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     ABSTRACT 

 

In commonly employed code, there are elements that are orthogonal to the primary functionality of the 

code. These elements, though extraneous to the primary purpose of the code, are vital to its proper 

execution. Further more, they tend to be scattered throughout the system so that they contribute to the 

complexity of the code. These elements are called aspects.  Examples of aspects include processing to 

support ‘security’, ‘fault-tolerance’ and ‘synchronization’. Aspect-oriented programming (AOP) isolates 

aspects into separate modules so that the resulting client-code is more purpose-specific, more reusable, and 

less complex. 

 

In this research, we analyze the efficacy of AOP under the .NET1 environment. We identify several 

applications where aspect-oriented approach can be applied.  Aspects that are dealt with in this thesis work 

are Method-Synchronization, Debugging, Code-Profiling, Prioritization, and Validation.  The technique 

used here for implementing AOP is interception of method calls. For each of the aspect-oriented 

applications, we evaluate the impact of AOP on code complexity and performance. Finally, we have 

summarized our contributions and conclusions, and have made some suggestions for future work along 

similar lines. 

                                                 
1 A technology specific, at the current time, to Microsoft Windows platforms.  This however is changing 

due to work on cross-platform implementations, most notably the Mono project, supporting most of the 

.Net platform on the Unix and Linux platforms. 
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 1. Aspect oriented programming 

1. ASPECT-ORIENTED PROGRAMMING 

 

In the early 1990’s, Gregor Kiczales, et al, published a seminal paper on what they called “the 

young idea of Aspect Oriented Programming” (AOP) at Proc-Europe Conference on object-

oriented programming [1]. A decade later, AOP continues to generate considerable interest 

among programmers and developers2. AOP programmers and developers claim that aspect-

oriented approach for programming has “immense potential for improving non-functional 

aspects of components such as resource usage, timing behavior, fault tolerance and security” [2]. 

In this research, we have analyzed different applications where aspect-oriented approach can be 

applied, and have evaluated the impact of AOP on code complexity and performance. Currently, 

work is being done on aspect oriented programming with both Java and .NET2. We have used 

.NET for our work. 

 

To illustrate the concept of AOP, consider the example of a server operating in a large LAN (or a 

web server for that matter). Suppose that the server needs to trace the number of clients trying to 

connect to it at different points of time, in addition to processing their requests.  

 

Here the client-tracing aspect is extraneous to the message processing logic of the server system. 

We use the term orthogonal to define functionalities, client-tracing, that are independent of the 

primary purpose of the application. 

 

                                                 
2 The reference section of this thesis work lists 31 publications (papers, books),  many of which deal with AOP in 

Java and .NET 
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Conventional style of programming would add code for client tracing in the main body of the 

code, which would result in the client tracing code being mixed with the message-passing logic 

of the server system. From this point forward, we use the term ‘tangling’ to refer to the 

combination of primary functionality of the code with secondary elements.  

 

Kiczales states “if we modularize some aspects of our program, it may not be possible to 

modularize others at the same time. When code is scattered in different fragments throughout a 

program, it is hard to see its structure and hard to get a good view of the apparent tangling of the 

code. It's hard to change such code efficiently and hard to find all the cases that have to be 

changed.” [1] As discussed before, in commonly employed code, there are elements that are 

secondary to the primary functionality of the code. These elements though non-primary are vital 

to the proper execution of the code. Furthermore, they may be so scattered throughout the system 

that they contribute to the complexity of the code. These elements are called aspects. Examples 

of aspects include ‘security’, ‘fault-tolerance’ and ‘synchronization’. Aspect-oriented 

programming tries to isolate aspects into separate modules so that the resultant client-code is 

more purpose-specific, more reusable, and less tangled. It accomplishes this by a process of 

interception – intercepting function calls and managing their execution, as described in chapter 2. 

 

Consider another example with a method in a class called Geometry that finds the area of a 

sector of a circle. We pass the radius and the angle of the sector as parameters; the returned 

value of area should be half of the square of radius times angle. Again, the method has to make 

sure that the radius and angle passed as parameters are non-negative; here, we make an 
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 1. Aspect oriented programming 

assumption that the angle is between 0 and 2 PI. Otherwise, the method has to throw an 

exception. Let us see how we implement the method in the conventional way: 

 

 

 

 

 

public double Geometry_FindSectorArea(double radius, double angle) 
{ 
  if (radius < 0.0) 
 throw new ArgumentOutOfRangeException("radius", "The radius is out of range."); 
  if ( (angle < 0.0) || (angle > 6.2832) ) 
 throw new ArgumentOutOfRangeException("angle", "The angle is out of range"); 
  return (radius * radius * angle / 2); 
} 

Here, the actual function of the method is just: 

return (radius * radius * angle / 2); 

The remaining piece of code is orthogonal to the primary purpose of the method. Isolating the 

range-checking aspect from the code would, clearly, make the code more readable and purpose-

specific, and less complex. 

 

This is nicely achieved by the AOP code, which is shown below: 

 

 

 

 

[method: Range(true, Lower = 0.0)] 
public double Geometry_FindSectorArea 
              ([Range(true, Lower = 0.0)] double radius,  
     [Range(true, Lower = 0.0, Upper = 6.28)] double angle) 
{ 
  return (radius * radius * angle / 2); 
} 

The code clearly describes its function. The parameter radius has a range-checker attribute, 

which specifies its lower range as 0. The angle parameter has a range that lies between 0 and 2 

PI. Again the method attribute to the method restricts the lower range of the return value to 0. 

The AOP-based method is more readable, and captures the purpose of the code better. Again, all 

that the function body does is its function, namely calculating the area of the sector of the circle. 
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In the following chapters, we discuss how this is achieved using AOP. We also present 

performance and code analysis for various applications based on AOP. 

 

In a general sense, the advance made by AOP has been its potential in complimenting OOP to 

develop an improved system. Certain aspects, like thread synchronization constraints and failure 

handling, are systemic in nature and present across components, which implies that they get 

tangled with the main functionality when developers employ conventional OOP approaches 

alone [1]. AOP successfully ‘captures’ these aspects, and isolates them as a separate entity. In the 

end, what results is a system that interweaves both OOP and AOP, and which is clearer and more 

focused on both the primary functionality and the aspects of its performance. 
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 1. Aspect oriented programming 

1.1. What are aspects? 

Kiczales classifies components and aspects this way:  

“With respect to a system and its implementation using a general procedure based language, a 

property that must be implemented is: A component or an Aspect 

• A component, if it can be cleanly encapsulated in a generalized procedure (i.e., object, 

procedure, method, API). By cleanly, it is meant – well localized, and easily accessed and 

composed as necessary. Components tend to be units of the system’s functional 

decomposition, such as image filters, bank accounts and GUI widgets. 

• An Aspect, if it cannot be cleanly encapsulated in a generalized procedure. Aspects tend 

not to be units of the system’s functional decomposition, but rather to be properties that 

affect the performance or semantics of the components in systemic ways. Examples of 

aspects include memory access patterns and synchronization of concurrent objects.” [1] 

 

1.2. What is Aspect-Oriented Programming? 

Again, in commonly employed code, there are elements that are orthogonal to the primary 

functionality of the code. These elements, though extraneous to the primary purpose of the code, 

are vital to its proper execution. Further more, they tend to be scattered throughout the system 

that they contribute to the complexity of the code. Aspect-oriented programming aims at 

isolating aspects into separate modules so that the resultant client-code is more purpose-specific, 

more reusable, more readable, and less tangled. 

 

The purpose of this thesis is to identify several applications that can be effectively developed 

using AOP, and to evaluate the impacts of AOP on code complexity and performance. 
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Performance evaluation is based on metrics concerned with cohesion3, line count, and cyclomatic 

complexity4 of the code. 

 

1.3. Thesis outline:

In the following section, we outline fundamental parts of this thesis work: 

1. Aspect-Oriented Programming needs support from the language used to develop the 

program. Currently, there are very few languages / platforms that support AOP. Java and 

.NET are two that do. We have chosen .NET for our research. AOP support is provided 

by the .NET platform, and is available for any language that targets the Common 

Language Runtime (CLR). We begin by studying technical support provided by .NET for 

AOP. Chapter 2 discusses a message-passing mechanism, channel architecture and the 

execution model used in .NET. We describe how these facilities support interception in 

.NET. Interception is the process of intercepting method calls, and letting some custom 

code execute before or after the call, or, perhaps, instead of it. 

 

                                                 
3 Please refer to Appendix 1.(a) 
4 Please refer to Appendix 1.(b) 
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2. In chapters 3, 4, 5, 6 and 7, we have identified some common applications that have 

secondary aspects, and have implemented them using AOP. The aspects that were 

successfully isolated in these chapters are: “Method Synchronization”, “Debugging”, 

“Code-Profiling”, “Prioritization”, and “Validation”. We discuss in detail AOP 

techniques to successfully isolate these elements from application code, and benefits and 

drawbacks of aspect-oriented approach5 for each of them. 

 

3. For most systems, to perform a quantitative assessment of implementation efficacy, the 

criteria for performance evaluation will have to be chosen after selecting the system for 

study.  For the systems consider in chapters 3 through 7, we have chosen ‘code 

complexity’ and ‘cohesion’ as criteria with which to compare an AOP implementation 

and a parallel Non-AOP implementation6. We present the results at the end of each 

chapter, and in a final sumarization. 

 

4. Finally, we draw our conclusions, list our contributions, make suggestions for future 

work along similar lines, and suggest a few existing and prospective applications that 

could be implemented efficiently using AOP. 

                                                 
5 We chose not to explore ‘security’ as we believe that it has been well researched already. 
6 These criteria, as we realized the hard way during our research, did not lend themselves to quantitative definition. 

For instance, “How readable a code is”, is subjective to a certain degree. 
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   2. TECHNICAL SUPPORT FOR AOP IN .NET 

 

2.1. Introduction: 

Aspect-Oriented Programming is a relatively new paradigm; one unique characteristic of AOP is 

that AOP needs the support of the language. Currently, there are not many languages that support 

AOP. Java, with the support of AspectJ, and .NET are a couple of environments that support 

AOP. In this chapter, we look through the .NET features that support AOP and focus on the 

technicalities that support AOP by means of interception. 

 

Interception of method calls is the most important technique in .NET that enables Aspect-

Oriented Programming. Interception can be inter-application domain or inter-context, explained 

in the next section, where, we look at .NET support for interception. 

 

2.2. Messages: 

Each programming environment has a fundamental scope of execution. In .NET the fundamental 

scope of execution is an AppDomain, Application Domain [25]. While application domains 

form the fundamental domain of execution in .NET, contexts are a collection of execution 

attributes that function as boundaries as well. For communication between different contexts, 

message passing is enforced, provided the objects are context-bound.  It is the process of 

handling messages that introduces the possibility of (message) interception. 

 

Messages are the fundamental units of data transfer across .NET boundaries. Data is transferred 

across these AppDomain and context boundaries by Message objects. The 
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System.Runtime.Remoting.Messaging namespace contains classes used to create and transmit 

messages. The remoting infrastructure uses messages to communicate with remote objects. 

Messages are used to transmit remote method calls, to activate remote objects, and to 

communicate information. A message object carries a set of named properties, including action 

identifiers, envoy information, and parameters [31]. 

 

 

Figure – 2.1: Inter-AppDomain communication demands message 

passing 

 

2.2.1. The IMessage interface: 

Messages are instances of classes implementing the IMessage interface. An object that 

implements the IMessage interface meets the minimum qualifications to be considered as a 

message object. The following diagram describes the types of messages, and their hierarchy. 
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Figure – 2.2: Types of messages 

 

• IMethodMessage: A method message is used to send information to and from remote 

methods. Messages used for remote method calls implement the IMethodMessage 

interface. 

• IMethodCallMessage: An IMethodCallMessage is generated as a result of a method 

called on a remote object, and is used to transport details about the remote method call to 

the server side. 

• IMethodReturnMessage: A method call return message represents the response to a 

method call on an object at the end of the message sink. An IMethodReturnMessage is 
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generated as a result of a method called on a remote object, and is used to return the 

results of the method call back to the caller. 

• IConstructionCallMessage: When the user creates an instance of a new client-activated 

object by calling new or Activator.CreateInstance and before the thread returns to the 

user code, an IConstructionCallMessage is sent to the remote application. When the 

construction message arrives at the remote application, it is processed by a remoting 

Activator (either the default one, or one that is specified in the Activator property) and a 

new object is created. The remoting application then returns an 

IConstructionReturnMessage to the local application. The 

IConstructionReturnMessage contains an instance of ObjRef, which is a package of 

information about the remote object. The remoting infrastructure converts the ObjRef 

instance into a proxy to the remote object, which is returned to the user code. 

• IConstrcutionReturnMessage: A message implementing 

IConstructionReturnMessage returns the result of the construction request sent with the 

IConstructionCallMessage. 

 

2.2.2. Message invocation: 

Messages are invoked whenever a construction call or a method call occurs. The response to the 

method call and the construction call also occur as response messages.  
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Code Listing – 2.1(a): Message Invocation 

 

 

 

// invokes a construction call message.
MyClass M = new MyClass( );                     
 

// invokes a method call message.
M.TestFunc( );                                  
 

Code Listing – 2.1(b): Message Invocation 

We cannot invoke a method calls explicitly. We can, however, override the invocation 

functionality by customizing the proxies, and making the object context bound.  SRC?? 

 

Figure – 2.3: Overriding message invocation using custom proxies 

 

There is just one system class – ReturnMessage, which lets us create message objects explicitly. 

ReturnMessage objects hold the return message in response to a method call on a remote object. 

This class is defined in the namespace System.Runtime.Remoting.Messaging 
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It has two constructors: 

1. Initializing a new instance of the ReturnMessage class, which holds an exception along with 

it. 

public ReturnMessage(Exception, IMethodCallMessage); 

2. Initializing a new instance of the ReturnMessage class with all the information returning to 

the caller after the method call. 

public ReturnMessage(object, object[], int, LogicalCallContext,  IMethodCallMessage); 

 

2.2.3. Message sinks: 

We can intercept messages in message sinks, classes derived from the IMessageSink interface. 

Messages carry all the information about the method call, the parameters, the return value, info 

about the declaring type, the custom attributes (if any), and many other useful metadata. We can 

expose these metadata using reflection by intercepting the messages in a message sink.  

Message sinks that use IMessage can be placed in the client sink chains or in the server sink 

chains. A message object is passed from message sink to message sink through the chain, and 

carries a set of named properties. 

An object that implements the IMessage interface meets the minimum qualifications to be 

considered a message object. The exact object received by a message sink does not have to be 

passed on to the next sink, but this is often the case. 

Although the objects in the property bag do not have to be serializable, the message sink 

implementer needs to consider this, since the properties that flow out of the application domain 

must be serializable. 
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When a method call is made on the proxy, the remoting infrastructure provides the necessary 

support for passing the arguments to the actual object across the remoting boundaries, calling the 

actual object method with the arguments, and returning the results back to the client of the proxy 

object. 

A remote method call is a message that goes from the client end to the server end and possibly 

back again. As it crosses remoting boundaries on the way, the remote method call passes through 

a chain of IMessageSink objects. Each sink in the chain receives the message object, performs a 

specific operation, and delegates to the next sink in the chain. The proxy object contains a 

reference to the first IMessageSink it needs to use to start off the chain. 

For asynchronous calls, at the time of delegation, each sink provides a reply sink (another 

IMessageSink) that will be called by the next sink when the reply is on its way back. 

Different types of sinks perform different operations, depending on the type of message object 

received. For example, one sink could cause a lock to be taken, another could enforce call 

security, another could perform flow call control and reliability services, and yet another could 

transport the call to a different AppDomain, process, or computer. Two or more message sinks in 

the chain can interact with each other in regard to each specific action. 

  
  

14



 2. Technical support for AOP in .NET 

2.2.4. Message wrappers: 

We can manipulate a message in the message sink using message wrappers. .NET provides two 

classes, MethodCallMessageWrapper and MethodReturnMessageWrapper, which facilitate 

manipulating messages in the sink stack. These classes are defined in the 

System.Runtime.Remoting.Messaging namespace. 
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2.3. Channel architecture in .NET: 

As discussed in the previous section, messages function as the fundamental units of data transfer 

across .NET boundaries. When we construct a proxy and make a method call, we generate a 

message object, which travels through a series of sinks as it makes round-trips to the server. The 

Message class, which is referenced through the IMessage interface within the sinks, contains a 

dictionary that holds the data representing the call. The remoting framework exposes a number 

of IMessage implementing classes, which represent different messages passed along either 

during construction (Construction Call, Construction Response) or during a method call (Method 

Call, Method Response). 

 

Inter-AppDomain communication involves message passing through channels. In the following 

section, we will see the channel architecture in .NET. 
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Figure – 2.4: Channel-Sink architecture in .NET 
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2.3.1. Channel Sinks: 

Channels send each message along a chain of channel sink objects prior to sending or after 

receiving a message. This sink chain contains sinks required for basic channel functionality, such 

as formatter, transport, or stack builder sinks, but we can customize the channel sink chain to 

perform special tasks with a message or a stream. 

Channel sinks provide a plug-in point that allows access to the underlying messages flowing 

through the channel as well as the stream used by the transport mechanism to send messages to a 

remote object. Channel sinks are linked together in a chain of channel sink providers, and all 

channel messages flow through this chain of sinks before the message is serialized and 

transported. 

Each channel sink implements either IClientChannelSink or IServerChannelSink. The first 

channel sink on the client side must also implement IMessageSink. It typically implements 

IClientFormatterSink (which inherits from both IMessageSink, IchannelSinkBase), and 

IClientChannelSink, and is called a formatter sink because it transforms the incoming message 

into a stream (an IMessage object). 

The channel sink chain processes any message that is sent to or from an application domain. At 

this point, all we have is the message, but we are able to do anything we want with that message, 

and subsequent processing will use the message that we return to the system after processing. 

This is a natural place to implement a logging service, any sort of filter, or perhaps encryption or 

other security measures on the client or the server.  
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Each channel sink processes the stream and then passes the stream to the next channel sink, 

which means that objects before or after our sink should know what to do with the stream being 

passed to them. 

Channel sink providers (objects that implement the IClientChannelSinkProvider, 

IClientFormatterSinkProvider, or IServerChannelSinkProvider interface) are responsible for 

creating the channel sinks through which remoting messages flow. When a remote type is 

activated, the channel sink provider is retrieved from the channel; and the CreateSink method is 

called on the sink provider to retrieve the first channel in the sink from the chain. 

Channel sinks are responsible for transporting messages between the client and the server. 

Channel sinks are also linked together in a chain. When the CreateSink method is called on a 

sink provider, it should do the following:  

• Create its own channel sink.  

• Call CreateSink on the next sink provider in the chain.  

• Ensure that the next sink and the current one are linked together.  

• Return its sink to the caller.  

Channel sinks are responsible for forwarding all calls made on them to the next sink in the chain 

and should provide a mechanism for storing a reference to the next sink. 

Channel sinks have great flexibility in what they send down the sink chain. For example, security 

sinks that want to negotiate authentication before sending the actual serialized original message 

can hold onto the complete channel message, replace the content stream with their own content, 

and send it down the sink chain and on to the remote application domain. On the return journey, 
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the security sink can intercept the reply message, creating a conversation with the corresponding 

security sinks in the remote application domain. Once an agreement is reached, the originating 

security sink can send the original content stream on to the remote application domain. 

2.3.2. Message Processing in the Channel Sink Chain: 

Once the .NET remoting system locates a channel that can process the IMethodCallMessage 

implementation, the channel passes the message to the formatter channel sink by calling 

IMessageSink.SyncProcessMessage (or IMessageSink.AsyncProcessMessage) method. The 

formatter sink creates the transport header array and calls IClientChannelSink.GetRequestStream 

on the next sink. This call is forwarded down the sink chain, and any sink can create a request 

stream that will be passed back to the formatter sink. If GetRequestStream returns a null 

reference, the formatter sink creates its own sink to use for serialization. Once this call returns, 

the message is serialized and the appropriate message processing method is called on the first 

channel sink in the sink chain. 

Sinks cannot write data into the stream but can read from the stream or pass a new stream along 

where required. Sinks can also add headers to the header array (if they have not previously called 

GetRequestStream on the next sink) and add themselves to the sink stack before forwarding the 

call to the next sink. When the call reaches the transport sink at the end of the chain, the transport 

sink sends the headers and serialized message over the channel to the server where the entire 

process is reversed. The transport sink (on the server side) retrieves the headers and serialized 

message from the server side of the stream and forwards these through the sink chain until the 

formatter sink is reached. The formatter sink deserializes the message and forwards it to the 
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remoting system where the message is turned back into a method call and is invoked on the 

server object. 

When multiple channel sink providers are provided in a configuration file, the remoting system 

chains them together in the order in which they are found in the configuration file. The channel 

sink providers are created when the channel is created during the 

RemotingConfiguration.Configure call. 

2.3.3. Default Sinks: 

The two important built-in sinks are the Formatter Sink and the Transport Sink. 

2.3.3.1. Formatter Sinks: 

Formatter sinks serialize the channel message into the message stream as an object that 

implements IMessage. Some formatter sink implementations use the system-provided formatter 

types (BinaryFormatter and SoapFormatter). Other implementations can use their own means to 

transform the channel message into the stream. 

The function of the formatter sink is to generate the necessary headers and serialize the message 

to the stream. After the formatter sink, the message is forwarded to all sinks in the sink chain 

through the IMessageSink.ProcessMessage or IMessagesink.AsyncProcessMessage calls. At this 

stage the message has already been serialized and is provided as information only. 

Sinks that need to create or modify the message itself must be placed in the sink chain prior to 

the formatter. This is easily achieved by implementing IClientFormatterSink, thereby fooling 
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the system into believing that it has a reference to the formatter sink. The real formatter sink can 

then be placed later in the sink chain. 

On the return journey, the formatter sink transforms the message stream back into the channel 

message elements (return message). The first sink on the client side must implement the 

IClientFormatterSink interface. When CreateSink returns to the channel, the reference 

returned is cast to an IClientFormatterSink type so the SyncProcessMessage of the IMessage 

interface can be called. If the cast fails, the system raises an exception. 

2.3.3.2. Transport Sinks: 

The transport sink is the last sink in the chain on the client side, and the first sink in the chain on 

the server side. Besides transporting the serialized message, the transport sink is also responsible 

for sending the headers to the server and retrieving the headers and the stream when the call 

returns from the server. These sinks are built into the channel and cannot be extended. 

2.3.4. Custom Channel Sinks: 

On the client side, custom channel sinks are inserted into the chain of objects between the 

formatter sink and the last transport sink. Inserting a custom channel sink in the client or server 

channel enables you to process the IMessage at one of two points:  

• During the process by which a call represented as a message is converted into a stream 

and sent over the wire.  

• During the process by which a stream is taken off the wire and sent to the 

StackBuilderSink object (the last message sink before the remote object on the server) 

or the proxy object (on the client).  
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Custom sinks can read or write data (depending if the call is outgoing or incoming) to the stream 

and add additional information to the headers where desired. At this stage, the message has 

already been serialized by the formatter and cannot be modified. When the message call is 

forwarded to the transport sink at the end of the chain, the transport sink writes the headers to the 

stream and forwards the stream to the transport sink on the server using the transport protocol 

dictated by the channel. 

                       

 Figure – 2.5: Implementing custom channel sinks 
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2.3.5. Replacing the Default Formatter: 

Because a channel is an abstract networking mechanism, we can configure the .NET remoting 

system to combine a system-implemented channel with any formatter we choose. We can do this 

using the channel constructor that takes an IDictionary implementation of channel properties, a 

server-side formatter, and a client-side formatter. We can also specify the formatter in a 

configuration file.  
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2.3.6. Sink providers: 

Channel sinks are connected to a server channel through implementations of the 

IServerChannelSinkProvider interface. All the remoting server channels provide constructors 

that take an IServerChannelSinkProvider as a parameter. 

Channel sink providers are stored in a chain, and the user is responsible for chaining all channel 

sink providers together before passing the outer one to the channel constructor. 

IServerChannelSinkProvider provides a property called Next for this purpose. 

Channel sinks are connected to a client channel through implementations of the 

IClientChannelSinkProvider interface. All the remoting client channels provide constructors 

that take an IClientChannelSinkProvider as a parameter. 

Channel sink providers are stored in a chain, and the user is responsible for chaining all channel 

sink providers together before passing the outer one to the channel constructor. 

IClientChannelSinkProvider provides a property called Next for this purpose. 

When multiple channel sink providers are specified in a configuration file, the remoting 

infrastructure will chain them together in the order they are found in the configuration file. The 

channel sink providers will be created when the channel is created during the 

RemotingConfiguration.Configure call. 

After the IMethodCallMessage is generated, .NET Framework searches through the list of 

registered channels to find one that can process the call. Once an appropriate channel has been 

found, the channel sink is retrieved from the channel, and the IMethodCallMessage is 

forwarded to the sink for processing. 
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As discussed, a sink provider implements IClientChannelSinkProvider for creating client-side 

channel sinks and implements IServerChannelSinkProvider for creating server-side channel 

sinks. The provider chain is initialized when the configuration file is read and the channel 

initialized. The order in which the providers are placed in the chain depends on the order in 

which they are defined in the configuration file. The CreateSink method of the provider is called 

when the proxy is created. It should forward the call to the next provider in the provider chain, 

and then chain the next sink (obtained after its own channel sink). This order sets up the sink 

chain through which the message passes. Using a configuration file, we can override the sink 

chain by providing a reference to custom sink providers. 
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2.4. Contexts: 

As discussed in section 2.2, many programming technologies and environments define their own 

unique models for scoping the execution of code and the ownership of resources: 

• For Java VM, it is based on Class loaders 

• For IIS and ASP, the scoping model is Virtual directory. 

• For the CLR, the fundamental scope is an AppDomain 

Application Domains are divided into one or more contexts. In fact, every CLR application is 

divided into one or more contexts. Contexts are themselves objects that are instances of 

System.Runtime.Remoting.Contexts.Context type. 

 

 

 Figure – 2.6: Contexts 

 

A context is an ordered sequence of properties that defines an environment for the objects within 

it. Contexts are created during the activation process for objects that are configured to require 
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certain automatic services such synchronization, transactions, just-in-time (JIT) activation, 

security, and so on. Multiple objects can live inside a context. Contexts help to group together 

objects that have similar execution requirements. Normally, the runtime creates contexts as 

needed. Whenever a new object is created, the .NET Framework finds a compatible context or 

creates a new context for the object. The System.Runtime.Remoting.Contexts namespace 

contains objects that define the contexts all objects reside within. 

 

2.4.1. Cross-context communication: 

Objects in an AppDomain are either Context-agile or Context-bound.  

 

Figure 2.7: Objects and contexts 
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Context-Agile objects: 

Context-agile objects can be accessed directly from anywhere in an AppDomain. Types derived 

from MarshalByRefObject are context-agile. ‘Context-agile’ implies pass-by-ref, if between 

AppDomains. 

 

 Figure 2.8: Context-Agile objects 

 

Context-Bound objects: 

Context-bound objects are accessed through proxies from outside the home context. Types 

derived from ContextBoundObject are context-bound. Context-bound implies pass-by-ref 

between contexts. 
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 Figure 2.9: Context-Bound objects 

 

Cross-context member access is message – based. Inter-context communication supports 

interception, and is completely pluggable. Cross-Context access requires a proxy 

 

 Figure 2.10: Cross-context message passing 

 

The facility to customize proxies, and to intercept inter-context message passing are the primary 

features that facilitate AOP in .NET. 
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2.4.2. Context attributes: 

Context attributes provide a facility to explicitly request context-based services. They are 

instantiated at the runtime, just before the type that is using it is instantiated. Context attributes 

are derived from System.Runtime.Remoting.Contexts.ContextAttribute class. Context attributes 

participate in the decision to create a new context ( or not); at instantiation time, they install 

context properties and context sinks to provide application-specific service. 

 

2.4.3. Context properties: 

Context properties are instances of types implementing 

System.Runtime.Remoting.Contexts.IContextProperty interface. Context properties provide on-

demand services to the developers. They can contribute the instantiation of interceptors (sinks), 

that can intercept the messages intended to the target object. Context properties can be 

programmatically accessed from within a type’s methods. They provide an interface that allows 

developers to control sink behavior. 

 

2.4.4. Context Sinks (Interceptors): 

Context-properties can be programmed to provide sinks, on-demand. Sinks are instances of types 

implementing System.Runtime.Remoting.Messaging.IMessageSink interface. Sinks provide 

services by intercepting calls into and out of the context. .NET supports context-wide and object-

specific interception. Method calls on context-bound object types are converted into messages 

that pass through sinks, where interception can be employed if needed. By employing 

interception at the sinks, we can modify the messages, or can even create a return-value thereby 

“short-circuiting” the method call. 
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The following diagram shows a typical interception library: 

 

Figure 2.11: Class diagram for a typical inter-context 

interception library 
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2.4.5. Reflection: 

Reflection is s a powerful feature of .NET, which Provides access to type-metadata embedded in 

each library and executable assembly. Reflection, among many other features, supports late 

binding. It even provides facility to create types at run-time! We will discuss more about 

reflection in the subsequent chapters. 

 

2.5. Summary: 

In this chapter, we discussed the .NET features that support interception. Interception is the 

primary technique in .NET that supports AOP. This chapter mainly serves as a reference for the 

.NET facilities for AOP.  In subsequent chapters, we identify different aspects, in several 

applications, and isolate them into separate modules. We several different aspects and AOP 

techniques to isolate them. Finally, we make a qualitative analysis of the AOP code versus 

conventional non-AOP code, and draw conclusions about that.  
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3. METHOD SYNCHRONIZATION 

 

Abstract: 

In this chapter we present a new approach for method synchronization in .NET. Our approach is based on aspect-

oriented programming. Here, we attempt to isolate the method synchronization aspect from client code involving 

method synchronization, into a separate module. As we show in this chapter, our method helps to develop client 

code that is more purpose-specific, and less tangled. 

 

3.1. Introduction: 

Consider the following operations: (1) writing to a file, and (2) enqueue, dequeue operations on 

a queue. These are two classical cases that require synchronization. In the first case, we make 

sure that one, and only one thread writes to a file at any time, and that it completes the required 

operation on the file before letting any other threads access the file. The other threads may be 

kept blocked during this time. Synchronization, in this example, is orthogonal to the purpose of 

the operation, namely writing to the file; but vital as well. 

 

Synchronization is usually achieved via object synchronization, i.e., by locking the file in this 

case. In this chapter, we explore “Method Synchronization via AOP, in .NET”. 
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3.1.1. Prior Work: 

An internet search on http://www.google.com with the key words – “Method Synchronization” + 

“Aspect-Oriented Programming” (as of February 27, 2005) lists, among others, the following 

links: 

http://www.ccs.neu.edu/home/lieber/courses/csg260/f03/lectures/lec6-csg260-f03.ppt , 

http://www.cs.wustl.edu/~schmidt/PDF/monitor.pdf. The articles on these web pages talk about 

Method Synchronization using Aspect-Oriented Programming. The Method Synchronization that 

these articles discuss is a way of synchronizing multiple threads. 

 

Method Synchronization as dealt with in this chapter, though, is actually a way of synchronizing 

methods (belonging to the same or different types). 

 

3.2. AOP-based Method Synchronization: 

In this section, we discuss the advantages of an AOP-based approach for method synchronization 

as compared to conventional object synchronization approach. AOP-based method 

synchronization isolates the synchronization aspect from primary logic which results in a simpler 

implementation of the application. 

 

As discussed in the previous section, synchronization in a queuing operation is totally extraneous 

to the method’s primary purpose. Let us see the typical code for a class that handles queuing 

operations. 
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public class NonAOP_Q 
{ 
 private Queue Q = new Queue(); // queue 
 
 public int CountOfQ   // Count of the queue 
 { 
  get 
  { 
   int count = 0; 
   Monitor.Enter(this.Q); 
   try   
   { 
    count = this.Q.Count; 
   } 
   finally  
   { 
    Monitor.Exit(this.Q); 
   } 
   return count; 
  } 
 } 
 
 public void EnQ(string msg) // Enqueue a string to the queue 
 { 
  Monitor.Enter(this.Q); 
  try   
  { 
   this.Q.Enqueue(msg); 
  } 
  finally  
  { 
   Monitor.Exit(this.Q); 
  } 
 } 
 
 public string DeQ()   // Dequeue a string from the queue 
 { 
  string RetVal = null; 
  Monitor.Enter(this.Q); 
  try 
  { 
   if (this.Q.Count == 0) 
    throw new Exception();    

else 
    RetVal = (string)this.Q.Dequeue(); 
  } 
  finally  
  { 
   Monitor.Exit(this.Q); 
  } 
  return RetVal; 
 } 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code Listing 3.1: A queue-handler class that does not employ AOP
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 The class NonAOP_Q supports two public functions, EnQ and DeQ that provide interfaces for 

safe enqueuing and dequeueing to the private member queue. The class also supports a property, 

CountOfQ, which returns the size of the queue. The functions and properties ensure 

synchronization by locking the queue before their desired functionality is executed. 

 

Extracting the synchronization element from the body of a function would, clearly, help in 

generating a less-complex code, and one that would capture the purpose of the code better. 

Shown below is the AOP-code that we have developed for this operation: 

  
[EnableInterception(true)] 
public class AOP_Q : System.ContextBoundObject 
{ 
 private Queue Q = new Queue(); // queue 
 
 [Sync("Q")] 
 public int CountOfQ   // Count of the queue 
 { 
  get  
  { 
   return this.Q.Count; 
  } 
 } 
  
 [Sync("Q")] 
 public void EnQ(string msg)  // Enqueue a string to the queue 
 { 
  this.Q.Enqueue(msg); 
 } 
 
 [Sync("Q")] 
 public string DeQ()   // Dequeue a string from the queue 
 { 
  if(this.Q.Count == 0) 
   throw new Exception(); 
  else 
   return (string)this.Q.Dequeue(); 
 } 
} 

 

 

 

 

 

 

 

 

 

 

 

 

 
Code Listing 3.2: Queue-handler class employing AOP
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The AOP-based code has managed to remove monitor-based locking from the function body. 

Again, AOP-based code captures the purpose of the code better: the methods do just their 

functions, enqueuing / dequeuing, without worrying about the synchronization factor, which as 

discussed, is an aspect, and has been successfully extracted into a separate module by the AOP-

based code. Towards the end of this chapter, we demonstrate the efficacy of the AOP-based code 

through a quantitative analysis.  

 

Synchronizing methods that belong to different types: 

Object synchronization is usually taken care of by the member methods; i.e., the member 

methods of a type, in their function body, employ code for synchronizing their member objects; 

as illustrated in the locking of the Q by the EnQ and the DeQ methods in the non-AOP code 

discussed above. This is referred to as self-synchronization. 

 

If the methods that require to be synchronized belong to different types, synchronization 

becomes more difficult. (This is not to say that it is impossible). There are privacy issues 

concerned with the object being locked – the declaring type of the method that requires to be 

synchronized has to let the foreign method access its member object, or provide an equivalent 

get-set method. 

 

Synchronization of any two methods using AOP, whether they belong to the same type or 

different types, is simple. A method a1 ( ) of class X, can be quite easily synchronized with a 

method a2 ( ) of class Y. 

  
  

38



 3. Method synchronization 

 

 

 

 

 

 

These methods need only register with the same ID to be mutually synchronous. The 

synchronized methods would look like: 

 
[EnableInterception (true)] 
class X : System.ContextBoundObject 
{ 

 

 [Sync("DatabaseX")] 
public void WriteNamesToDatabase( ) {….}  

} 

 

 

 
 
[EnableInterception (true)] 
class Y : System.ContextBoundObject 
{ 
 [Sync("DatabaseX")] 

public bool WriteSomeStuffToTheSameDatabase( ) {….}  

} 

 
 
 
 
 
 
 
 
 
 
 

class X { public void WriteNamesToDatabase ( ) {….} } 

 

class Y { public bool WriteSomeStuffToTheSameDatabase ( ) {….} } 

Registering with the same 
ID for synchronization, 
“DatabaseX” being the 
same ID in this case 

Code Listing 3.3: Two methods owned by two separate types 
that require synchronization 

Code Listing 3.4: Synchronizing methods belonging to two different 
types using AOP-based method synchronization 

 
 
Again, there are times when we would want to synchronize methods that do not share a 

common object. Some display applications, for instance, require this. The lack of a 

common object makes it difficult to employ object-synchronization for such applications. 

Method synchronization does not demand the existence of a common object, and hence 

could prove to be an ideal choice for such purposes. 
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AOP-based method synchronization clearly captures and isolates the non-functional 

aspect of synchronization. The methods that need to be synchronized simply need to 

employ the custom synchronization attribute with a common ID. The synchronization 

element, which would otherwise be spread through the client code, is now extracted and 

taken out into a separate module. The client code now looks more purpose-specific, and 

less complex. 

 

3.3. Achieving Method-Synchronization: 

In the following section, we discuss how method-synchronization is achieved in a .NET 

environment. 

 

3.3.1. .NET features that support Method-Synchronization: 

We have employed interception of method-calls at run-time to achieve method 

synchronization. The .NET features that facilitate this purpose are facilities to: 

1. Develop and register custom metadata using attributes. 

2. Trace metadata using reflection. 

3. Intercept method calls using message sinks. 

 

 40



 3. Method synchronization 

3.3.2. Requirements: 

To synchronize two or more methods using our current approach: 

1. The parent class(es) must employ the EnableInterception7 attribute; also it must 

derive from System.ContextBoundObject, to be context-bound in order to enable 

interception. 

2. The methods must employ the Sync7 attribute, with an ID. 

If a method, say WriteIntsToFile(), needs to be synchronized with another method 

say WriteStringsToFile(), then they both must register to the Sync attribute using 

the same ID. 

 

3.4. Theory: 

In this section, we discuss how AOP-based method synchronization is achieved.  

 

(1) Registration via Attributes: 

The Synchronization attribute class, Sync, maintains an ID storage. The Sync attribute is 

made applicable to methods only. When a method registers to the Sync attribute with an 

ID, the Sync class in turn checks if the ID is already present or not. If the ID is not 

present, the Sync class adds the ID to its ID store. 

                                                 
7 EnableInterception and Sync are custom attributes that we have developed for synchronization 

applications. 
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 Figure – 3.1: Registering ID via attributes 
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Code Listing 3.5: Registering ID via attributes 

[AttributeUsage(AttributeTargets.Method | AttributeTargets.Property, 
 Inherited = false, AllowMultiple = true)] 
public class Sync : Attribute 
{ 
 // The Id. 
 private string Id; 
 
 // The Id Store. 
 private static StringCollection IdStore; 
 
 // The static constructor. Initialize the Id Store. 
 static Sync() 
 { 
  Sync.IdStore = new StringCollection(); 
 } 
 
 // "Sync" attribute's constructor. pass the ID. 
 public Sync(string Identity) 
 { 
  this.Id = Identity;  // set Id. 
  this.InsertIfNewId(Identity); // If new Id, add to Id Store. 

} 
 
 // Insert the id into the table, if the ID is NOT present already. 
 private bool InsertIfNewId(string Identity) 
 { 
  foreach(string s in Sync.IdStore) 
  { 
   if (s == Identity) 
    return false; 
  } 
  Sync.IdStore.Add(Identity); 
  return true; 
 } 
  
 // ---- other functions… 
} 

(2) Tracing ID via Reflection: 

As stated earlier, the parent class of the method has to employ the EnableInterception 

attribute to enable interception. When the method call is intercepted, the interceptor sink 

employs reflection, and traces the custom attributes of the method from its metadata. 
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(3) Querying for the lockee: 

If the method has a locking attribute, Sync, the interceptor sink gets its ID through 

reflection. The interceptor sink then queries the Sync attribute class with the ID of the 

current method. If the queried ID matches with any ID in the storage, the Sync attribute 

class hands over to the interceptor sink, a reference to that ID object in the storage. Please 

note that the ID object in the storage serves as a pseudo lock as it is not the actual object 

that requires to be locked. The term lockee refers to this pseudo-lock. 

 

 

 

 

 

 

 

 

 

 

 

 

 

// Gets the object with the MethodCall's id. 
// This object when locked, functions as a MutEx 
private object getMutEx(IMethodCallMessage MsgCall) 
{ 
 // Get the custom attributes. 
 object[] attrs = MsgCall.MethodBase.GetCustomAttributes(false); 
 Sync s = null;   // The Sync attribute. 
 object MutEx = null; // The object to be returned. 
  
 // Iterate through the custom attributes. 
 foreach(Attribute attr in attrs) 
 { 
  s = attr as Sync; // Is it a Sync attribute? 
  if (s != null) 
  { 
   break; 
  } 
 } 
 if (s != null) 
 { 
  // Overridden ToString func; returns the Id. 
  string identity = s.ToString(); 
 
  // Get the MutEx object mapping to this identity. 
  MutEx = Sync.GetMutEx(identity); 
 } 
 return MutEx; 
} 

Code Listing 3.6: Tracing ID, querying for the lockee 
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(4) Synchronization via locking at the interceptor sink: 

 

 

 

 

 

 

 

Method 1 
ID = “File” 

Method 2 
ID = “Database” 

Method 4 
ID = “File”

Method 4 
ID = “Queue” 

     Sync ID storage  

 

 

 

 

Here, Method 1 and Method 4 are synchronized because they share the same ID, called “File”. 

Figure 3.2: Synchronization via locking at the interceptor sink

Once the interceptor gets a reference to an object in the ID store, it locks that object, 

executes the method call, releases the lock, and returns the processed message. If in 

between, another method call with the same ID comes in, the Sync attribute hands to the 

method’s interceptor sink, the same reference in its ID storage. The sink processing for 

this new method call tries to lock this object. But as it is already locked, it waits until the 

lock is removed. 
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public IMessage SyncProcessMessage(IMessage msg) 
{ 
 // if NOT a method call message, return after default processing. 
 IMethodCallMessage MsgCall =  msg as IMethodCallMessage; 
 if(MsgCall == null) 
 { 
  return _nextSink.SyncProcessMessage(msg); 
 } 
 else 
 { 
  IMessage retMsg = null;    // return message. 
  object MutEx = this.getMutEx(MsgCall); // get the MutEx object. 
  if (MutEx != null)       
  { 
   Monitor.Enter(MutEx);   // lock the MutEx object. 
   try 
   {      // default processing. 
    retMsg = _nextSink.SyncProcessMessage(msg); 
   } 
   finally 
   { 
    Monitor.Exit(MutEx);  // release monitor. 
   } 
  } 
  if (retMsg == null) 
   retMsg = _nextSink.SyncProcessMessage(msg); 
  return retMsg; 
 } 
} 

Code Listing 3.7: Synchronization via locking at the interceptor sink
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The accompanying diagram shows how method synchronization is achieved at the 

interceptor sink. 

 

                           

 

 

  

Figure 3.3: Achieving method synchronization by AOP
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3.5. Architecture and Implementation: 

As mentioned above, the Aspect-Oriented approach used here involves run-time 

interception of method-calls; this demands that the client class be context-bound, and 

hence enable interception. In addition, the client has to employ the services of the custom 

interception library. 

 

The custom interception library consists of the following types: 

• A custom context-attribute class called the EnableInterceptionAttribute. The 

custom context attribute achieves the following: 

o Creates a new context, if specified, for an instance of a type that employs 

this attribute. Since the instance is in an isolated context, cross-context 

calls can be intercepted if an interceptor sink is employed. 

 

 

 

 

 

 

 

public override bool IsContextOK 
(Context MyContext, IConstructionCallMessage MyConstructor) 

{ 
  // return false to create a new context. Else return true. 
     
  return (false);   
} 

o Provides an option to add context properties for the context. 

 

 

 

 

 

 

 

public override void GetPropertiesForNewContext 
(IConstructionCallMessage MyConstructor) 

{ 
  MyConstructor.ContextProperties.Add(new SyncContextProperty()); 
} 
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• A custom context-property class called SyncContextProperty. The custom 

context-property class lets us bind a custom interception sink to the context that 

would intercept incoming and outgoing calls. 

 

 

 

 

 

 

 

public override void GetPropertiesForNewContext 
(IConstructionCallMessage MyConstructor) 

{ 
  MyConstructor.ContextProperties.Add(new SyncContextProperty()); 
} 

• A custom interceptor sink class called SyncSink. The custom interceptor sink 

performs the synchronization operation for every method that is intercepted and is 

tagged with the Sync attribute. 

 

 

Any client type whose method(s) require(s) synchronization using the custom AOP 

synchronization library should meet the following requirements. 

• The Type should inherit from System.ContextBoundObject class. 

• The Type should apply EnableInterceptionAttribute attribute with 

true as the constructor’s parameter. 

• Any method(s) of the above-said type(s) that require to be synchronized with each 

other should apply the Sync8 attribute with the same ID, the ID being of type 

string. 

 

 

                                                 
8 Please refer to section 3.4.(1) 
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EnableInterceptionSink
(custom interceptor sink)

EnableInterceptionProperty
(custom context property)

EnableInterceptionAttribute
(custom context attribute)

Client

System.Runtime.Remoting.Contexts.
IContributeObjectSink

System.Runtime.Remoting.Contexts.
IContextProperty

System.Runtime.Remoting.Messaging.
IMessageSink

System.Runtime.Remoting.Contexts.
ContextAttribute

SyncAttribute
(custom attribute)

System.
Attribute

System.
ContextBoundObject

Class diagram for 
Method Synchronization 

library

 

Figure 3.4: Class layout for the method synchronization library
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3.6. Analysis: 

To evaluate our approach, we have done code complexity analysis on a sample 

application. First, we created a conventional queue-handler class (Code Listing – 3.1), 

which does not employ AOP. We then developed an AOP-based queue handler class 

(Code Listing – 3.2). In the following section, we list the results that we obtained from 

the code complexity analysis.  

 

The Non-AOP class which supports 3 functions (includes 2 methods and a property) bore 

a cyclomatic complexity of 7, and required 46 lines of function code. The AOP-based 

class, which supports similar functions, on the other hand, required just 18 lines of 

function code, with an aggregate cyclomatic complexity of just 4. 

 AOP Non-AOP 

Lines of function code 

(Including properties) 

18 46 

Cyclomatic complexity 4 7 

 

The AOP library, which we have developed, needs to be employed by the AOP-based 

classes to achieve method synchronization. This though is a one-time effort, that will be 

amortized over every application that users our AOP style Method Synchronization. We 

list here the analysis results for the Method-synchronization AOP library as well. 

 

Lines of function code 

(Including properties) 

130 

Cyclomatic complexity 24 
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3.7. Conclusion: 

The primary contribution of this chapter is the demonstration of a new way of achieving 

Method-Synchronization in a .NET environment. Our approach is based on Aspect-

oriented programming.  

 

We have developed a .NET library that enables client code developers to insert method 

synchronization aspect into their application, simply by including attributed before each 

method definition. The library helps client code developers remove synchronization 

elements from the client code, and plug it in as an attribute. This reduces complexity of 

the client code, and captures better its purpose. 

 

Method-synchronization, as discussed here, isolates the synchronization aspect into a 

separate module. Method synchronization can be nicely encapsulated as Aspect-Oriented 

code. All that the client code developer needs to do is to employ the Synchronization 

attribute, and turn it on where synchronization is required. Isolation of the 

synchronization aspect results in less-complex, and more cohesive (purpose-specific) 

code. Method synchronization won’t be as widely applied as object synchronization. 

Nevertheless, there are places where the former might prove to be more efficient than the 

latter. 
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4. DEBUGGING 

 

Abstract: 

Gregor Kiczales et al in their seminal paper on “Aspect-Oriented Programming” define 

an aspect as “a property that tends not to be unit of a system’s functional decomposition, 

but rather one that affects the performance or semantics of its components in systemic 

ways.” [1] In this chapter, we propose that debugging is an aspect, and that debugger 

applications can be effectively developed using aspect-oriented programming. For 

illustration, we use a ‘custom debugger’ that we have developed using AOP. 

 

4.1. Introduction: 

There are lots of commercial debuggers available today, each targeted for different 

languages and platforms. In this chapter, we propose a new way to develop such 

applications. Our approach is based on aspect-oriented programming. We propose that 

‘debugging’ is an aspect, and that employing AOP is an effective way to develop 

debugger applications. Developing debugger applications via AOP enables the developer 

to programmatically interact with the debugger. For illustration, we use a ‘custom 

debugger’ that we have developed in .NET using AOP.  

 

A debugger application helps a client-code developer to functionally interact with the 

code under execution. It should have at least some basic features, like capability to 

programmatically set break points, to restart the process being debugged, to print out a 
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stack trace, and to manipulate argument values. The custom debugger application that we 

have developed using AOP has facilities to: 

1. Programmatically set break points 

2. Manipulate input parameter values from sink stack 

3. Print out the stack trace in case of an exception 

4. Manipulate the return value 

5. Ignore a return-exception, and substitute it with a dummy return value 

6. Restart the application, all over again, at any point during execution 

In the following sections, we discuss the theory behind the development of debugger 

applications using AOP. 

 

4.2. Developing debugging applications using AOP: 

The initial step in developing an application using AOP is identifying the aspect in the 

application. Within this paper, we propose that debugging is an aspect, and proceed to 

isolate the ‘debugging’ aspect into a separate module. As we show here, ‘debugging’ can 

nicely be segregated from client-code and developed into a separate module. The 

approach we have employed to isolate the debugging aspect involves run-time 

interception of method calls. In the following section, we discuss how .NET supports 

AOP. 
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4.2.1. Overview of AOP in .NET: 

AOP is a relatively new method of programming, and not many languages support AOP. 

Serious research is being done on AOP with AspectJ and .NET. We intend to use .NET 

for our analysis. In this section, we discuss some .NET features that facilitate debugging 

with AOP. 

1. Facility to develop and register custom metadata using attributes: .NET supports 

metadata. Metadata allows .NET languages to describe themselves automatically in a 

language-neutral manner, unseen by both the developer and the user [2]. Additionally, 

metadata is extensible through the use of attributes. Custom attributes let custom 

information be added to .NET types. 

2. Facility to trace metadata, using reflection: Reflection is a technique provided by 

.NET that lets clients access metadata and type information of .NET types and 

assemblies. In addition, reflection supports mechanisms to dynamically build and 

bind types during run-time. 

3. Facility to intercept method calls using message sinks: The fundamental domain of 

execution in .NET is the Application Domain [25]. Each process consists of at least 

one application domain, the default one. Application domains in turn are composed of 

one or more contexts. Calls across the context boundary involve serialization and 

message passing and are handled with lightweight proxies. The process of 

intercepting these cross-context calls at run-time is known as interception, and 

functions as the fundamental technique in our approach to aspect-oriented 

programming. 
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4. Facilities to manipulate messages in a sink stack using method call wrappers: .NET 

provides the two classes, MethodCallMessageWrapper and 

MethodReturnMessageWrapper, which facilitate manipulating messages in the 

sink stack.  Message wrappers enable us to provide a feature that lets a user 

manipulate method call argument values, or method return value from the sink stack. 

5. Facility to kill and start processes using process handles: .NET declares a Process 

class that enables the user to acquire handles to the applications on the system. In 

addition it helps create processes. This facility is used in our custom function 

debugger to stop the application being debugged, on user demand, and to restart the 

application. 

 

4.2.2. Requirements: 

(1) For a method call to be intercepted, the declaring type: 

1. Must inherit from System.ContextBoundObject. 

2. Must employ the CustomDebuggerAttribute, a custom attribute that we have 

developed to support debugging, and turn it on by passing a true as its constructor 

parameter. 

 

 

Code listing – 4.1: Enabling interception – the client 

class has to inherit from System.ContextBoundObject, and 

employ the debugger attribute 

[DebuggerContext(true)] 
public class Closed : System.ContextBoundObject 
{ 
  // Closed figure class. 
} 
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(2) For setting break points at specific method calls: 

1. The methods that need be intercepted must also employ the 

CustomDebuggerAttribute, and switch it on by passing a true to its 

constructor. To disable the break point, the attribute can be switched off, by 

passing a false to its constructor. 

 

 

 

 

 

 

[DebuggerContext(true)] 
public class Closed : System.ContextBoundObject 
{ 
  [DebuggerContext(true)] 
  public double ClosedCalcArea(double Area) 
  { 
 // Closed figure class 
  } 
} 

Code listing – 4.2: Programmatically setting a break point; 

the method to be debugged has to employ the debugger 

attribute 

 57



 4. Debugging 

4.3. Theory: 

Consider the following steps involved in the operation of the custom-debugger: 

 

(1) Object activation in a new context: 

To illustrate the functioning of the custom-debugger, consider this sample client-code: 

 

 

 

 

 

 

 

 

 

 

[DebuggerContext (true)] 

public class Closed : System.ContextBoundObject 

{ 

  [DebuggerContext (true)] 

  public double ClosedCalcArea(double Area) 

  { 

    Console.WriteLine ("Inside Closed class's ClacArea function."); 

    if (Area < 0) 

      throw new ArgumentOutOfRangeException ("Area", "Area cannot be negative."); 

    Console.WriteLine ("Input parameter is: " + Area + " ;\tMy area is: " + Area); 

    return Area; 

  } 

} 

Code listing – 4.3: A client class enabled for interception 

 

The client-code employs a custom-debugger attribute, and also inherits from 

System.ContextBoundObject, and therefore qualifies for interception. 
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class Executive 

{ 

  // Main. 

  static void Main (string [] args) 

  { 

    Circle C = new Circle (); 

    double CirArea = C.CircleCalcArea (1.0); 

    Console.WriteLine ("\nThe returned value is " + CirArea.ToString ()); 

  } 

} 

Code listing – 4.4: The executive spawning an instance of a 

context-bound object 

 

When an instance of a context-bound object that employs the debugger-attribute is 

created, a new context is spawned for that object. All the methods calls to that object, 

now involve inter-context message passing, and can be intercepted using message sinks.  
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Figure 4.1: Context-bound object activation 
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(2) The interception library: 

Once the object is ready for interception, all the calls to the object pass through the 

custom-sink that we have developed for this application. Shown below is the class layout 

for the interceptor library. 

 

Figure 4.2: Class layout for the interception library 
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(3) Checking for a break point: 

At the interceptor sink, the current method is searched for  “CustomDebuggerAttribute”, 

(not on its declaring type, but on the method itself). If the attribute is not present, or has 

false as its flag, the sink assumes that a break point is not specified, and returns the 

method call without any custom processing (with the default processing alone). If not, 

i.e., if the method carries the attribute with a true flag, the sink assumes the existence of a 

break point, and the method call qualifies for custom processing. 

 

(4) Tracing and displaying metadata information: 

Once the intercepting sink identifies a break point in a method call, it uses reflection to 

trace out its metadata information. 
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Figure 4.3: The custom function debugger displaying the 

metadata information of a method call 
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The intercepting sink makes use of .NET reflection to inquire about the metadata 

information of the method call and its declaring type. . Net objects carry metadata 

information with them; . Net reflection makes it available to any client upon querying. 

The code listing shows the code that employs reflection to trace the method info of a 

method call. 

 

 

 

System.Reflection.MethodInfo MyMethodInfo = 
MyType.GetMethod((string)MsgCall.Properties["__MethodName"], types); 

Code listing – 4.5: Tracing metadata information using 

reflection 

 

(5) Pre-processing: 

Pre-processing is a major feature of interception. Pre-processing is the custom processing 

done on a method call at the intercepting sink, just before the call is invoked on the target 

object.  

 

A lot of useful processing can be done at the pre-processing spot. The custom debugger 

provides the facility ‘to edit the argument values to a method call’, and it employs pre-

processing to implement this feature. 

 

Code employed for pre-processing is shown on the next page: 
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public IMessage SyncProcessMessage(IMessage msg)
{ 
  IMessage TempRetMsg;  // the temporary return message. 
  IMessage TheMsg; // processed message. 
 
  do 
  { 
 // Pre-process the message. 
 TheMsg = DebuggerProcess(msg); 
 
 // Actual processing. 
 TempRetMsg = _nextSink.SyncProcessMessage(TheMsg); 
 
 // Post-process the message. 
 TheMsg = ProcessRetMsg(TempRetMsg, (IMethodCallMessage)TheMsg); 
 
  }while (this.ToContinueOrToGoBack); 
 
  return TheMsg; // return the ReturnMessage.   
} 

 

Code listing – 4.6: Custom processing at the intercepting 

sink 

 

The method DebuggerProcess(msg) does this custom pre-processing. The primary pre-

processing implementation in this custom-debugger is the facility to edit input argument 

values. Manipulation of messages at the sink stack is done by using message-wrapping 

facility provided by .Net, as shown in code-listing 4.7.  
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Editing the 
argument value 

Figure 4.4: Editing the method call’s argument value 

 

. NET provides message-wrappers to manipulate messages from the sink stack. The 

custom-debugger employs method call message wrapper to facilitate pre-process editing. 

The method call then goes into the actual processing sink with the modified argument set. 

 

Code for method call message manipulation at the sink stack is shown on the next page: 
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Code listing – 4.7: Manipulating a method call message at 

the sink stack using message wrappers 

 

(6) Actual-processing: 

After the custom pre-processing is done, the method call message is passed on to the 

default sink chain for actual processing. 

 

 

 

private IMessage MakeMessage(IMethodCallMessage MsgCall, ArrayList L)
{ 
  MethodCallMessageWrapper MyWrapper = new MethodCallMessageWrapper(MsgCall); 
  object[] methodArgs = new object[L.Count]; 
  for(int count = 0; count < L.Count; count++) 
  { 
    methodArgs[count] = L[count]; 
  } 
  MyWrapper.Args = methodArgs; 
  return (IMessage)MyWrapper; 
} 

// Actual processing.
 TempRetMsg = _nextSink.SyncProcessMessage(TheMsg); 

Code listing – 4.8: The actual method call 

 

(7) Post-processing: 

Post-processing is an equally useful feature of interception as pre-processing. Post-

processing is custom processing done on a method-call at the intercepting sink, just after 

the call returns from the target object and before it is returned to the initial invoker. The 

intercepting sink traps the message on its return, and keeps it open for editing.
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// Post-process the message.
 TheMsg = ProcessRetMsg(TempRetMsg, (IMethodCallMessage)TheMsg); 

Code listing – 4.9: Post-processing the message 

 

 

Figure 4.5: User-Interface waiting for user input to 

trigger post-processing 
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Post-processing can be put to use to do some effective manipulations, like exception-

handling: 

(7.1) Exception-handling: 

Let us suppose that the method invocation resulted in an exception. The exception gets 

trapped in the intercepting sink, and is held over there for the user to manipulate. The 

user can choose to let the exception propagate to the upper level back to the invoker, or to 

negate it using a dummy value. 

 

(7.2) Monitoring the stack trace: 

The custom debugger emits the stack trace in case of an exception. 

 

Figure 4.6: Custom debugger printing out the stack trace 
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Code listing – 4.10: Dumping the stack trace 

string Excep;   // Exception, if any
if (msg.Exception != null) 
{ 
  Excep = "Exception Message:\n"; 
  // get 'stack-trace' details. 
  System.Diagnostics.StackTrace ST = new 
System.Diagnostics.StackTrace(msg.Exception, true); 
  for(int count = 0; count < ST.FrameCount; count++) 
  { 
 System.Diagnostics.StackFrame SF = ST.GetFrame(count); 
 Excep += "Frame count =\t" + count.ToString(); 
 Excep += "\nFile name =\t" + SF.GetFileName(); 
 Excep += "\nLine  num =\t" + SF.GetFileLineNumber().ToString(); 
 Excep += "\nIL offset =\t" + SF.GetILOffset().ToString(); 
 Excep += "\nNative offset =\t" + SF.GetNativeOffset().ToString(); 
 Excep += "\n------------------------------\n"; 
  } 
} 

 

(7.3) Negation of a return exception: 

The custom debugger provides a facility for negating a return exception. It uses method 

return message wrappers to nullify the return exception, and to pass a dummy value in its 

place. While, substitution of an exception with a dummy value may not be the most 

desirable way to go, it helps to prevent the propagation of the exception out of the sink 

back to the initial invoker. 
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Code listing - 4.11: Manipulating a return message using 

method return message wrapper 

private IMethodReturnMessage MakeRetMessage(IMethodReturnMessage MsgCall, 
IMethodCallMessage RequestMsg, Object newVal) 
{ 
  if (MsgCall.Exception == null) 
  { 
 MethodReturnMessageWrapper MyWrapper = new MethodReturnMessageWrapper(MsgCall); 
 MyWrapper.ReturnValue = newVal; 
 return (IMethodReturnMessage)MyWrapper; 
  } 
  else 
  { 
 return new ReturnMessage(newVal, null, 0, null, RequestMsg); 
  } 
} 

 71



 4. Debugging 

 

Figure 4.7: Top level Activity diagram for the custom 

debugger 
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(8) Restarting the application: 

The custom function debugger provides a facility to programmatically restart the 

application, at any point of time during debugging. 

 

 

 

 

 

 

 

try 
{ 
  System.Diagnostics.Process P = Process.GetCurrentProcess(); 
  ProcessStartInfo PSI = new ProcessStartInfo(P.ProcessName + ".exe"); 
  Process NewP = Process.Start(PSI); 
  P.Kill(); 
} 
catch(System.Exception excep) 
{ 
  // Could not restart process. 
} 

Code listing – 4.12: Restarting the application 
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4.4. Conclusion: 

Debugging proves to be a viable aspect. The custom function debugger discussed in this 

chapter is a debugging application that has been developed using the Aspect-oriented 

approach and provides a reasonably rich set of debugging facilities. 

 

Our contribution has been in identifying that debugging is an aspect. We have also 

developed a custom interception library which performs debugging services by 

intercepting method calls. The debugger library is a really useful tool for the client code 

developer. Break points can be turned on or switched off programmatically, by simply 

enabling or disabling the debugger-attribute. The AOP debugger provides facilities  

a. To programmatically set break points,  

b. To trace the metadata information of a method call and of its declaring type, 

c. To manipulate messages from the sink stack, to modify method arguments. 

d. To print out the stack trace of a method call,  

e. To negate a return exception,  

f. To restart the application.  
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5. CODE PROFILING 

 

5.1. Introduction: 

In a broad sense, Aspect-Oriented Programming is a way of programming that intends to 

assist a client code developer by isolating aspects into separate modules, which can then 

be plugged into the main application code to attain a code that is more purpose-specific, 

and one that is more reusable. In the previous chapter, we discussed the development of 

debugger applications using AOP.  In this chapter, we propose that code-profiling and 

optimizing applications can be developed effectly using AOP. We discuss an Aspect-

Oriented approach to develop code coverage applications. We also illustrate a execution-

time profiler application developed using AOP.  

 

5.2. Code Coverage: 

In this chapter, we define code coverage analysis as the process of discovering methods 

in a program that are not examined using a set of test cases. Code coverage analysis 

provides a quantitative measure of code coverage, which is an indirect measure of the 

quality of the tests.   

 

Test drivers are test executive codes that test functioning of a program. As far as OOP is 

considered, good test drivers test the methods in a class thoroughly. The two primary 

goals of a test driver are to test all the methods in a program, and to test if they handle 

probing test cases supplying both good and bad inputs gracefully and as desired. Code 
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coverage analysis is a means to help the test driver designer achieve the first purpose, 

namely finding out if all the methods in the program have been tested. In the following 

section, we discuss how code coverage can be achieved by AOP. We use the code 

coverage analyzer that we have built for the purpose of illustration. 

 

5.2.1. Theory: 

Our code coverage analyzer uses run-time interception of method calls to perform code 

coverage analysis. In addition, the analyzer uses .NET reflection to trace out custom 

attributes on a method to see if it should be included or exempted from coverage analysis. 

 

5.2.1.1. .NET features that support code profiling: 

The .NET features that aid code coverage are facilities to: 

• Develop and register custom metadata using attributes. 

• Trace metadata using reflection. 

• Intercept method calls using message sinks. 

 

5.2.1.2. Prerequisite: 

For executing code-coverage analysis on program to be tested, classes should employ the 

Profile attribute, a custom attribute developed for this application. In addition, they have 

to be context-bound to enable context-interception, and hence must derive from 

System.ContextboundObject class. The methods that require to be profiled should employ 

the Profile attribute as well. 
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In order to employ the services of the AOP profiling library, the client code developer 

needs to do the following: 

• Any method that requires profiling should employ the Profile attribute, with 

the Boolean value true passed as its constructor parameter. 

• The declaring types of the methods must inherit from the type 

System.ContextBoundObject. 

• The declaring types of the methods must also employ the profile attribute, 

with the Boolean value true passed as its constructor parameter. 

 

5.2.1.3. Functioning: 

Let us see how the aspect-oriented interception library achieves code coverage. When an 

instance of a client class, inheriting from ContextBoundObject, and employing the Profile 

attribute is created, the object becomes context-bound and is ready for interception by the 

custom interceptor sink. 

 

Once the interceptor sink traps a method call, it traces out all the member methods of its 

declaring type. The interceptor sink maintains a list of the parent type, and its member 

methods. The sink then tracks if all methods of the class were invoked at least once. 
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///////////////////////////////////////////////////////// 
// Processes Synchronous method calls. 
public IMessage SyncProcessMessage(IMessage msg) 
{ 
 this.Analyze(msg); 
 return _nextSink.SyncProcessMessage(msg); 
} 
 
///////////////////////////////////////////////////////// 
// Processes Asynchronous method calls. Returns the processed message crtl. 
public IMessageCtrl AsyncProcessMessage(IMessage msg, IMessageSink 
replySink) 
{ 
 this.Analyze(msg); 
 return _nextSink.AsyncProcessMessage(msg, replySink); 
} 

Code listing 5.1: Processing functions at the interceptor 

sinks 
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////////////////////////////////////////////////////////// 
// Analyze the method call message. 
private void Analyze(IMessage msg) 
{ 
IMethodCallMessage M = msg as IMethodCallMessage; 
if (msg == null) 
 return; 
 
// Get the type that declares this method. 
System.Type T = M.MethodBase.DeclaringType; 
if( ! (Depot.MainStore.ContainsKey(T.ToString()))) 
{ 
 System.Reflection.MethodInfo[] MIarray = T.GetMethods(); 
 Hashtable temp = new Hashtable(); 
 foreach(MethodInfo MI in MIarray) 
 { 
  object[] attrs = MI.GetCustomAttributes(false); 
  foreach(object a in attrs) 
  { 
   ProfileAttribute PA =  a as ProfileAttribute; 
   if ( ! (PA == null)) 
   { 
    if (PA.Apply) 
    { 
     if (MI.ToString() == M.MethodBase.ToString()) 
      temp.Add(MI.ToString(), "1"); 
     else 
      temp.Add(MI.ToString(), "0"); 
    } 
   } 
  } 
  //Console.WriteLine(MI.ToString()); 
 } 
 Depot.MainStore.Add(T.ToString(), temp); 
} 
else 
{ 
 Hashtable temp = Depot.MainStore[T.ToString()] as Hashtable; 
 if (temp.ContainsKey(M.MethodBase.ToString())) 
 { 
  temp[M.MethodBase.ToString()] = "1"; 
 } 
 Depot.MainStore[T.ToString()] = temp; 
} 

Code listing 5.2: Code-coverage method called at the 

interceptor sink. Note: The code listing for the data 

structure class Depot is not shown here. 
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5.3. Time profiling: 

In this chapter, we define time profiling as the process of finding out the time of execution 

of a method call with a specified set of parameters. The time profiler collects data about 

how much time is consumed by the different methods in the program, with any specified 

argument list. This information enables the programmer to find out if the execution times 

of the various functions are acceptable. The approach used here is run-time time 

profiling, and may help the programmer to develop code meeting its performance 

specifications. 

 

5.3.1. Theory: 

The time profiling interception library also uses run-time interception of method calls to 

perform timing analysis.  

 

5.3.1.1. .NET features that support code profiling: 

We have employed interception of method-calls at run-time to achieve time profiling. 

The .NET features that facilitate this purpose are facilites to: 

• Develop and register custom metadata using attributes. 

• Trace metadata using reflection. 

• Intercept method calls using message sinks. 
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5.3.1.2. Prerequisite: 

For executing time-profiling analysis on code, the code’s classes should employ the 

Profile attribute, a custom attribute developed for this application. In addition, they have 

to be context-bound objects to enable context-interception, and hence must derive from 

System.ContextboundObject class. The methods that require to be profiled should employ 

the profile attribute as well. 

 

In order to employ the services of the AOP profiling library, the client code developer 

needs to ensure the following conditions: 

• Any method that requires profiling should employ the Profile attribute, with 

the Boolean value true passed as its constructor parameter. 

• The declaring types of the methods must inherit from the type 

System.ContextBoundObject. 

• The declaring types of the methods must also employ the profile attribute, 

with the Boolean value true passed as its constructor parameter. 

 

 

5.3.1.3. Functioning: 

As discussed above the time profiling library uses run-time interception of method calls. 

This is very similar to the code coverage application. There are quite a few differences in 

the functioning of the custom sink though. We have detected some critical issues in time 

profiling, and have proposed the solutions as well: 
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1. Issue: Accuracy of time measurement: 

Solution - The interceptor sink uses a high-resolution timer (least count = 1 micro 

second) to determine the time of execution of any intercepted method call. 

 

2. Issue: Inter-context message passing: 

For the sake of execution-time measurement of the method calls, we make the declaring 

objects context-bound. Now the method calls involve inter-context message passing. At 

the time of actual execution, we disable the context-boundedness of the object, and let it 

be context-agile. This would mean that while taking the measurements the method calls 

involve inter-context message passing, while at time of actual execution there is no 

message- passing as the objects are context-agile. 

Solution – To reduce the inaccuracy associated with the difference between the two 

scenarios, we make dummy inter-context method calls which involve no actual 

processing – just the making of the method call and the return; we call this time 

period, the null interval. Then for each inter-context method call made, we subtract 

the null interval from the measured value. This provides an accurate result. [Please 

see appendix 3.] 
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5.4. Conclusion: 

Our contribution has been to identify that AOP supports code-coverage applications very 

well. All that the client-code developer needs to enable profiling is to decorate the class / 

methods with custom attributes. Code-coverage is hidden very well by the aspect-

oriented interception library. A time-profiling application illustrated in the chapter goes 

well with the aspect-oriented approach as well. There are a couple of issues related to the 

accuracy of the timing measurement though. The issues have been discussed, and the 

solutions proposed. The solutions are satisfactory, and answers the questions associated 

with any inaccuracy in time-measurement.  
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6. PRIORITIZATION 

 

6.1. Introduction: 

Distributed computing, usually, involves message passing through channels. Sockets and 

.Net remoting are built on these byte-oriented channels to simplify the communication 

interface. Though these techniques have managed to achieve their purpose, there is a 

possibility that some elements, though less important, get hidden during the 

simplification process. We have explored .NET remoting to investigate some of the 

aspects involved in distributed computing, to isolate them, and to provide the client code 

developer with an interface that captures these elements.  

 

This chapter discusses one of the services that can be potentially implemented effectively 

using Aspect Oriented Programming, namely Prioritization, or Priority Assignment. 

Two specific cases of Prioritization that are considered here are Client prioritization and 

Message Prioritization. 

 

6.2. Background: 

Consider a typical remoting system, where many clients talk to one server. Due to its 

limited processing potential, a single-server environment requires effective and well-

defined priority criteria – for its clients, and for the messages it needs to process. 

Prioritization, hence, may be a crucial issue in a single-server environment, or generally 

under any system where the server’s workload is quite heavy compared to its processing 

power. 
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On the other hand, Priority assignment of its messages is not the actual business of the 

clients. The client machine’s primary functionality is to send request messages across to 

the server for processing, and to receive the processed message. Similarly, prioritizing its 

clients is not the actual business of the server, though the ideal situation would be that the 

server has a provision for processing the high priority clients first. Further, it would be 

usefult if all remoting systems had a provision for prioritizing messages and clients, 

though each new developer would prefer not to have to produce code developed solely 

for this purpose. 

 

These considerations lead us to believe that prioritization is indeed an aspect of a 

remoting system – “a property of the system that tends not to be a unit of the system’s 

functional decomposition, but rather one that affects the performance or semantics of the 

components in systemic ways” [1].  In the following section, we discuss how client 

prioritization can be achieved through aspect-oriented programming. 

 

6.3. Client Prioritization: 

A server might need to handle requests from various clients; of these some clients might 

require higher priority than the others. Client prioritization is the feature that enables the 

server to process messages from different clients based on the priority levels of those 

clients. For instance, in the case of a simple company LAN, client prioritization may 

mean that the requests from an administrator be given higher priority than requests from 

staff personnel. 
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In the following sections, we discuss how prioritization can be achieved in a .NET 

Remoting system. 

 

6.3.1. Client Prioritization architectural overview: 

The goal of our client prioritization library is to let the server process clients based on 

their priorities; a server interceptor makes sure that messages from high priority clients 

are sent to a high priority queue, and those from low priority clients go to a low priority 

queue.  

 

The client prioritizer, server, client, and remotable object library, also contain a 

client interceptor, a server interceptor and a custom formatter library. The 

priorities of the clients are set in an XML file residing at the server. 
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 Figure 6.1: Module layout for the client prioritizer 

 

6.3.2. Theory: 

As shown in the module layout, the communication library employs custom formatters 

and interceptors in addition to a remotable object library. Next, we show how interceptors 

capture the client prioritization aspect. 
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(1) Custom formatter: 

The custom formatter9 defines custom serialization and deserialization methods, which 

let us transfer custom information along with the actual message. The custom formatter 

lets us wrap custom data in special headers, which can be unwrapped at the receiver end.  

Code for the custom serialization and deserialization functions is shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

public override void Serialize(Stream serializationStream, 
 object graph) 
{ 
 _writer = new StreamWriter(serializationStream); 
 
 // first, schedule the graph object for serialization 
 // Schedule just registers the object with the object id 
 // generator if it has not already seen the object and places 
 // it in a queue of objects for later serialization. 
 //.we'll retrieve the objects in the queue via GetNext() 
 Schedule(graph); 
 
 // get the next object to be serialized and serialize it 
 object oTop; 
 long topId; 
 while( (oTop = GetNext(out topId)) != null) 
 { 
  // execution of the WriteObject method will likely result 
  // in the sceduling of more objects for serialization 
  WriteObject(oTop, topId); 
 } 
 
 _writer.Flush(); 
} 

Code listing 6.1: Serialization method of the custom 

formatter class 

                                                 
9 The custom formatter that we use in this application was developed by Scott McLean, James Naftel, and 

Kim Williams, and is listed in the book Microsoft .NET Remoting (Microsoft Press) [29]. 

 88



 6. Prioritization 

 

 

 

 

 

 

 

 

 

 

Code listing 6.2: Deserialization method of the custom 

formatter class 

public override object Deserialize(System.IO.Stream serializationStream) 
{ 
 // 
 // create an object manager to help with deserialization 
 _om = new ObjectManager( _surrogateselector, _streamingcontext ); 
 
 _reader = new StreamReader(serializationStream); 
 
 // read objects until end of stream 
 while( _reader.Peek() != -1 ) 
 { 
  ReadObject(); 
 } 
         
 // 
 // now we can do fixups and get the top object 
 _om.DoFixups(); 
 
 // return top most object 
 return _om.GetObject(1); 
}

 89



 6. Prioritization 

(2) Client interceptor: 

Client prioritization is primarily a server-oriented aspect. Therefore, the client interceptor 

does not play a major role, but is involved in formatting messages to support decoding at 

the server end. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

public IMessage SyncProcessMessage ( IMessage msg ) 
{ 
 // 
 // serialize message to a stream using the custom formatter, MyFormatter. 
 TransportHeaders    requestHeaders = new TransportHeaders(); 
 
 Stream requestStream = _NextChannelSink.GetRequestStream(msg, 
  requestHeaders); 
 if ( requestStream == null ) 
 { 
  requestStream = new System.IO.MemoryStream(); 
 } 
 
 RemotingSurrogateSelector rem_ss = new RemotingSurrogateSelector(); 
 MyFormatter fm = new MyFormatter(); 
 fm.SurrogateSelector = rem_ss; 
 fm.Context = new StreamingContext( StreamingContextStates.Other ); 
 
 // serialize a MethodCall message to the stream 
 MethodCall mc = new MethodCall(msg); 
 fm.Serialize(requestStream, mc); 
 
 // let sink chain process the message 
 ITransportHeaders   responseHeaders = null; 
 System.IO.Stream    responseStream = new System.IO.MemoryStream(); 
 
 this._NextChannelSink.ProcessMessage(   mc, 
  requestHeaders, requestStream, out responseHeaders, out responseStream); 
 
 // use our version of IMessage to deserialize 
 fm.SurrogateSelector = null; 
 
 // the formatter special cases IMessage types and  
 // deserializes them as MyMessage types. 
 MyMessage mr = (MyMessage)fm.Deserialize(responseStream); 
 return mr.ConvertMyMessagePropertiesToMethodResponse(mc); 
} 

 
Code listing 6.3: Custom serialization of messages at the 

client interceptor 
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(3) Server interceptor: 

The server interceptor is the most important library in the client prioritizer. First of all, 

when a message comes in, the server interceptor extracts the IP address of the client. 

 

 
string uri = (string)mymsg.Properties["__Uri"];

          Code listing 6.4: Tracing the client’s Uri 

 

The interceptor then employs context interception to validate the IP. Validating the IP  

means discovering the priority of the IP by checking an xml file residing at the server 

end. Context interception code for IP validation is shown below. 

 

 

 

 

 

 

 

// Priority validation service. 
public bool GetPriority(string ClientIP) 
{ 
 Context ctx = Thread.CurrentContext; 
 ContextLogAndValidateProperty Validate = 
(ContextLogAndValidateProperty)ctx.GetProperty("ContextLogAndValidateProperty"); 
  

string RetVal = Validate.getValue(ClientIP); 
  
 if (RetVal == "1") 
  return true; 
 else 
  return false; 
} 

Code listing 6.5: Context interception code for IP 

validation 

 

The interceptor employs a context attribute to create a new context. The context attribute 

in turn aggregates a context property, which does the IP validation. 
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// logging and validation class 
[AttributeUsage(AttributeTargets.Class)] 
class ContextLogAndValidateProperty : Attribute, IContextProperty 
{ 
 bool FileOK; // If the validation file could be opened and read from. 
 ArrayList Clients; // the clients. 
 ArrayList Priority; // their priority. 
 
 public ContextLogAndValidateProperty() 
 { 
  Clients = new ArrayList(); 
  Priority = new ArrayList(); 
  try 
  { 
   // load the file into DOM. 
   XmlDocument doc; 
   doc = new XmlDocument(); 
   doc.Load("Validate.xml"); 
   XmlNodeList RootList = doc.GetElementsByTagName("Client"); 
   foreach (XmlNode Root in RootList) 
   { 
    string val = Root.InnerText; 
    char[] sep = {':'}; 
    string[] AfterSplit = val.Split(sep, 2); 
    Clients.Add(AfterSplit[0]); // add the cleints. 
    Priority.Add(AfterSplit[1]); // add their priority. 
   } 
   FileOK = true; 
  } 
  catch 
  { 
   FileOK = false; 
  } 
 } 
 // other functions 
 //----- 
} 

Code listing 6.6: Context property class doing IP 

validation 

 

Once the server interceptor extracts the IP’s priority, it directs the message to the high 

priority queue or low priority queue based on client’s priority. 
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// check if the call is the dummy function. 
if ((string)mymsg.Properties["__MethodName"] == "enQRecvQ") 
{ 
 if (ClientPriority) // check if high priority client 
 { 
  // enqueue in the high priority queue. 
  mymsg.Properties["__MethodName"] = "enQHighPQ"; 
 
  // using the logging service. 
  this.Logger("Client IP = " + ClientIP + " ; Client Priority = High."); 
 } 
 else // low priority client 
 { 
  // enqueue in the low priority queue. 
  mymsg.Properties["__MethodName"] = "enQLowPQ"; 
 
  // using the logging service. 
  this.Logger("Client IP = " + ClientIP + " ; Client Priority = Low."); 
 } 
} 

          Code listing 6.7: Priority assignment for clients 

 

The server interceptor thus involves “Inter- Application Domain” interception to trace the 

client IP, and also “Inter-Context” interception to check client priority. 
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                Figure 6.2: Class diagram for the Client prioritizer 
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6.3.2.1. Inserting the sink into the remoting chain: 

Inserting the custom interceptor sinks into the sink chain is done by making some simple 

changes to the configuration file as shown below: 

 

 

 

 

 

 
 
 
Code listing 6.8: Configuration file for client NOT 

employing interceptors 

<configuration> 
 <system.runtime.remoting> 
  <application> 
   <channels> 
    <channel ref = "http" >      
    </channel> 
   </channels> 
  </application> 
 </system.runtime.remoting> 
</configuration> 

 

 

 

 
 
 
 
 
 
 
 
 
 

<configuration> 
 <system.runtime.remoting> 
  <application> 
   <channels> 
    <channel ref = "http" > 
     <clientProviders> 
<formatter type="ClientInterceptor.MyFormatterClientSinkProvider, ClientInterceptor"/> 
     </clientProviders> 
    </channel> 
   </channels> 
  </application> 
 </system.runtime.remoting> 
</configuration> 

Name of the client 
interceptor library 

The client sink 
provider’s class name 

Namespace of the 
client sink provider 

Code listing 6.9: Configuration file for client employing 

interceptors 
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6.4. Message Prioritization: 

In a distributed computing system, clients send different types of messages to the server. 

Of these, some require higher priority than the others. Message prioritization is the 

feature that enables a client to set a priority level to the messages being sent to the 

server. For instance, a ‘file transfer’ message might be of lower priority an error message. 

 

6.4.1. Architectural overview: 

The modular structure for the message prioritizer is essentially the same as that for the 

client prioritizer. In message prioritization, the client interceptor ensures the messages 

leaving a client are assigned definite priorities. In that sense, message prioritization is a 

client-oriented aspect. The client interceptor is the primary library that captures the 

message prioritization aspect. 
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Figure 6.3: Module layout for the message prioritizer 

  

6.4.2. Theory: 

As shown in the module layout, the communication library employs custom formatters 

and interceptors besides the remotable object library. The custom formatter, as discussed 

above, provides methods for custom serialization and deserialization. Let us see how the 

client prioritizer captures the message-prioritization aspect. 
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The client interceptor maintains a ‘validation file’ containing the priorities associated 

with different methods. When an outgoing call is intercepted, the client sink reads the 

designated priority for the particular message, from the validation file, and appends the 

priority tag. Each message at the client egress thus has its priority assigned. The server 

interceptor doesn’t have a significant role over here; it just needs to decode the message, 

using the custom formatter instead of the default way. 

 

Message prioritization as implemented here is less aspect-oriented in that, the 

interception library has to be aware of all the messages types, (or the client code 

developer might need to have the priorities entered in a file). That, aspect-oriented code 

needing to know client code particulars, makes message prioritization less aspect-

oriented than client prioritization. 

 

There is a proposed enhancement for the client prioritizer. Instead of analyzing message 

specifics, the interception library can use the priority level of the thread that generated the 

outgoing call, and accordingly make the priority assignment. There is a certain level of 

inexactitude associated with this technique as well because, the priority level of the 

parent thread might not always be the same as the desired priority level of the message. 

 98



 6. Prioritization 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

public IMessage SyncProcessMessage ( IMessage msg ) 
{ 
 // serialize message to a stream using the custom formatter, MyFormatter. 
 // --- Code for that, omitted from this listing... --- 
  

/*****************************************/ 
 // Implementing Message prioritization... 
 MyMessage TempMsg = new MyMessage(msg); 
 MethodCall mCall = new MethodCall((IMessage)TempMsg); 
 
 // get the Xml message sent by the worker function of the client 
 string xmlMessage = (string)mCall.Args[0]; 
 
 // get the priority. 
 if (this.GetPriority(xmlMessage)) 
 { 
  TempMsg.Properties["__MethodName"] = "enQHighPQ"; 
 } 
 else 
 { 
  TempMsg.Properties["__MethodName"] = "enQLowPQ"; 
 } 
 
 // since the MyMessage object, TempMsg, was changed  
 //  make the new method call message again. 
 MethodCall mc = new MethodCall((IMessage)TempMsg); 
 
 /****************************************/ 
 // Serialize the message. 
 fm.Serialize(requestStream, mc); 
 
 /*******************************************/ 
 // adding run time information... 
 // Encoding the Thread priority by creating our own header tag... 

requestHeaders["Thread_Priority"] =  
Thread.CurrentThread.Priority.ToString(); 

 
 // 
 // let sink chain process the message 
 // --- Code for that, omitted from this listing... --- 
 
 // use our version of IMessage to deserialize 
 // the formatter special cases IMessage types and  
 // deserializes them as MyMessage types. 
 // --- Code for that, omitted from this listing... --- 
} 

Code listing 6.10: Priority assignment for messages 
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6.5. Conclusion: 

This chapter discusses ‘prioritization’ service implemented effectively using Aspect 

Oriented Programming. Our primary contribution in this chapter has been in identifying 

that prioritization can be classified as an aspect of a distributed computing system, and 

can be successfully isolated into a separate module using AOP. We have explored AOP-

based client prioritization and message prioritization as two specialized cases of priority 

assignment.  

 

In this chapter, the architectural and design details of the interception implementation 

have been discussed - Client prioritization using AOP involves server-side inter-

Application Domain interception, and inter-context interception; Message prioritization 

using AOP involves client-side inter-Application Domain interception. The isolation of 

the prioritization aspect into the interceptor code is also explained. The client-priority 

settings reside in a database file at the server, and can be conveniently modified when 

necessary. 
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   7. QUANTITATIVE ANALYSIS 

 

7.1. Introduction: 

In the previous chapters, we identified different aspects, isolated them into separate 

modules, and came up with various AOP-based code examples.  In the current chapter, 

we make a quantitative analysis of several AOP examples based on code complexity and 

cohesion.  

 

Let us quickly review the aspects that were dealt with in the previous chapters: In the first 

chapter, we explained a Range-Checker application, involving the “Range-Checking 

(validation)” aspect. The second chapter discusses technical support for AOP in .NET, 

and does not talk about any aspect in particular. The third chapter explores the “Method 

Synchronization” aspect. Chapter four explores “Debugging” as an aspect, and explains a 

Debugger application developed using AOP. In the fifth chapter, we talk about AOP-

based “Code-Profiling” applications. The sixth chapter explores “Prioritization” and 

“Validation” as aspects of a remoting system.  

 

In the following sections we perform quantitative analysis on three different sets of 

applications - a Range-Checker application, (based on “Range-Checking” aspect 

described in the first chapter), a Queue-Synchronization application (based on the 

“Method Synchronization” aspect explained in the third chapter), and a File-Center 

application (based on “Prioritization/Validation” aspect described in the Sixth chapter). 
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We have developed, for each of the three applications described above, an AOP version 

and a corresponding non-AOP version for analysis of code-complexity and cohesion. 

 

An interesting outcome of our exploration of the Debugging and Code-Profiling aspects 

was the difficulty that we faced in developing non-AOP codes for these applications; we 

have not performed quantitative analysis on these two aspects – we explain why toward 

the end of this chapter.  

 

The different aspects that were dealt with in the previous chapters and whether or not 

quantitative analysis was performed on a set of applications based on those aspects are 

listed in the following table: 

 102



 7. Quantitative analysis 

 

Chapter  Aspect dealt with in chapter Whether or not quantitatively analyzed 

1 Range-Checking (Validation) Performed 

2 -  - 

3 Method Synchronization Performed 

4 Debugging Not performed 

Reason:  Difficult to develop non-AOP code 

5 Code Profiling Not performed 

Reason: Difficult to develop non-AOP code 

6 Prioritization Performed 

Table 7.1: Lists the aspects that were dealt with in this 

thesis work, and whether or not quantitative analysis was 

performed on a set of applications based on the aspect.
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7.2. Analysis: 

(a) Range-Checker application: In chapter 1, for the purpose of illustration, we 

discussed a range-checker application using AOP. We have developed a corresponding 

Non-AOP application, and have conducted analysis on the two sets of code. A short 

description of the application design is given below: 

 

We developed a sample class that contains three methods. 

• Geometry_FindSectorArea - finds the area of a sector of a circle, given the radius 

and the angle of the sector. 

• Banking_FindSimpleInterest - finds the simple interest given the principal, the 

number of years, and the rate of interest. 

• Trignometry_FindCosine - finds cosine of an angle in a triangle, given the 

adjacent side and the hypotenuse. 

 

Let us quickly review how these AOP and non-AOP codes implement the methods, 

revisiting the description provided in chapter 1 – (The description is repeated here for 

clarity):  

 

Consider a method in a type called Geometry that finds the area of a sector of a circle. 

We pass the radius and the angle of the sector as parameters; the returned value of area 

should be half of the square of radius times angle. Again, the method has to make sure 

that the radius and angle passed as parameters are non-negative; here, we make an 
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assumption that the angle is between 0 and 2 PI. Otherwise, the method has to throw an 

exception. Let us see how we implement the method in the conventional way: 

 

 

 

 

 

public double Geometry_FindSectorArea(double radius, double angle) 
{ 
  if (radius < 0.0) 
 throw new ArgumentOutOfRangeException("radius", "The radius is out of range."); 
  if ( (angle < 0.0) || (angle > 6.28) ) 
 throw new ArgumentOutOfRangeException("angle", "The angle is out of range"); 
  return (radius * radius * angle / 2); 
} 

Code Listing 7.1: Non-AOP implementation of the 

Geometry_FindSectorArea method 

 

Here, the actual function of the method is just: 

return (radius * radius * angle / 2); 

The remaining piece of code is orthogonal to the primary purpose of the method. 

Isolating the range-checking aspect from the code would, clearly, make the code more 

readable, more purpose-specific, and less complex. 

 

This is nicely achieved by the AOP code, which is shown below: 

 

 

 

 

[method: Range(true, Lower = 0.0)] 
public double Geometry_FindSectorArea([Range(true, Lower = 0.0)] double radius,  
    [Range(true, Lower = 0.0, Upper = 6.28)] double angle) 
{ 
  return (radius * radius * angle / 2); 
} 

Code Listing 7.2: AOP implementation of the 

Geometry_FindSectorArea method 
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The code clearly describes its function. The parameter radius has a range-checker 

attribute, named Range, which specifies its lower bound as 0. The angle parameter has a 

range that lies between 0 and 2 PI. Again the method attribute to the method restricts the 

lower bound of the return value to 0. 

 

The AOP-based method is more readable, and clearly captures the purpose of the 

code. The AOP-based implementation of the method provides better cohesion – 

All that the method body does is to find the area of the sector as described by its 

method name, Geometry_FindSectorArea. On the contrary, the non-AOP 

based implementation of the method has poorer cohesion in that in addition to 

serving its primary function, which is finding the area of the sector, the method 

does range-checking on its input parameters.  

 

Code complexity and cohesion analysis were done on the other methods described 

above as well. The analysis results are listed below: 
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   The Non-AOP code: 
 
Lines of function code = 20 
Cyclomatic complexity = 11 
Cohesion = 6 tasks 

The AOP client-code: 
 

Lines of function code = 3 
Cyclomatic complexity = 3 
Cohesion = 3 tasks 

 
The AOP server-code (interception library code): 

 
Lines of function code = 204 
Cyclomatic complexity = 33 
 
Lines of common AOP function code = 67 
Cyclomatic complexity of common AOP code = 7 
 
Lines of application specific AOP function code = 137 
Cyclomatic complexity of application specific AOP code = 26 

 

 

 

 

 

 

Range-Checker  
Interception library code 

 

 

AOP code applicable to any 
context-interception library

 

    
AOP code specific to the 
Range-Checker application  

 

Table 7.2: Analysis results for the range-checker 

application 

 

In the table above, the non-AOP code used three functions that had two tasks each for a 

total of 6 tasks. The AOP code used three functions that had one task each for a total of 3 

tasks. 
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(b) Queue-Synchronization application: In chapter 3, we explored Method-

Synchronization using AOP. For quantitative analysis, we developed two versions of a 

synchronization application involving a queue-handler class – one without using AOP, 

and the other employing AOP. 

 

Chapter 3 describes two types NonAOP_Q, and AOP_Q each of which contain two 

methods, one for enqueuing a string into the member queue, and the other to dequeue a 

string from the member queue; the types also support a property for getting the count of 

the member queue. Queuing and dequeuing operations generally require synchronization 

– the methods and the property are synchronized, with the type NonAOP_Q using 

conventional non-AOP methods for synchronization, and the type AOP_Q employing the 

services of an interception library that takes care of synchronization. 

 

The technique to achieve AOP-based method synchronization and the theory behind it 

has been explained in chapter 3. In the following section, the program codes for the two 

types are listed followed by the analysis results (The program code listing and description 

are repeated here for clarity): 
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public class NonAOP_Q 
{ 
 private Queue Q = new Queue(); // queue 
 
 public int CountOfQ   // Count of the queue 
 { 
  get 
  { 
   int count = 0; 
   Monitor.Enter(this.Q); 
   try   
   { 
    count = this.Q.Count; 
   } 
   finally  
   { 
    Monitor.Exit(this.Q); 
   } 
   return count; 
  } 
 } 
 
 public void EnQ(string msg) // Enqueue a string to the queue 
 { 
  Monitor.Enter(this.Q); 
  try   
  { 
   this.Q.Enqueue(msg); 
  } 
  finally  
  { 
   Monitor.Exit(this.Q); 
  } 
 } 
 
 public string DeQ()   // Dequeue a string from the queue 
 { 
  string RetVal = null; 
  Monitor.Enter(this.Q); 
  try 
  { 
   if (this.Q.Count == 0) 
    throw new Exception();    

else 
    RetVal = (string)this.Q.Dequeue(); 
  } 
  finally  
  { 
   Monitor.Exit(this.Q); 
  } 
  return RetVal; 
 } 
} 
 

Code Listing 7.3: A queue-handler class that does not employ AOP 
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The class NonAOP_Q supports two public functions, EnQ and DeQ that provide public 

interfaces for safe queuing and dequeuing to the private member queue. The class also 

supports a property, CountOfQ, which returns the size of the queue. The methods and 

properties ensure synchronization by locking the queue before their desired functionality 

is executed. 

 

Extracting the synchronization element from the body of the functions would, clearly, 

help in generating a less-complex code, and one that would capture the purpose of the 

code better. Shown below is the AOP-code that we have developed for this purpose: 

 

  
[EnableInterception(true)] 
public class AOP_Q : System.ContextBoundObject 
{ 
 private Queue Q = new Queue(); // queue 
 
 [Sync("Q")] 
 public int CountOfQ   // Count of the queue 
 { 
  get  
  { 
   return this.Q.Count; 
  } 
 } 
  
 [Sync("Q")] 
 public void EnQ(string msg)  // Enqueue a string to the queue 
 { 
  this.Q.Enqueue(msg); 
 } 
 
 [Sync("Q")] 
 public string DeQ()   // Dequeue a string from the queue 
 { 
  if(this.Q.Count == 0) 
   throw new Exception(); 
  else 
   return (string)this.Q.Dequeue(); 
 } 
} 
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Let us specifically consider the “DeQ” method – In the non-AOP application, the method 

“DeQ” suffers from poor cohesion; the method has to take care of three tasks –  

1. Lock the queue – secondary task 

2. Check if the number of elements in the queue is zero; if so, raise an exception – 

secondary task 

3. Perform the dequeue operation, and return the dequeued string – primary task 

 

In the AOP implementation of the method, cohesion is improved – the method 

synchronization aspect is isolated and delegated to the interception library. The method 

now has to perform only two tasks –  

1. Check if the count of the queue is non-zero; if not, raise an exception – secondary 

task 

2. Perform the dequeue operation, and return the dequeued string – primary task 

 

The AOP-based code has managed to remove monitor-based locking from the function 

bodies. Again, AOP-based code captures the purpose of the code better: the methods do 

just their functions, enqueuing / dequeuing, without worrying about the synchronization 

factor, which as discussed, is an aspect, and has been successfully extracted into a 

separate module by the AOP-based code.  

 

The following table lists the analysis results based on the two versions of the 

synchronization application.  
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The Non-AOP code: 
 
Lines of function code = 37 

 

Cyclomatic complexity = 12 
Cohesion = 7 tasks 

 

The AOP client-code: 
 

Lines of function code = 9 
Cyclomatic complexity = 6 
Cohesion = 4 tasks 

 
The AOP server-code: 

 
Lines of function code = 120 
Cyclomatic complexity = 26 
 

 

    

 

 

Lines of common AOP function code = 67 
Cyclomatic complexity of common AOP code = 7 
 
Lines of application specific AOP function code = 53 
Cyclomatic complexity of application specific AOP code = 19 

Queue-Synchronization 
Interception library code 

AOP code applicable to any 
context-interception library

AOP code specific to the 
Queue-Synchronization 
application 

 

 

  

 

  

 

Table 7.3: Analysis results for the Queue-Synchronization 

application 
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(c) File Center application: In chapter 6, we explored “Prioritization”, and “Validation” 

aspects. We have developed a “File-Center” application based on prioritization, and 

validation aspects. The “File Center” application is a simple distributed file management 

system where users with different privilege levels can access files residing at a 

centralized server.  

 

The different operations that can be done to the files at the server are  

• GetFile – check out a file from the server 

• PutFile – check in a file to the server 

• DeleteFile – delete a file residing at the server 

 

Users fall into three categories: 

• Administrator – has the privilege to carry out any of the above three operations 

• Manager – has the privilege to check in or check out a file; does not have the 

privilege to delete a file 

• Staff – has the privilege of checking out a file; does not have the privilege to 

check in a file or to delete any. 

 

We have developed two versions of the application – one without employing AOP, and 

one based on AOP. We have performed analysis on the two sets of codes. The application 

design is described here followed by the analysis results: 
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The Non-AOP file center application consists of a server, a client, a remotable library, a 

priority validator class, and a file handler class. The following diagram shows the class 

diagram for the Non-AOP file center application: 

 

Server Executive Client Executive 

Message Processor 
(Remote Library) 

 
   Priority Validator 

 
   File Handler 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: Class diagram for non-AOP File-Center 

application 

 

The MessageProcessor class is the remotable type. It performs DeleteFile, 

GetFile and PutFile operations discussed above, employing the services of the 

File Handler class. In addition, it does priority validation using the Priority Validator 

class. 
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Let us see the code for DeleteFile operation in the Non-AOP File-Center application: 

 

 

 

 

 

public void DeleteFile ( string IP ) 
{ 
 // Priority Validation - ORTHOGONAL TASK 
 if ( this.mValidator.GetPriority ( IP ) < 2 ) 
  throw new Exception ( "Permission: DENIED."); 
 
 // File Deletion - PRIMARY TASK 
 System.IO.File.Delete ( MessageProcessor.cFileName ); 
} 

 

Code Listing 7.5: DeleteFile method in the non-AOP File-

Center application 

 

As we can see, the method performs two functions – file deletion, which is its primary 

task, and priority validation, which is a secondary task. Clearly, the method has poor 

cohesion. 

 

In the corresponding AOP code for File-Center application, we isolate the priority 

validation aspect into the server interceptor; as a result, the methods in 

MessageProcessor class are more cohesive and more purpose-specific. Let us see 

the code for DeleteFile operation in the AOP-based File-Center application: 

public void DeleteFile ( ) 
{ 
 // File Deletion - PRIMARY TASK 
 System.IO.File.Delete ( MessageProcessor.cFileName ); 
} 

 

 

 

Code Listing 7.6: DeleteFile method in the AOP-based File-

Center application 
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Comparing the code listings for the AOP-based and Non-AOP methods for 

DeleteFile operation, we can see the improvement in cohesion achieved by AOP. 

The AOP-based DeleteFile operation performs only its primary task – file deletion; 

the priority validation aspect is taken care of by the server interceptor. The class diagram 

for the AOP-based file center application is shown below: 

 

 

 

 

 

 

 

 

 

 

 

Server Executive Client Executive 

Message Processor 
(Remote Library) 

 
   Priority Validator 

 

Server Interceptor  
(Sink provider class and 
the Sink class) 

    File Handler  

 

Figure 7.2: Class diagram for AOP-based File-Center 

application  
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The analysis results for the non-AOP and the AOP-based File-Center applications are 

listed below: 
 
The Non-AOP code in the remotable library:  

 
Lines of function code = 11 
Cyclomatic complexity = 6 
Cohesion = 5 tasks 

The AOP client-code in the remotable library: 
 

Lines of function code = 7 
Cyclomatic complexity = 4 
Cohesion = 3 tasks 

The AOP server-code: 
 
Lines of function code = 79 
Cyclomatic complexity = 16 
 
Lines of common AOP function code = 44 

 

 

 

 

 

Cyclomatic complexity of common AOP code = 6 
 
Lines of application specific AOP function code = 35 
Cyclomatic complexity of application specific AOP code = 10 

 

 

 

 

 

 

 

  

 Non-AOP AOP

Total lines of function-code for the File-Center application 447 512 

File-Center  
Interception library code 

AOP code applicable to any Inter-
AppDomain interception library 

AOP code specific to the 
File-Center application 

Table 7.4: Analysis results for the File-Center application 
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(d) Summary: 

In the following table, we integrate the analysis results of the three applications described 

in sections 7.2.(a), 7.2.(b), and 7.2.(c). The integrated analysis results list the details on 

the lines of function code, cyclomatic complexity, and cohesion, adding up the values of 

the corresponding columns listed in Table 7.3, Table 7.4, Table 7.5. 

 

• Number of sets of applications considered = 3 (Each set of applications has two 

sets of code – one based on AOP, and the other without using AOP) 

• Number of Functions (Methods + Properties) considered = 9 

 

 Without AOP With AOP

Lines in the body of the function  

(for the maintainable code) 

68 19 

Cyclomatic complexity 

(for the maintainable code) 

29 13 

Cyclomatic complexity of maintenance-requiring 

library code 

 

55 

 

- 

Cohesion 18 tasks 10 tasks 

Table 7.5: Integrated analysis results 
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(e) Performance penalty of interception-based AOP: 

As discussed in the previous chapters, interception-based AOP requires that the caller and 

the callee be in separate .NET contexts. In some cases, method synchronization for 

example, we explicitly create separate contexts for the caller and the callee, which would 

not have been necessary for conventional non-AOP execution. To enable interception, we 

force inter-context message passing which would insert overheads and affect 

performance. Again, the messages are intercepted at run-time; this, as well, would 

negatively affect performance. As a minimal test for calculating the over-head of 

interception, a simple experiment was conducted. The experiment and the results are 

described in Appendix 1.(b) 
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In section 7.1, we described that we had difficulty in developing non-AOP codes for 

Debugging and Code-Profiling. In this section, we describe why: 

 

Let us quickly recollect how debugging was achieved in the debugger application 

described in chapter 4, with the help of a sample code: 

 

 

 

 

 

 

 

 

Code listing 7.7: A type that is enabled for interception 

by the debugger-interception library 

[DebuggerContext (true)] 

public class ClosedFigure : System.ContextBoundObject 

{ 

  [DebuggerContext (true)] 

  public double ClosedCalcArea(double Area) 

  { 

    Console.WriteLine ("Inside Closed class's ClacArea function."); 

    if (Area < 0) 

      throw new ArgumentOutOfRangeException ("Area", "Area cannot be negative."); 

    Console.WriteLine ("Input parameter is: " + Area + " ;\tMy area is: " + Area); 

    return Area; 

  } 

} 

 

The type ClosedFigure inherits from System.ContextBoundObject class, and 

employs the DebuggerContext attribute, a custom attribute that we have developed 

for the debugger application, with a true passed to its constructor – this qualifies the type 

for interception. When a client invokes a new instance of the type ClosedFigure, a 

separate context is created for the instance, and a custom interceptor sink is bound to it. 

All calls to and from the context is intercepted by the custom intercepted sink. 
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class Executive 

{ 

  // Main. 

  static void Main (string [] args) 

  { 

    ClosedFigure C = new ClosedFigure (); 

    double CirArea = C.ClosedCalcArea (1.0); 

    Console.WriteLine ("\nThe returned value is " + CirArea.ToString ()); 

  } 

} 

Code listing 7.8: Executive spawns a new instance of 

ClosedFigure type, and invokes its method 

 

In the code listing above, the command  

ClosedFigure C = new ClosedFigure ();  

generates a new context-bounded instance of ClosedFigure, with a custom 

interceptor sink bound to it. Any further method call to the instance, like  

C.ClosedCalcArea (1.0) 

whose method definition is marked with the breakpoint, DebuggerContext with a 

true passed to its constructor, is intercepted and debugged. 

 

Note that the entire application debugger is implemented as an aspect. We therefore 

conclude that non-AOP code cannot be developed for the “debugger” application 
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described in chapter 4; hence “debugging” aspect has not been considered for quantitative 

comparison. 

Let us consider a code-coverage application involving the “code-profiling” aspect as 

described in chapter 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Code listing 7.9: A code-profiling application; Note: 

interception library code NOT listed here. 

[Profile(true)] 
public class MyClass : System.ContextBoundObject 
{ 
 [Profile(true)] 
 public void TestFunc1() 
 { Console.WriteLine("\n\tMyClass.TestFunc1 called."); } 
 
 [Profile(true)] 
 public void TestFunc2() 
 { Console.WriteLine("\n\tMyClass.TestFunc2 called.");  } 
 
 [Profile(true)] 
 public int TestFunc3(double d) 
 { Console.WriteLine("\n\tMyClass.TestFunc3 called.");  
       return Convert.ToInt32(d); } 
} 
class Executive 
{ 
 [STAThread] 
 static void Main(string[] args) 
 {  MyClass M = new MyClass(); 
  M.TestFunc1(); 
         M.TestFunc3(4.5); 
 
  MyClass N = new MyClass(); 
  N.TestFunc2(); 
  M.TestFunc1(); 
   

//Interceptor library code-NOT listed in here 
Depot.DisplayResult(); 
System.IO.StreamWriter S = new 
System.IO.StreamWriter("Output.txt", false); 

  Depot.DisplayResult(S); 
  S.Close(); 
 } 
}
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Code listing 7.9 provides the program code for a class that performs code-coverage to list 

the methods in a type that were tested, and those that weren’t tested. A method is 

considered tested if it is called by a client at least once. Otherwise, it is considered 

untested. We believe that intercepting method calls would be the ideal technique to find 

out the methods in a specified type that are tested – finally a bit of metadata analysis on 

the type to find out all the methods in it would help in exposing the methods that remain 

untested as well. For such code-profiling applications also, we do not find an elegant way 

to develop a corresponding non-AOP application. We consequently do not include 

“Code-Profiling” aspect for quantitative analysis. 

 

7.3. Conclusion: 

 

From the analysis, we draw the following conclusions: 

 

• + AOP reduces client code complexity: 

From the analysis results, we see that the cyclomatic complexity of a total of 9 

client functions (methods + properties) without using AOP is 29 [Table 7.6]. This is 

reduced to 13 by the AOP-based client code, which is a striking advantage. The AOP-

server code, though, suffers from a high cyclomatic complexity. This is tolerable, since 

the isolation of the aspect is already done now, and any more addition of methods won’t 

increase the cyclomatic complexity of the server code further. 
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• + AOP improves cohesion: 

An advantage of AOP, as apparent from the analysis, is its potential in improving the 

cohesion of methods. Over a set of 9 functions ranging across three different sets of 

applications, a cohesion of 18 tasks by the non-AOP codes was brought down to 10 tasks 

by AOP-based codes [Table 7.6]. 

 

• + AOP captures the purpose of the code better: 

AOP captures the functionality of the code; also, the code is more readable and 

maintainable. Consider the Range-Checker application described in 7.2.(a): 

[Range (Lower = 0.0)] double radius  

 at the function declaration is more explicit and elegant than  

 if (radius < 0.0) 

  throw new ArgumentOutOfRangeException (“..."); 

 inside the body of the function. 

 

• + AOP enhances abstraction and encapsulation: 

AOP-based codes isolate and encapsulate aspects into separate modules. The client code, 

hence, is made more maintainable, and less tangled. For instance, in the Range-Checker 

application described in section 7.2.(a), the validation aspect is isolated into a separate 

module.  Any change to validation check handling can be made at this ONE place. 
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• + AOP promotes reusability: 

AOP-based code promotes reusability. For example, in the Range-Checker 

application described in section 7.2.(a), The range-checker attribute, named Range, 

provides a common point where the out-of-range exceptions can be handled. The 

range-checker attribute can be applied to a variety of classes, which need range-

checks, like: class Geometry that deals with geometric calculations, or a fictitious 

class called Stock_Market that processes stock accounts. 

 

• - Interception-based AOP comes with performance penalty: 

Interception-based AOP requires that the caller and the callee be in separate .NET 

contexts. To enable interception, we force inter-context message passing which would 

insert overheads and so hamper performance. Again, the messages are intercepted at 

run-time; this, as well, would negatively affect performance10.  

 

                                                 
10 Please refer to Appendix 1.(b) for experimental measurement of performance penalty of AOP 
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8. CONCLUSION 

 

In this thesis research, we have evaluated the impacts of AOP on code complexity and 

performance. We have used .NET for our work. The focus has not only been on 

identifying means to achieve AOP but also on analyzing different scenarios where AOP 

would be the right choice. The need for isolating aspects to develop a more purpose-

specific and less complex client code has been emphasized.  

 

The technique used in this research to achieve AOP is run-time interception of method 

calls. The second chapter of this thesis discusses the .Net messaging system, channel 

architecture, and execution contexts. In subsequent chapters (chapters 3, 4, 5, 6 and 7), 

we discuss some applications where AOP has been employed to isolate secondary 

aspects, and to develop more purpose-specific and less complex client code. The different 

techniques that were discussed in the previous chapters are summarized here: 
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• Summary: 

 

1. Method synchronization: 

The primary contribution of this chapter is the demonstration of a new way of achieving 

Method-Synchronization in a .NET environment. Our approach is based on Aspect-

oriented programming.  

 

We have developed a .NET library that enables client code developers to plug in the 

method synchronization aspect into their application. The library helps the client code 

developer to dispose of synchronization elements from the client code, and plug them in 

as attributes. This reduces the complexity of the code, and captures the purpose of the 

code better. 

 

Method-synchronization, as discussed in this research, tries to isolate the synchronization 

aspect into a separate module. Method synchronization can be encapsulated as Aspect-

Oriented code. All that the client code developer needs to do is to employ the 

Synchronization attribute, and turn it on where synchronization is required. Isolation of 

the synchronization aspect results in a less-complex, and more cohesive (purpose-

specific) code.  

 

2. Debugging: 

In this chapter, we propose a new way to develop debugger applications. Our approach is 

based on aspect-oriented programming. Our contribution has been in identifying that 
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debugging is an aspect, and that employing AOP is an effective way to develop debugger 

applications. We have also developed a custom interception library which performs 

debugging services by intercepting method calls. The debugger library is a really useful 

tool for the client code developer. Break points can be turned on or switched off 

programmatically, by simply enabling or disabling the debugger-attribute.  

 

The debugger application helps a client-code developer to functionally interact with the 

code under execution. The custom debugger application that we have developed using 

AOP supports the following features: 

 Facility to programmatically set break points 

 Facility to manipulate input parameter values from sink stack 

 Facility to dump the stack trace in case of an exception 

 Facility to manipulate the return value 

 Facility to ignore a return-exception, and substitute it with a dummy return value 

 Facility to restart the application, all over again, at any point during execution 

The chapter discusses the theory behind the development of debugger applications using 

AOP, and the advantages of employing AOP for the same. 

 

3. Code-profiling: 

In this chapter, we propose that certain code-profiling and optimizing applications can be 

developed efficiently using AOP. Our contribution has been in identifying that AOP 

approach suits code-coverage applications very well. All that the client-code developer 

needs to enable the testing is to decorate the class / methods with custom attributes. Code 
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coverage is hidden very well behind by the aspect-oriented interception library. The time-

profiling application illustrated in the chapter goes well with the aspect-oriented approach 

as well. Firstly, we discuss an Aspect-Oriented approach to develop code coverage 

applications. We then illustrate a time profiler application. The time-profiler functions as 

a code optimizer. 

 

4. Prioritization: 

This chapter discusses ‘prioritization’ service implemented efficiently using Aspect 

Oriented Programming. Our primary contribution in this chapter has been in identifying 

that prioritization can be classified as an aspect of a distributed computing system, and 

can be successfully isolated into a separate module using AOP. We have explored AOP-

based client prioritization and message prioritization as two specialized cases of priority 

assignment. The architectural and design details of the interception implementation are 

discussed. The isolation of the prioritization aspect into the interceptor code is explained.  
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5. Validation: 

In chapter 7 of this thesis work, we have made a quantitative analysis of AOP. We have 

chosen two sample application involving Priority Validation, and Range-Checking, and 

have implemented them with and without using AOP separately. We have then analyzed 

the code features like line count, code complexity and cohesion. Based on the analysis 

results, we have drawn the following conclusions: 

• AOP helps reduce client code complexity 

• AOP captures the purpose of the code better 

• AOP enhances abstraction and encapsulation 

• AOP promotes reusability 

o Run-time interception-based AOP comes with a performance penalty 
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• Future Work 

This thesis provides several opportunities for future work on AOP. A list of prospective 

applications that can be explored using AOP is given below: 

1. Loading-unloading of DLLs: It is a common scenario where the client code developer 

requires the services of a DLL for a small part of his/her program, but not for the entire 

lifetime of the application. One workaround for this in .NET is the to load an application 

domain, load the DLL into the AppDomain, and after use, unload the whole AppDomain. 

We believe that this process can be achieved efficiently using an AOP. 

2. Load-balancing: Load-balancing is a critical issue in a multi-server environment. We 

believe that an interception-based AOP mechanism implemented at the gateway of the 

server cluster would be a good way to achieve load balancing. 

3. Clustering technology: Clustering technology aims to provide continuous high 

availability of service to clients despite processor / communication failures at the backend 

machines. We believe that clustering technology can be potentially implemented 

effectively using AOP. 

Techniques for AOP: 

In this research, we have used run-time interception-based implementation of AOP. As 

part of a future project, we plan to explore AOP using customized proxies.  
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APPENDIX 

1. Definition of key words: 

a) Cohesion of a method / property: The number of tasks performed by the method / 

property. The lower the cohesion for a method / property, the better; ideal case for the 

cohesion of a method / property is one – in which case the method / property 

performs only its primary task, specified by the method’s / property’s name ideally. 

 

b) Cyclomatic complexity of a method / property: The number of independent loops 

through the method. Cyclomatic complexity of a method / property can be calculated 

by the following formula: 

1 + number of “if” loops in the Method / Property 

   + number of “else” loops 

   + number of “for / foreach” loops 

   + number of “while” loops 

   + number of “do” loops 

   + number of “case” statements 

   + number of “break” statements 

   + number of “continue” statements 
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2. Execution time measurement of AOP and Non-AOP method calls: 

As a minimal experiment to measure the performance penalty of employing AOP, a 

simple application was developed. The program design is as follows. Two types, called 

AOP_Class and NonAOP_Class are developed, each with one function called Test. The 

type AOP_Class is derived from System.ContextBoundObject, and applies a 

ProfileAttribute that adds a custom interceptor sink to the new context that is created for 

any instance of the AOP_Class type, i.e., inter-context method calls to instances of type 

AOP_Class are intercepted. The interceptor sink though does not have any custom 

processing in this example. The type NonAOP_Class is not enabled for interception.  

 

The code listing for the two types, AOP_Class and NonAOP_Class are added below: 

 [Profile(true)] 
 class AOP_Class : System.ContextBoundObject 
 { 
  public void Test ( ) 
  { 
   return ; 
  } 
 } 
 
 class NonAOP_Class 
 { 
  public void Test ( ) 
  { 
   return ; 
  } 
 } 

 

 

 

 

 

 

 

Code Listing Appendix.2.1: Code listing for types AOP_Class 

and NonAOP_Class 

 133



 Appendix 

The methods by name Test, of both the types, are called from the executive to measure 

the time of execution of the methods. The experiment result is added below: 

 

Time for execution of the method call once (averaged from 100000 trials) is:   

Non-AOP 1.06201 Microseconds 

AOP 10.36437 Microseconds 

Table Appendix.2.1: Execution time measurement of AOP and 

Non-AOP method calls 

 

This time is simply the time required to make a function call to an empty body with and 

without interception, needed for AOP.  Usually that will be amortized over the time 

required to do processing within the function, so the impact of interception may often be 

negligible. 
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3. Null interval measurement: 

To measure the inaccuracy caused by the overheads of inter-context method calls, we 

make dummy inter-context method calls which involve no actual processing – just the 

making of the method call and the return; we call this time period, the null interval. The 

following code listing shows the code at the interceptor sink for measuring the null 

interval: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

// The interceptor sink class. 
internal class ProfileSink : IMessageSink 
{ 
  // Next message sink in the chain. 
  private IMessageSink _nextSink; 
 
  // High resolution timer – least count = 1 microsecond 
  private HRTimer.HiResTimer H = new HRTimer.HiResTimer(); 
 
  // Other member methods not listed here  
 
  // Processes Synchronous method calls. 
  public IMessage SyncProcessMessage(IMessage msg) 
  { 
    ulong resultAOP = 0 ; 
    const int trials = 100000 ; 
    IMessage Ret = null ;  
    for ( int count = 0 ; count < trials ; ++count ) 
    { 
      H.Start(); 
      Ret = this._nextSink.SyncProcessMessage ( msg ) ; 
      H.Stop(); 
 
      resultAOP += H.ElapsedMicroseconds ; 
    } 
 
    // Null interval (in microseconds) 
    //      = (double)resultAOP / (double)trials. 
 
    return Ret ; 
  } 
} 

 
Code Listing Appendix.3.1: code at interceptor sink for 

null interval measurement
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