reporth

Report.h

Report.cpp

Component# 2 Scopelnfo.cpp Componentt 4 Scopelnfo.h

reg!rec:.;pp FunctionMngr.h
redirect. Scopelnfo.cpp
- Scopelnfo.h
redirect.cpp . T — 4106 | FunctionMngr.cpp \
Utilities.cpp — [
— |
Component# 6
Utilities.h
Utilities.cpp T
/ 6to7
/ \ 5t06
| \ Component# 7 .
| SEMI.CPP
f SEMILH 4t07

3106 3toq o7

Component# 5
TypeDefinition.cpp
TypeDefinition.h

Analyze.cpp
3to7
TypeDefinition.cpp

TypeDefinition.h

_3to5

— Invocation.cpp;

N @

Invocation.h

FunctionTable.cpp

%

FunctionTable.h

Component# 3
FunctionTable.cpp
FunctionTable.h
Invocation.cpp
Invocation.h
TypeTable.cpp
TypeTable.h

TypeTable.h

TypeTable.cpp

Table 4.2 — Dependency Graph of a strong component from Table 4.2 does not show all the
dependency lines for readability.

173

Appendix

List of Acronyms

DepAnal
DepFinder
DepView

CIF

StrongComp.

Fan-in
FI
Fan-out
FO
AvgCC
CC
TLOC
LOC

SCSize

Dependency Analyzer

Dependency Analyzer, new design of DepAnal

Dependency Viewer

Change Impact Factor, a relative frequency of required consequential
changes in files in the project

Builds a dependency graph from the data provided by DepAnal and
analyzes its strong components, that is, sets of files that are mutually
dependent.

Number of files that depend on a given file.

Fan-in

Number of files a given file depends on.

Fan-out

Average Cyclomatic Complexity

Cyclomatic complexity

Total Lines Of Code

Line of Code

Size of Strong Components

174

Appendix

GblObjDec Global Object Declarations

MLR Multiple Linear Regression Analysis

RI Reusability Index,

CvVS Concurrent Versioning System. CVS is an open source version control

and collaboration system.

175

Bibliography

Bibliography

[1] Frederick Brooks Jr., Mythical Man-Month, 20" Anniversary Edition, Addison-Wesley, 1995

[2] Windows Is So Slow, But Why?; Sheer Size Is Causing Delays for Microsoft
http://select.nytimes.com/gst/abstract.html?res=F30C14FD3F540C748EDDAA0894DE4044
82

[3] http://courses.cs.vt.edu/~cs3604/lib/Therac_25/Therac_1.html A paper by Nancy Leveson
and Clark Turner dissecting problems with the Therac-25 XRay machine, which caused the
deaths of several patients over a period of 18 months.

[4] “Software’s Chronic Crisis”, Scientific American, September 1994,
www.cis.gsu.edu/~mmoore/CIS3300/handouts/SciAmSept1944.html

[5] James Gleick, “A Bug and a Crash”, www.around.com/ariane.html An informed layman’s
analysis of the Ariane5 crash by the author of Chaos

[6] CTU ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf NASAs post mortem report
on the Mars Climate Orbiter crash.

[7] “The Standish Group Report, Chaos, 1995, www.projectsmart.co.uk/docs/chaos_report.pdf
This widely cited document reports results of a survey of companies implementing large IT

projects.

176

Bibliography

[8] Stefan Jungmayr, “Identifying Test Critical Dependencies”, IEEE International Conference on
Software Maintenance (ICSM'02), 2002
Jungmayr presents an interesting definition of testability that is based on dependency
structure.

[9] Andrea Capiluppi and Juan Ramil, “Change Rate and Complexity in Software Evolution”,
Ninth IEEE Workshop on Empirical Studies of Software Maintenance, 2004
Capiluppi and Ramil show that the portion of files from the open-source Arla project that
have large change rates tend to have large portion of the highly complex functions

[10] Vassilios Tzerpos, “Automatic Source-File Dependency Structure Extraction for C
Programs”, Proceedings of the 1994 conference of the Centre for Advanced Studies on
Collaborative research - Builds dependency structures from include relationships, which is
less accurate than our type-based approach

[11] James Fawcett, Murat Gungor, Arun Iyer, Kanat Bolazar “Relationship between Code
Metrics and Change History”, ISCA 20" International Conference on Computers and their
Applications, March 2005.

[12] Mozilla on Microsoft Windows 32-bit Platforms,
http://developer.mozilla.org/en/docs/Windows_Build Prerequisites

[13] Ramanath Subramanyam, M.S. Krishnan, “Empirical Analysis of CK Metrics for Object-
Oriented Design Complexity: Implications for Software Defects”, IEEE Transaction on
Software Engineering, Volume 29, No.4, April 2003

[14] Aaron Binkley, Stephen Schach, “Inheritance-Based Metrics for Predicting Maintenance
Effort: An Empirical Study”, Technical Report 97-05, Computer Science Department,
Vanderbilt University, Nashville, TN, 1997

[15] Aaron Binkley, Stephen Schach, Metrics for Predicting Run-Time Failures”, Technical
Report 97-03, Computer Science Department, Vanderbilt University, Nashville, TN, 1997.

[16] Mozilla the Configurator, http://webtools.mozilla.org/build/config.cgi

177

Bibliography

[17] Norman E. Fenton, Niclas Ohlsson, “Quantitative Analysis of Faults and Failures in a
Complex Software System”, IEEE Transactions on Software Engineering, Volume 26, Issue
8, August 2000

[18] Stephen G. Eick, Todd L. Graves, Alan F. Karr, J.s. Marron, Audris Mockus, “Does Code
Decay? Assessing the Evidence from Change Management Data”, IEEE Transaction on
Software Engineering, Volume 27, No.1, January 2001

[19] Stephen Schach, Bo Jin, David Wright, Gillian Heller, Jeff Offutt, “Quality Impacts of
Clandestine Common Coupling”,
http://www.vuse.vanderbilt.edu/~srs/preprints/clandestine.preprint.pdf

[20] Daniel Hoffman, Paul Strooper, “Tool Support for Testing Concurrent Java Components”,
IEEE Transaction on Software Engineering, Volume 29, No. 6, June 2003

[21] Barbara G. Ryder, Frank Tip, “Change impact analysis for object-oriented programs”,
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering, ACM, 2001

[22] David Kung, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, Chris Chen, Young-Si Kim,
Young-Kee Song “Developing an object-oriented software testing and maintenance
environment”, Communications of the ACM, Volume 38, Issue 10, October 1995

[23] MFC Library - MFC Reference http://msdn.microsoft.com

[24] The KDE Project, http://developer.kde.org/source/

[25] Y. Yu, H. Dayani-Fard, J. Mylopoulos, “Removing false code dependencies to speedup
software build processes”, Proceedings of the 2003 conference of the Centre for Advanced
Studies conference on Collaborative research Pages: 343 — 352, 2003 Toronto, Ontario,
Canada.

[26] S. Mancoridis, B. Mitchell, Y. Chen, and E. Gansner “Bunch: A clustering tool for the
recovery and maintenance of software system structures”, In Proceedings of International

Conference of Software Maintenance, Aug. 1999.

178

Bibliography

[27] S. Robitaille, R. Schauer & R. K. Keller, “Bridging Program Comprehension Tools by
Design Navigation", IEEE International Conference on Software Maintenance, San Jose, CA
(Oct., 2000).

[28] Zhifeng Yu, Vaclav Rajlich, “Hidden Dependencies in Program Comprehension and Change
Propagation”, Ninth International Workshop on Program Comprehension (IWPC'01) May
2001, Toronto, Canada

[29] Daniel German, et.al. “Visualizing the evolution of software using softChange,” Proceedings
of the 16™ International Conference on Software Engineering and Knowledge Engineering
(SEKE), pp. 336-341, 2004.

[30] Daniel German, et. al., “Automating the Measurement of Open source Projects,” ICSE 2003,
3PP Workshop on Open Source Software Engineering.

[31] Christopher L. Huntley, “Organizational Learning in Open-Source Software Projects: An
Analysis of Debugging Data,” IEEE Trans. Engineering Management, vol. 50, no. 4, pp. 485-
493, 2003.

[32] Todd L. Graves, et. al., “Predicting Fault Incidence Using Software Change History,” IEEE
Trans on SE, vol. 26, no. 7, pp 653-661, July 2000.

[33] Larry Stephens, Advanced Statistics Demystified, McGraw Hill Inc., May 2004.

[34] Schuyler W. Huck, Reading Statistics and Research, Addison Wesley Longman, 2000.

[35] Michael W. Godfrey, Eric H. S. Lee, “Secrets from the Monster: Extracting Mozilla’s
Software Architecture,” Proc. of the Second Intl. Symposium on Constructing Software
Engineering Tools (CoSET-00), Limerick, Ireland, June 2000.

[36] Andrea De Lucia, Massimiliano Di Penta, Silvio Stefanucci, Gabriele Venturi, “Early Effort
Estimation of Massive Maintenance Processes,” IEEE Proc. of the Int. Conf. on Software
Maintenance, pp. 234-237, 2002.

[37] Robert Martin, Agile Software Development, Prentice Hall, 2003.

179

Bibliography

[38] Geoffrey K. Gill and Chris F. Kemerer, “Cyclomatic Complexity Density and Software
Maintenance Productivity,” IEEE Trans on SE, vol. 17, no. 12, pp. 1284-1288, Dec 1991.
(Not referred)

[39] Rudolf Ferenc, Istvan Siket and Tibor Gyimoéthy, Extracting Facts from Open Source
Software. In Proceedings of the 20th International Conference on Software Maintenance
(ICSM 2004), Chicago Illinois, USA, to appear, September 11-17, 2004.

[40] Ping Yu, Tarja Systa, Hausi Muller, “Predicting Fault-Proneness using OO Metrics - An
Industrial Case Study”, Conference on Software Maintenance and Reengineering 2002
(CSMR’02) IEEE.

[41] Sergey Brin, Lawrence Page, “The Anatomy of a Large-Scale Hypertextual Web Search
Engine” Computer Networks and ISDN Systems, 1998.

[42] Google. www.google.com

[43] Larry Page, Sergey Brin, R. Motwani, T. Winograd, “The PageRank Citation Ranking:
Bringing Order to the Web”, Technical Report of Stanford Digital Library Technologies
Project, Stanford University 1998.

[44] G. Pinski and F. Narin. "Citation Influence for Journal Aggregates of Scientific Publications:
Theory, with Application to the Literature of Physics". Information Processing and
Management, 12(5):297--312, 1976.

[45] Katsuro Inoue, Reishi Yokomori, Hikaru Fajiware, Tetsuo Yamamoto, Makoto Matsushita,
Shinji Kusumoto , “Component Rank: Relative Significance Rank for Software
Component Search”. IEEE, 2003.

[46] Victor R. Basili, Lionel C. Briand, Walcelio L. Melo, A Validation of Object-Oriented
Design Metrics as Quality Indicators, IEEE Transaction on Software Eng. Vol.22 No.10,

1996

180

Bibliography

[47] Robert Martin Year 1994, OO Design Quality Metrics, an Analysis of Dependencies,
Workshop on Pragmatic and Theoretical Directions in Object-Oriented Software Metrics,
OOPSLA’94, October 1994.

[48] Sarita Bassil, Rudolf K. Keller, A Qualitative and Quantitative Evaluation of Software
Visualization Tools, In Proceedings of the Workshop on Software Visualization, pages 33-37,
Toronto, ON, May 2001.

[49] S. Bassil, R.K. Keller, "Software Visualization Tools: Survey and Analysis", Proc. of the 9th
International Workshop on Program Comprehension (IWPC'01), IEEE, May 2001.

[50] Martin Fowler, Reducing Coupling, IEEE Software July/August 2001

[51] Andrea Capiluppi - Juan F. Ramil, Studying the Evolution of Open Source Systems at
Different Levels of Granularity: Two Case Studies, Proceedings of the International
Workshop on Principles of Software Evolution (IWPSE 2004), September 2004

[52] R. Kazman, S.J. Carriére, View Extraction and View Fusion in Architectural Understanding,
IEEE, Fifth International Conference on Software Reuse, 1998.

[53] Rudolf Ferenc, Ferenc Magyar, Arpid Beszédes, Akos Kiss and Mikko Tarkiainen,
Columbus — Tool for Reverse Engineering Large Object Oriented Software Systems, In
Proceedings of the 7th Symposium on Programming Languages and Software Tools (SPLST
2001), Szeged, Hungary, pages 16-27, June 15-16, 2001

[54] R.P. Higuera and Y.Y. Haimes, "Software Risk Management," Technical Report CMU/SEI-
96-TR-012, Software Engineering Institute, 1996

[55] M.M. Lehman and L.A. Belady, Program Evolution: Processes of Software Change.
Academic Press, 1985.

[56] Mozilla Layout Engine used for web page reorganization,

http://www.mozilla.org/mewlayout/

181

Bibliography

[57] T. Roetschke and R. Krikhaar. Architecture analysis tools to support evaluation of large
industrial systems. In Proc. IEEE International Conference on Software Maintenance (ICSM),
pages 182-191, Montréal, Canada, October 2002.

[58] J. Lakos. Large-scale C++ software design. Addison-Wesley, 1996.

[59] James W. Fawcett, Murat K. Gungor, Arun V. lyer, “Analyzing Static Structure Of Large
Software Systems” Based on Data from Open-Source Mozilla Project, SERP'05, The 2005
International Conference on Software Engineering Research and Practice, Nevada USA on
June 2005.

[60] James W. Fawcett, Murat K. Gungor "Software Development Risk Model", Applied to Data
from Open-Source Mozilla Project, SERP'05, The 2005 International Conference on Software
Engineering Research and Practice, Nevada USA on June 2005.

[61] James W. Fawcett, Murat K. Gungor, “Applied Software Development Risk Model”, IPSI-
USA-2005 Cambridge, Massachusetts, USA

[62] Steven Morphet, James Fawcett, Kanat Bolazar and Murat Gungor, “Neural Net Analysis of
the Propensity for Change in Large Software Systems”, 2006 International Joint Conference
on Neural Networks, IJICNN 2006, Vancouver, BC, Canada

[63] Ricky E. Sward, A. T. Chamillard, "Re-engineering global variables in Ada",Annual
International Conference on Ada archive, Proceedings of the 2004 annual ACM SIGAda
international conference on Ada: The engineering of correct and reliable software for real-
time & distributed systems using Ada and related technologies, pages 29-34, Atlanta,
Georgia, USA 2004.

[64] Nassar, D. M., Rabie, W. A., Shereshevsky, M., Gradetsky, N., Ammar, H.H, BoYu,
Bogazzi, S., and Mili, A. Estimating Error Propagation Probabilities in Software
Architectures. Technical Report, College of Computer Science, New Jersey Institute of
Technology 2002. http://www.ccs.njit.edu/swarch/ep.pdf

[65] Paul Festa, “Apple snub stings Mozilla”, http://news.com.com/2100-1023-980492.html

182

Bibliography

[66] History of Mozilla Application Suite,
http://en.wikipedia.org/wiki/History of Mozilla Application Suite

[67] Muthu Ramachandran, “Software reuse guidelines”, ACM SIGSOFT Software Engineering
Notes, May 2005, Volume 30, Issue 3, pp. 1-8

[68] Shari Lawrence Pfleeger and Shawn A. Bohner, “A Framework for Software Maintenance
Metrics,” IEEE Transactions on Software Engineering, May 1990, pp. 320-327.

[69] S. Bohner and R. Arnold. “Software Change Impact Analysis”. IEEE Computer Society
Press, Los Alamitos, CA, USA, 1996.

[70] S. Barros, Th. Bodhuin, A. Escudie, J.P. Queille, and J.F. Voidrot, “Supporting Impact
Analysis: A Semi-Automated Technique and Associated Tool,” Proceedings of the
Conference on Software Maintenance, 1995. IEEE, Piscataway, NJ, USA, 95CB35845 pp.
42-51.

[71] Arnold, R.S. and Bohner, S.A., “Impact Analysis — Towards a Framework for
Comparison”, International Conference on Software Maintenance 1993, IEEE Computer
Society, LosAlamitos, CA, USA, 1993, pp. 292-301

[72] M. Lee. Change Impact Analysis of Object-Oriented Software. Ph.D. Dissertation, George
Mason University, Feb.1999.

[73] M. Lee, A. J. Offutt, and R. T. Alexander. “Algorithmic Analysis of the Impacts of Changes
to Object-oriented Software”. In TOOLS-34 °00, 2000.

[74] James Law and Gregg Rothermel, “Incremental dynamic impact analysis for evolving
software systems”, In Proceedings of the International Symposium on Software Reliability

Engineering, Nov. 2003

183

Vita

NAME OF AUTHOR
PLACE OF BIRTH
DATE OF BIRTH
EDUCATION

JULY 2006

MAY 2001

May 1997

EXPERIENCE

Teaching Assistant

Murat Kahraman Giingor
Kayseri, Turkey

November 6, 1976

Ph.D. in Computer and Information Science,

Collage of Engineering and Computer Science,

Syracuse University,

Syracuse, NY USA

M.S. in Computer and Information Science,

Department of Electrical Engineering and Engineering and Computer
Science, Syracuse University,

Syracuse, NY USA

B.S in Industrial Engineering,

Sakarya University,

Sakarya, TURKEY

CSE 686/891 — Internet Programming (SU02-SU06)
CSE 784 — Software Studio (FL02-FL05)

CSE 687 — Object Oriented Design (SP03)

CSE 784 — Software Studio (FL02-FLO05)

CSE 681 — Software Modeling and Analysis (SU05-SU06)

184

