	PRIVATE
CSE 784 - Software Studio
	Fall 2002

CSE 784 - Final Project

PRIVATE
 Trusted Component Foundry
version 1.1
14 October 2002
Instructions:
This is a cooperative project requiring the combined efforts of everyone in the class. Participants will be assigned roles in the project, and grades will be based on:

1. how well each of your carries out your assigned role, as measured by products you generate.

2. quality of the final product.

3. conduct of a series of specification, design, and test reviews leading up to the final product qualification test

An Architectural description is provided on the next page, along with additional notes and comments. Also included are job descriptions for each of the roles to be assigned.

The project will be completed and a qualification test conducted on Monday, December 6. Final product delivery of updated specifications and code will be on Monday, December 13.

Trusted Component Foundry
(Foundry)

Preliminary Architectural Concept

version 1.1
James Fawcett

14 October 2002
Purpose of the FOUNDRY:

The goal of the FOUNDRY system is to provide a place to build, store, and dispense trusted components. A component is a module, program, or system that links to other components and files. A trusted component is one that has been tested, documented, and used sufficiently that the developing organization is willing to use it without further test or documentation.

We define components, and build tools to manage them, in order to manage the complexity of software. One of the defining characteristics of software is its interconnectedness. Even relatively modest commercial systems may contain thousands of modules and scores of executables. Most of those thousands of modules depend on other modules. They can not be treated as autonomous elements of the product. This interconnectedness is one of the principle features that make the management of software and software development so difficult.
In the Foundry, each component represents a collection of related things. A module is a collection of files that represent the source code, test code, and documentation for a relatively small cohesive body of functionality. A module, however, may also refer to other modules, and, in the perspective of the Foundry the lower level modules it refers to are part of the higher level module. Similarly a program is a collection of modules and documentation files; and a system is a collection of programs and documentation files.

The power of the Foundry lies in the fact that each of these components is managed by name. If we extract a program, say myProg, we get all the files that make up that program, without citing them individually. If we request a build of a module as a library, say myMod, we get a compiled library (DLL) of the myMod source code AND the source code of any module that it may depend on – all by citing only the myMod name in the request to build.

We have addressed the Foundry as a place to manage trusted components, but, in fact, we intend more. We want the Foundry to manage two types of components – trusted and newly developed. We will speak of the Clean Room where trusted components are managed, and the Factory where newly developed components are evolving. The functions of the Clean Room and Factory are nearly the same. The two facilities
 serve to separate those components the organization trusts to operate “as-is” and those that it expects may contain defects, need improvements, or simply are not sufficiently tested and used to be sure of their status.

[image: image1.emf]mod1.3.mod

mod2.1.mod

mod3.2.mod

file1.2.cs

file2.1.cs

file3.3.doc

file4.1.cs

file5.1.cs

file6.2.cs

file7.1.doc

program1.2.prg

program2.1.prg

system1.3.sys

Foundry - Component Representation

Manifest files contain:

- a brief summary

- a list of keywords

- a list of references to

 lower level components.

The functions of the Foundry are to:
1. Archive in an accessible place all versions of all components, but with no duplication of files.
· Thus if moduleA and moduleB both depend on File1, they will both refer to the same file, rather than storing away their own copies of that file.
2. Support the creation and management of modules, programs, and systems, as follows:

· A module is an XML file that refers, by name, to its lower level parts, e.g., source code files, test drivers, build scripts, documentation files, and perhaps, other modules.

· Similarly, a program is an XML file that refers to modules, test drivers, build scripts, and documentation files. A program’s XML file may not refer to another program.

· A System is an XML file that refers to programs, test drivers, build scripts, and documentation. Systems may not refer to other systems.

· When talking about these XML files from the perspective of their structure, we will call them manifests, for they are a manifest description of their contents. When talking about these files at a specific component level, we will refer to these same files as modules, programs, or systems.

· Each manifest contains descriptive text – a summary of its operations and character-istics, a set of keywords, a status description, references as cited above, and the name of a Responsible Individual, hereafter referred to as an RI.

<module name=”TSQueue” type=”factory component” >

 <description>The purpose of this module is to … Yada, Yada, Yada </description>
 <keywords>FIFO queue, multi-threaded, synchronized</keywords>

 <respIndiv name=”John Doe” email=”JDoe@Superlative.com/>

 <created date=”10-18-2002” time=”3:02 AM” />

 <modified date=”10-18-2002” time=”3:02 AM” />

 <maintHist ref=”TSQueueMaint.txt” />

 <status>passed unit test, available in testbed for integration</status>

 <source ref=”TSQueue.h “/>

 <source ref=”TSQueue.cpp”/>

 <testDriver ref=”TSQueueDriver.cpp” />

 <
build ref=”TSQueue.cproj”>

 <behavior ref=”TSQueueReq.txt” />

 <design ref=”TSQueueDes.txt” />

 <problemRpts>none</problemRpts>
 <pendingAction>none</pendingAction>

</module>

3. Support a specific versioning policy, as follows:

· Version numbers are managed by the Foundry and take the form of an integer placed between the name of the component and its extension. Examples are file1.3.cpp and display4.1.mod
.
· Each versioned file – source file, manifest, documentation file, test driver, etc. is read-only. Files are never modified. They may only be updated by creating a clone, editing it, and saving with the next version number, as supplied by the Foundry. Under normal operations files are never deleted. Only a Foundry administrator can do that, and will do so only when some error has been made, as in including the wrong files in a manifest. Presumably a developer has complete freedom to make whatever modifications seem appropriate up to the time that the new version is entered into the Foundry.
· No component may be updated except by its RI. When the RI for a module corrects a latent error in one of its source code files, he or she will create a new version of the module, as above, leaving the original version linked as before, to the supposedly defective file. The module RI is expressly forbidden to create new versions of higher level components, belonging to other RIs, which link into the newly versioned module.
· The Foundry will include a notification system that puts notices of newly versioned files and components in a common notification area. The Foundry developers may wish to provide a tool that lets an RI see if any notices are relevant to lower level components that his or her component refers to.

· A Clean Room component is demoted to a Factory component when any one of the following hold:

· It has been updated. This includes any documentation, source, or other components it refers to
.
· It has a problem report, approved for action.

· A Factory component becomes a Clean Room component when all of the following hold:

· Its documentation has been reviewed and approved.

· It has passed unit test.

· It has been issued as part of a product.

· The product has been fielded for six months with no pending problem reports against this component.
· The component has been reviewed for promotion.

4. Support extraction of copies of one or more components to a specified client directory, and insertion of modified files back into the Foundry.

· Extraction is based on component name. Requesting the extraction of myProg results in all the files that myProg refers to directly, or indirectly, being copied to a specified client directory. Source, documentation, and test driver files are extracted as readable and writeable. Build scripts and manifests are extracted as read-only.
· Individual source code, documentation, and test-drivers can be inserted into the Foundry. The Foundry will increment their version numbers on insertion if they have version numbers. The Foundry will not allow the insertion of any file with version number that has been modified outside the Foundry.

· Manifests may be inserted into the Foundry under the same rules as files, except that, for insertion to be allowed:

· A manifest must contain at least one reference that has been changed from a previous version, and that referenced file must be in the Foundry or accompany the manifest.

· If the manifest represents a module it must refer to a test driver existing in the Foundry, or be accompanied by the referenced test driver.
5. Support building executable images and dynamic link libraries from components.

· Each component will refer to a build script that will result in a dynamic link library (DLL) or executable (EXE).
· All modules will compile to DLLs and their accompanying test drivers will compile to an EXE that will load the DLL. Note that every module must have a test driver.
· All programs will compile to EXEs and the build script will insure that its top level DLLs are also built
.

· All systems will compile to a collection of EXEs by invoking the build scripts of each referenced program.

6. Support viewing or building documentation for any component. The intent is that behavior and design documentation are always visible and always up-to-date, as they are part of the component structure. When the component is updated, so too is the documentation.
· Each component manifest will include as an XML element, or refer to an external document for, text describing its behavior model. A higher level may, but is not required to, refer for additional documentation to any lower level components it may refer to. This element will be given a unique XML tag, something like:

<behavior>This is some behavioral description. Yada, Yada, Yada

<ref LowerLevelComponentName /></behavior>

This allows a developer to expose lower level behavior if it is appropriate, without duplicating the description it refers to.
· Documentation may include references to Visio diagrams using a reference tag:

<diagram ref=”DFD1.vsd” />

· Each component manifest will provide design documentation in the same way, e.g.:

<design ref=”MyDesign.Txt” />, or

<design ref=”MyDesign.Txt”><ref>YourLowerLevelDesign.Txt</ref><design>

· Provide tools in the Foundry to allow ANYONE to view, at ANY TIME, the behavioral and design models for every component.
· Any component in the Foundry without behavior and design documentation will result in a notification in an area associated with, but not the same as, the update notification area. Components without behavior and design documentation will be treated as incomplete and the RI will be sent daily notifications to that effect.

· Behavioral documentation is treated differently for components in the Factory than in the Clean Room. Components in the Clean Room are trusted and will not be tested before use. Therefore, their behavior documentation is stated in the present tense and has no shalls or test elements.
· Components in the Factory are not trusted, will be tested, and consequently have different behavior models. Contrary to standard practice, the Foundry behavioral documentation for Factory components will have not necessarily have shalls. Rather, each assertion that would conventionally have one or more shalls will be enclosed within a test element, e.g.:

<Test number=”2.72” alloc=”derived”>text describing the requirement</Test>

<Test number=”2.73” alloc=”A3.2, A4.1”>text describing the requirement</Test>

The text may have shalls, but is not required to do so. The test element denotes a contractual obligation that will be tested. The attribute numbers are used to create logical groupings for testing. Every test tag must have a number and an allocation.
7. Support creation of system test plans by extracting test descriptons from components in the Factory. The behavioral model for all parts of a system that belong to the Clean Room will be included in an appendix titled Behavior of Reused Software.
8. Associate, with every component, a change history
. Change history is a separate document that lists, by version number, the reason for each change and descriptions of the changes made. Change histories are the only document contained in the Foundry that is not versioned.
Preliminary Partitions and Their Functions:
The Processing required to support the Foundry’s activities is divided into the following:

1. FOUNDRY Server

Supports storage and retrieval of all versions of all software components and documentation. It maintains associations between components and supports the operations of creation, addition, modification, and building of all software components.
The FOUNDRY Server provides interface(s) for:

· FOUNDRY administrators to carry out these activities
.

· client processes to carry out the same set of activities.
The FOUNDRY Server accepts messages from one or more concurrent clients containing requests to carry out any of its supported activities.

2. Communication Subsystem

The Communication Subsystem is responsible for transporting all requests and files between any FOUNDRY Client and the FOUNDRY Server. It uses threads to avoid blocking a Client process while serving one or more requests. It handles multiple concurrent clients.
3. FOUNDRY Client

The FOUNDRY client provides an interface for displaying views of all the software components, their associations, and their creation time and times of last modification.
· It provides the controls necessary for a user to carry out any of the FOUNDRY activities, and views to display the results.
· FOUNDRY clients are responsible for requesting additions, modifications, and creation of components as well as extraction and build. They are also responsible for requesting associations (manifests) held by the FOUNDRY Server. The client provides an interface for running tool programs on a specified set of components.

4. Software Viewing Tools

For this project the software viewing tools support:

· Viewing of any component. The view may be behavior, design, or source and can be switched between these at any time. A user should be able to step through each component, either in an alphabetical order, by selection, or by following associations, e.g., viewing a component will support the selection for view of any of the files it references.
· View the collection of all files, all modules, all programs, and all systems. Please support this by providing an indexModule that refers to all files, and indexProgram that refers to all modules, an indexSystem that refers to all programs, and an index which refers to all systems.

5. Build Tools

This partition is responsible for creating DLLs and EXEs from components and documents from behavior and design descriptions.

· It is responsible for creating DLLs for any component on demand, along with an execution image of a test driver, referenced by the component.
· Note that if the component is a module, referring to lower level modules, only one DLL is build from the combined software.

Trusted Component Foundry
(FOUNDRY)
Preliminary Project Organization

version 1.0

Jim Fawcett

14 October 2002
Software Project Manager

The SPM will manage the FOUNDRY project, with the help of the Software Architect, Test Manager, and all the Team Leaders.

Software Architect

The Software Architect is responsible for the FOUNDRY architecture concept and the FOUNDRY A Specification. The SA will also provide support for qualification testing.

Software Development Teams

Each of the components listed above will have a team for its development. There will also be test and prototyping teams. Each team, with the exceptions of test team and prototyping team will:

1. produce its own FOUNDRY behavior specification
, design description, and code

2. present their specifications and design during FOUNDRY specification and design reviews

3. conduct unit test on their code

4. integrate their software with that of the other teams

5. participate in final qualification testing

Prototyping Team

In addition to the development teams there will be a prototyping team. Their responsibilities are to build critical component prototypes quickly to test design and implementation ideas. Their products are “throw-away” proof of concept components. They will not be expected to heavily document their prototypes. However, they are expected to produce white papers that describe their results and provide access to their code. Members of the prototyping team will move into the development teams when prototyping is complete. The prototyping team will be responsible for a least the following:

1. Establish an early version of the communication subsystem to provide a backbone for FOUNDRY Clients and Server to conduct their developments.

2. To define an approach for association of Software products and managing the FOUNDRY database
.

Test Team

The test team will prepare a test plan which contains at least the following:

1. A schedule of key milestones and their contents.

2. A schedule of integration testing and qualification testing.

3. A set of qualification test descriptions, procedures, and definition of all instrumentation, logs, and analyses needed to conduct qualification testing.

4. Definition of a process for baselining and accessing test code, including a class build directory structure and error reporting mechanism.

Integration testing is the joint responsibility of the development team leaders and test team leader. Qualification testing is the responsibility of the Software Project Manager, supported by the test team and its manager. Each development team will be responsible for developing qualification tests which implement the tests described in the test plan for their software, under the joint direction of their team leader and the test team leader.

Team Assignments:

1. Software Project Manager

Alexey Zaitsev

2. Software Architect

Srinivasa Neerudu

3. Prototyping Team

Team Leader:
 “ “
· Norman Leach
· Jamshidur Rahman

4. Test Team

Team Leader:
Goldie Fernandes
· Apoorva Joshi
· Huseyin Tekin
· Cheng-We Yang
5. FOUNDRY Server Team

Team Leader:
Jeff Ting
· Eswara Balasu

· Girish Murthy
· Srinivas Shilagani
6. Communication Manager Team

Team Leader:

7. FOUNDRY Client Team

Team Leader:
Yi-Yang Huang
· kuoChun Chin

· Alvaro Ramirez
· Vineet Sharma
· Mahesh Manglani
8. Software Tools Team

Team Leader:
Ozer Ozkaraoglu
· Tsung Shin Jei
· Aykut Sahin

· Sivaraj Shanmuganathan
· Baohua Tao
Attachment #1 - Job Descriptions

Job Description: Software Project Manager (SWPM)

The Software Project Manager organizes the teams so that each team owns part of the B-Spec, C-Spec, and software integration. He/She conducts weekly meetings to stay on top of any problems that arise, and manages all the reviews.

The SWPM is expected to know most of the design and the critical code details. The SWPM, Software Architect, and Team Leaders establish the architecture and B-Specs; and they control the design, implementation, and test processes so that the final product is robust and meets specifications.

Finally, the Software Project Manager directs the Test Leader and Architect to prepare a Software Test Plan and conducts qualification tests based on the plan.

Responsibilities:
1. Organize teams

2. Prepare program schedule including Architecture Review, Specification Review, Design Review, and Qualification test. Present the schedule at the Architecture Review and at each succeeding review.

3. Manage B-Spec process with team leaders.

4. Provide the opportunity for each team leader to be a hero, but:

5. Takes full responsibility for success of the project.

6. Conducts specification review on date specified in program schedule.

7. Conducts design review on date specified in program schedule.

8. Prepares, with Test Leader and Software Architect, a Test Plan. Conducts qualification test with the help of Test Leader, Architect, and Team Leaders.

Evaluation:
The Project Manager's grade is based on:

1. program meeting schedule

2. Software Test Plan and success of qualification

3. an oral examination.

Job Description: Software Architect (SA)
The Software Architect is responsible for the architectural concept, effectiveness and ease of use of the user interface, modularity and robustness of the design. He/She supports the team leaders in developing elegance and quality in the final product.

The SA is required to know the entire design and provides support for team leaders during major reviews. He/She has responsibility for consistency and integrity of all requirements with special focus on the user interface. The SA is also responsible for the top-level physical structure, organizing principles, and built in test
. Built in test should directly support qualification testing.

SA participates in all weekly meetings, spending at least some time with each team, making sure they understand the architecture and testbed, and helps with problem solving as needed by each team. The SA is responsible for ensuring that the requirements are sensibly allocated to individual teams and that each team understands their allocation.

Responsibilities:
1. Prepare an Architectural Concept Document which includes:
a. Organizing principles for project including processing partitions for each team

b. Definition of user interface

c. Definition of, and logical model for, top level processes and data flows, e.g., one DFD per team (worked out with respective Team Leader)

d. Updated to include definition of, and logical model for, each module in the FOUNDRY design including key classes.
e. This work will be presented at the architecture review.

2. Lead Prototyping Team to test design approaches, look at critical issues.

3. Lead SW integration process.

4. Provide technical support to teams during Specification Review, Design Review, and Qualification test.

5. Help with design and implementation when needed.

6. Assist SWPM and Test Leader with final product Qualification Test

Evaluation:
The Software Architect's grade is based on:

1. Architectural Concept Document

2. Success of reviews

3. Integration completed successfully on schedule

4. Support provided to SWPM and Test Leader during Qualification

5. An oral examination.

Job Description: Test Leader (TsL)

The Test Leader is the technical lead for integration and qualification test. Does whatever is needed to detect and locate latent errors in project code.

The TsL is required to know the entire design and provides support for team leaders during integration testing. He/She shares responsibility for qualification test with the Software Project Manager, assisted by the SA. The Test Leader:

1. prepares a test plan, including qualification test descriptions and procedures

2. provides templates for unit test drivers

3. identifies priorities for unit test

4. coordinates integration test schedule and supports team leaders in integration

5. provides qualification test templates

6. conducts the mechanics of qualification test while the Software Project Manager leads the test and signs off on tests with the customer

7. manages a test bed which includes all released codes which are shared between teams or modules within a team. The test bed is built around a directory structure established by the Test Leader with the Software Architect and ECS cluster system administrators.

TsL participates in all weekly meetings, spending at least some time with each team, making sure they understand the test process and testbed, and helps with problem solving as needed by each team.

Responsibilities:
1. Prepare a Test Plan Document which includes:

a. test schedule

b. priorities for unit test, based on dependency analysis of each team’s code base.
c. definition of unit test and qualification test templates

d. qualification test descriptions and test procedures (about 90% of the whole)

2. Provide technical support to teams during integration and qualification test.

3. Manage the testbed used for the project.

4. Help with design and implementation when needed.

5. Help team leaders plan and conduct integration test.

6. Plan and share responsibility with the Software Project Manager for final product Qualification Test.

Evaluation:
The Test Leader's grade is based on:

1. Test Plan Document

2. Success of qualification testing

3. Integrity of the final product

4. An oral examination.

Job Description: Team Leader (TL)

The Team Leader is the technical lead for one specific part of the system. Does whatever he/she has to make that part successful. The TL prepares the B-Spec for his/her assigned part of the system with the help of the Software Architect and presents that part at Specification Review. He/She organizes the team to produce the C-Spec, conduct design review, produce code, test drivers, and conduct unit testing. TLs share responsibility with the Software Architect for software integration.

Responsibilities:
1. Reviews Architectural Concept and prepares assigned part of B-Spec.

2. Presents team's part of B-Spec at Specification Review.

3. Assigns classes/modules to individual team members.

4. Guides the team in preparation of design and C-Spec.

5. Assigns team members to present during design review.

6. Insures that all requirements are traceable to the process and function level.

7. Provides opportunity for each team member to be a hero, but:

8. Takes full responsibility for success of team.

9. Shares responsibility for software integration with SA and other TLs.

10. Helps team members with design and/or implementation problems.

Evaluation:
Grade based on:

1. B-Spec for assigned part of system

2. Presentation during B-Spec Review

3. Meets allocated specifications

4. Has adequate derived specifications and meets them

5. Success of team's design and implementation, e.g.,

6. Robustness of Team’s code.
7. an oral examination.

Job Description: Team Member (TM)

Concentrates on one specific part of the system. Does whatever necessary to make assigned parts successful. TM has primary responsibility for assigned classes/modules including design, implementation, and test. He/She prepares C-Spec for assigned functionality, presents that part at the design review, develops code, and conducts unit test. The TM supports the Team Leader in conducting integration if requested by TL.

Responsibilities:
1. Reads B-specification

2. Prepares assigned part of the C-Spec and design.

3. Presents that part at Design Review.

4. Implements assigned part, paying attention to complexity, size, robustness, understandability.

5. Develops unit test drivers.

6. Tests every function and allocated requirement as early as possible

7. Takes full responsibility for assigned part of subsystem.

Evaluation:
Grade based on:

1. C-Spec Review presentation

2. quality of assigned code and test

3. robustness of code.
4. "reasonable" size and complexity

5. good understandability

6. success of team's assigned part

7. willingness to support team leader in documentation, design, implementation, and test
Final Project

Trusted Component Foundry
Statement of Work

version 1.0

Jim Fawcett

14 October 2002
1. Introduction:
The Trusted Component Foundry (FOUNDRY) is a tool designed to help developers manage the quantity and quality of their software components and documents. FOUNDRY has facilities for:

· Storing all versions of a software component, its documentation, and related files.

· Inserting files into the Foundry and creating new components.

· Extracting copies of components to a specified directory.
· Building dynamic link libraries and execution images of any component.
· Viewing, at any time, source code, behavior descriptions, and design descriptions.
· Provide separate facilities for handling trusted and evolving components
.
· The purpose of FOUNDRY is to capture, save, and dispense each of the software components developed on a project.

2. Customer Furnished Equipment:

The operating environment for FOUNDRY will be windows 2000, SP 1 or later. The FOUNDRY software must compile and link using Visual C# and/or C++, as provided by Visual Studio.Net. This environment is available in the ECS clusters in 010 Link, 200 Link, and Hinds Hall, Syracuse University.

3. Reference Documents:

· FOUNDRY Preliminary Architectural Concept, 14 October 2002, or latest version.

· FOUNDRY A-Level Specification, 14 October 2002, or latest version.

· Visual C#, C++, and Class Library on-line documentation

4. Schedule:

	Project start date
	14 October 2001

	Program and Architecture Review
	21 October 2001

	B Specification Review
	28 October 2001

	Design and Prototype Review
	04 November 2001

	Design and Implementation Meetings
	11 November 2001

	Design and Implementation Meetings
	18 November 2001

	Test Readiness Review
	25 November 2001

	Qualification Test
	6 December 2001

	Final Products Delivery
	13 December 2001

Final Project

Trusted Component Foundry
(FOUNDRY)

A-Level Specification

version 1.0

Jim Fawcett

14 October 2002
Trusted Component Foundry (Foundry)

5. Introduction:
The Trusted Component Foundry (FOUNDRY) is a tool designed to help developers manage the quantity and quality of their software components and documents. FOUNDRY has facilities for:

· Storing all versions of a software component, its documentation, and related files.

· Inserting files into the Foundry and creating new components.

· Extracting copies of components to a specified directory.
· Building dynamic link libraries and execution images of any component.
· Viewing, at any time, source code, behavior descriptions, and design descriptions.

· Provide separate facilities for handling trusted and evolving components
.
·
The purpose of FOUNDRY is to capture, save, and dispense each of the software components developed on a project.

[image: image2.wmf]Foundry

Server

Foundry

Client

Communication

Subsystem

Software Build

Tools

Component

View Tools

Figure 1 - FOUNDRY Context Diagram

The FOUNDRY Architecture consists of the partitions:

1. FOUNDRY Server

Supports storage and retrieval of all versions of all software components and documentation. It maintains associations between components and supports the operations of creation, addition, modification, and building of all software components.
The FOUNDRY Server provides interface(s) for:

· FOUNDRY administrators to carry out these activities
.

· client processes to carry out the same set of activities.

The FOUNDRY Server accepts messages from one or more concurrent clients containing requests to carry out any of its supported activities.

2. Communication Subsystem

The Communication Subsystem is responsible for transporting all requests and files between any FOUNDRY Client and the FOUNDRY Server. It uses threads to avoid blocking a Client process while serving one or more requests. It handles multiple concurrent clients.
3. FOUNDRY Client

The FOUNDRY client provides an interface for displaying views of all the software components, their associations, and their creation time and times of last modification.
· It provides the controls necessary for a user to carry out any of the FOUNDRY activities, and views to display the results.
· FOUNDRY clients are responsible for requesting additions, modifications, and creation of components as well as extraction and build. They are also responsible for requesting associations (manifests) held by the FOUNDRY Server. The client provides an interface for running tool programs on a specified set of components.

4. Software Viewing Tools

For this project the software viewing tools support:

· Viewing of any component. The view may be behavior, design, or source and can be switched between these at any time. A user should be able to step through each component, either in an alphabetical order, by selection, or by following associations, e.g., viewing a component will support the selection for view of any of the files it references.

· View the collection of all files, all modules, all programs, and all systems. Please support this by providing an indexModule that refers to all files, and indexProgram that refers to all modules, an indexSystem that refers to all programs, and an index which refers to all systems.

6. Build Tools

This partition is responsible for creating DLLs and EXEs from components and documents from behavior and design descriptions.

· It is responsible for creating DLLs for any component on demand, along with an execution image of a test driver, referenced by the component.

· Note that if the component is a module, referring to lower level modules, only one DLL is build from the combined software.

[image: image3.wmf]Foundry

Directory

Services

Network

Services

User

Control

Display

Information

Components

Components

selections

Requests,

Components

Components

Associations

Requests,

Components

User Commands

Status Messages,

error messages

Figure 2 - FOUNDRY Module Diagram
2. Reference Documents:

1. Foundry Preliminary Architectural Concept, 14 October 2002.

2. Foundry Statement of Work, 14 October 2002.

Requirements:

The Trusted Components Foundry (FOUNDRY) is a tool designed to help a development organization manage quantity and quality of its code and documents, keep track of versions, and view at anytime the specification and design of an evolving system. The requirements are allocated below, to each of the major partitions described above.
3.1. Functional Requirements

The Foundry supports the storage and extraction of software components, and maintains version information for components and files. It also manages associations between each of the software components and their constituent parts. The server provides facilities for viewing and building of components.

3.1.1. The Foundry
 shall accept files for storage.
3.1.2. The Foundry shall not accept duplicate files for storage. A file entered for storage must satisfy one of the two following conditions:
3.1.2.1. It has a unique name, not currently found in storage and has no version number. In this case the Foundry shall modify the file name by inserting the number 1 between the file’s name and extension and accept it for storage.
3.1.2.2. It has a name found in the set of files it manages and has a version number that matches the version of the file currently contained in the Server storage. In this case the Foundry shall increment the file’s version number by 1 and accept it for storage.
3.1.3. The Foundry shall provide facilities for the creation of software components of the types module, program, and system, and, upon creation, provide them with the version number 1.
3.1.4. It shall support the association of a component with files, previously accepted, and components of the next lower type. The highest type is system, and the lowest type is module.
3.1.5. A component consists of an XML file with a series of attributes and references. It shall contain at least those attributes and references identified in the Preliminary Architectural Concept document, version 1, dated 14 October 2002.
3.1.6. During the component creation process the Foundry shall accept an arbitrary number of references to files and other components.
3.1.7. For system components the Foundry shall accept only references to program components and to files.
3.1.8. For program components the Foundry shall accept only references to module components and files.
3.1.9. For module components the Foundry shall accept references only to module components and to files.
3.1.10. Every component shall hold a reference to a file containing a description of its behavior. If the component refers to a lower-level component, the description may, but is not required to, include the lower-level description by reference. When a component is created the description may be a very brief statement of its behavioral goals, but as the component matures the description should be completed. If the component is of the Factory type, its description is stated in the future tense and is required to contain the tag: <test number=”…”> enclosing one of the required behaviors and ending with </test>. If the component is of the Trusted type its behavioral description describes its individual behaviors in the present tense.
3.1.11. Every component shall hold a reference to a file containing a description of its design. If the component refers to a lower-level component, the description may, but is not required to, include the lower-level description by reference. When a component is created the description may be a very brief statement of its interface, but as the component matures the description should be completed to include its implementation.
3.1.12. When the creation process is complete, the Foundry shall assign the version number 1 to the newly created component.
3.1.13. A versioned file or component is immutable. The Foundry shall prohibit changes to any versioned component.
3.1.14. To affect changes the Foundry shall clone the existing file or component, effect the desired changes to the clone, and increment its version number by 1.
3.1.15. The Foundry shall provide, on request, a list of all its files.
3.1.16. The Foundry shall provide, on request, a list of all its components at any level, e.g., system, program, or module level
.
3.1.17. The Foundry shall provide, on request, a list of all the references, both direct and indirect, held by a specified component.
3.1.18. The Foundry shall provide for the extraction of any component to a client specified directory. This means that the component manifest and all the files it refers to, either directly or indirectly, are copied into the specified directory.
3.1.19. The Foundry shall provide for the building of execution images and dynamic link libraries according to the follow prescriptions:
3.1.19.1. Upon receiving a build request for a module the Foundry shall create a dynamic link library of the module’s code, and an execution image of the test driver associated with that module that loads the dynamic link library on startup. Note that building a module that refers to one or more lower-level modules will still result in only a single dynamic link library.
3.1.19.2. Upon receiving a build request for a program, the Foundry shall create dynamic link libraries for each of its directly referenced (top-level) modules and an execution image that loads those modules.
3.1.20. The Foundry shall support user viewing of the behavioral description of any component.
3.1.21. The Foundry shall support user viewing of the design description of any component.
3.1.22. User viewing shall support the presentation of visio diagrams referenced with a <diagram name=”…vsd” title=”…” /> tag.
3.1.23. The viewing tool shall provide means to suppress diagram viewing, replacing the diagram with only its title. Full diagram viewing is the default action.
3.1.24. The Foundry shall support the disassociation and deletion of software components only by a FOUNDRY administrator.
3.1.25. The Foundry shall support the addition and modification of status messages, keywords, references to problem reports, and planned actions to alleviate problems.
3.1.26. The Foundry shall support the operation of a single Foundry Server and multiple, concurrent, Foundry Clients.
3.1.27. The Foundry shall support asynchronous messaging between Foundry Clients and Foundry Server. This will be accomplished using threads and queues, along with sockets or .Net Remoting facilities
. The purpose of this requirement is to avoid blocking Foundry Clients when the Server is heavily loaded, and to avoid blocking the Foundry Server waiting for a Client to complete its messaging activity.
3.1.28. All actions and capabilities that the Foundry supports shall be accessible through the Foundry Client interface. This implies there is no need for a separate administrator interface.
3.1.29. The Foundry shall support all communication activities between Foundry Client and Foundry Server using XML messages. It is not required that the entire transmission be XML text. A binary file, for example, may be transmitted as a sequence of: XML header, one or more blocks of binary data, and an XML trailer.
3.1.30. The machine name and IP address of the server shall be encoded in an XML-based configuration file. This avoids user specification, but still allows for changing Foundry Server location without modifying any code.
3.1.31. The Foundry shall be accompanied by a build script for Foundry Clients.
3.1.32. The Foundry shall be accompanied by a build script for Foundry Servers.
3.1.33. The Foundry build scripts shall provide whatever directory structure, execution images, and configuration files are required so that the new Server or new Client are immediately functional without further action by the user.

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� There is no need to physically separate Clean Room from Factory. This can be done by creating virtual rooms via tag words in the component descriptions.

� Note that all recent versions of the Windows operating system directly support this style of naming.

� An update of a reference to a newer version counts as an update.

� It is not necessary to build the lower level DLLs since higher level modules contain all the source code of the lower level modules, by reference.

� A change history is a text-based list of every change by date, with a title and brief description.

� It is permitted, and probably desirable to have the administrator use a Foundry Client process on the Foundry server.

� The form of behavior and design descriptions will be as cited above in the Preliminary Architectural Concept.

� The term database is probably misleading. The Config database is simply a directory to hold all the software products and the code which manages those products. This is a prime role of the Config Server.

� Each server component should have means to test the validity of its operations, e.g., the database manager should be able to test the integrity of the database, directory manager test integrity of the directory indexes, file viewer test the integrity of its page handler if one is used.

� This separation may be virtual, in that the trusted and evolving components may be stored in the same directories, supporting the type designation within a manifest.

� This separation may be virtual, in that the trusted and evolving components may be stored in the same directories, supporting the type designation within a manifest.

� It is permitted, and probably desirable to have the administrator use a Foundry Client process on the Foundry server.

� In the following we refer to the Foundry, rather than Foundry Server, or Foundry Client, to allow the development team the freedom to allocate activities to whichever seems appropriate.

� It is suggested that this be effected by creating an index module pointing to all files, and index program pointing to all modules, an index system pointing to all programs, and a Foundry index pointing to all systems. Extracting the Foundry’s indexes will allow the cloning of the Foundry on a new machine.

� The Software Architect and/or prototyping team will provide samples of this style of communication.

PAGE
4
[image: image4.wmf]Foundry

Server

Foundry

Client

Communication

Subsystem

Software Build

Tools

Component

View Tools

[image: image5.wmf]Foundry

Directory

Services

Network

Services

User

Control

Display

Information

Components

Components

selections

Requests,

Components

Components

Associations

Requests,

Components

User Commands

Status Messages,

error messages

_1095996629.vsd

_1096007805.vsd

_1095995924.vsd

