
C++ Exceptions

Jim Fawcett

CSE687 – Object Oriented Design

Spring 2015

How to Deal with Exceptional States?

 Ignore them:

 Wrong thing to do for all but demo programs.

 Abort processing – detect but don’t try to recover:

 Not appropriate for programs with safety issues or critical
missions.

 Have functions return error codes:

 Program is constantly spending CPU cycles looking for rare
events.

 Easy to miss a check.

 Use C++ Exceptions

C++ Exceptions

 Exceptions use three keywords:
throw, try, and catch

 throw e:
constructs an exception object, e, and takes it out of an
enclosing context defined by a try block

 try {…}:
defines, for thrown exceptions, an enclosing context with
specified catch handlers

 catch(E e) {…}:
exception handler catch(E e) responds to an exception object
of type “E”

Example

try

{

// some code that may throw an exception

}

Catch(exception &e)

{

// some processing to attempt to recover from error

// based on information carried by the exception

}

If no exception is thrown, the code in the try block is executed, the

catch clause is skipped, and computation resumes after the catch clause.

If an exception is thrown somewhere in the try block, the remaining
code in the try block is skipped, and a matching catch clause is entered,
if found. Computation resumes after the last statement in matching
catch clause. Matching is based on the type of the exception.

If the exception is
thrown in some lower
level scope, defined,
perhaps, by a called
function within the
try block, all local
objects in that scope
are destroyed as the
exception moves out
of that scope.

Chained Handlers

 Exception handlers are often chained at the end of a
try block, e.g.:

 Matching attempts are based on the order of
declaration of the handlers.

try {

// some code that may throw an exception

}

Catch(T1 t1) {

// processing for type T1

}

Catch(T2 t2) {

// processing for type T2

}

Cleaning Up

 C++ exception handling guarantees that as an exception leaves a
scope all objects in that scope that have been successfully
constructed will have their destructors called.

 Only destructors are called, so resources that are allocated in that
scope but not deallocated by destructors will be lost.

 So, in an exception environment, you must make all allocations
within objects and deallocate in their destructors.

 If a second exception is thrown while a first has not yet been
handled, the special function terminate() is called (more on that
later).

Matching

 A catch handler matches a thrown exception based on its type.

 If you throw a literal string, say: “big trouble in River City” then it
can be caught with the catch handler: catch(char *msg) { … }.

 An exception handler that accepts a reference or pointer to a base
class object will match a derived class object or pointer to a derived
class object, respectively, as well as the base type specified.

 If a derived class object is passed to a handler by value it will be
sliced to a base class object.

 If, however, a derived object is passed by reference or pointer, no
slicing occurs, and polymorphic calls within the handler are honored.

 A catch handler with an ellipsis, catch(…) { … }, will catch any
exception thrown in its context, not caught earlier.

Uncaught Exceptions

 If none of the catch handlers for a try block matches a thrown
exception the exception moves to the next enclosing try block.

 If there is no match in any enclosing try block the exception is
uncaught. An uncaught exception also occurs if a new exception
is thrown before an existing one is handled. Cleanups may fail to
occur with an uncaught exception, so this is an error.

 If an exception is uncaught the special function terminate() is
called.

 Uncaught exceptions can always be avoided by enclosing the
contents of main in a try block with an ellipsis handler.

terminate() Function

 Terminate is a function pointer with default value the C library
function abort().

 You can define your own terminate handler using
set_terminate(void(*)());

 Example:
void Arnold() { std::cout << “I’ll be back” }

int main() {

set_terminate(Arnold);

:

}

Rethrowing Exceptions

 If your catch handler does not completely handle an exception
you may re-throw it to the next enclosing context.

catch(E e)

{

// processing to handle e is incomplete

throw;

}

 This allows processing an exception in several passes as it
travels up through a series of try-contexts.

Standard Exceptions

 Standard Exception class:

namespace std {

class exception {

public:

virtual const char* what() const throw();

// create, copy, assign, and destroy

// exception objects

};

}

Standard Exceptions
exception

logic_error

runtime_error

domain_error

invalid_argument

length_error

out_of_range

bad_castbad_typeid

range_error

overflow_error

bad_alloc

underflow_error

bad_exception ios_base::failure

Exception Specifications

 All exception specifications have been removed from C++11
except for throw() and nothrow().

 A function can declare exception specifications:

 void f() throw (E1, E2, E3);
declares that f may throw any of E1, E2, or E3.

 void f() throw()
declares that no exceptions are thrown in f.

 void f()
declares that any type exception may be thrown in f.

Specification Violations

 If an exception specification is violated, the special function
unexpected() is called when the exception is thrown.

 By default unexpected() terminates execution. However, you
may change that behavior by defining your own:

void FreddyKrueger() { … }

int main()

{

set_unexpected(FreddyKrueger);

:

}

Exception Safety (Sutter, 2000)

 Basic guarantee:

 In the presence of exceptions thrown by called global
functions, object messages, template parameters, or
library calls, the code:

 will not leak resources.

 will maintain in a consistent, if unpredictable, state.

Exception Safety

 Strong guarantee:

 If an operation terminates because of an exception,
program state will remain unchanged.

 This implies commit-or-rollback semantics, including that
no references or iterators will become invalid if an
operation fails.

Exception Safety

 Nothrow guarantee:

 A function will not emit an exception under any
circumstances.

 Strong exception safety isn’t possible unless certain
functions are guaranteed not to throw.

Exception Safety

 To implement strong exception safety:

 In each function, take all the code that might emit an
exception and do all its work safely off-to-the-side.

 Only when you know that work has succeeded should
you modify program state, by swapping current state
with the off-to-the-side state, using only non-throwing
operations like pointer swaps.

 Destructors must always provide the nothrow guarantee,
since destructors are called in the scope of an exception
and a second active exception will always immediately call
terminate() without further cleanup.

References

 The C++ Programming Language, 3rd Edition, Stroustrup,
Addison-Wesley, 1997

 Exceptional C++, Sutter, Addison- Wesley, 2000

 There is a very nice summary in our text:
The C++ Standard Library, Nicolai Josuttis, Addison Wesley,
1999

