	PRIVATE
CSE 784 - Software Studio
	Fall 2005

Web-Service based Repository and Testbed
Preliminary Architectural Concept

version 1.1
Jim Fawcett
29 September 2005
Purpose of the Project:

The goal of the Web-Service Based Repository and Testbed (RT) is to support management and execution of large projects with emphasis on support for testing. The system is described as Web-Service Based because the system is distributed with an underlying transport mechanism that uses message-passing through web services. Consequently, the system can be composed of parts that reside on multiple machines in any set of locations accessible from the web
.
The Repository and Testbed is composed of a Software Repository server, a Testbed Server, and an arbitrary number of RT clients.
The main functions provided by the Repository and Testbed are:
1. Maintenance and Tracking of software files and their configuration in a Repository server.

2. Building libraries and execution images on the Testbed from source obtained from the Repository server.

3. Conduct of, possibly concurrent, test sequences, using a test harness structure, provided by both the Testbed server and RT clients.

· The Testbed server will run many concurrent test configurations for an evolving software development project. It is intended that testing may be eventually become continuous, and configurations will grow to encompass the entire developing software product.
· Individual clients will run scaled down versions of these test configurations, of interest to a specific team.

· Should the Testbed server become overloaded, its operations should be scalable over additional Test servers.

4. Clients will initiate the creation of software products, check them into the Repository, and then define and request execution of specific test configurations on the Testbed. It will be the Testbed’s responsibility to request needed components from the repository, build them using a Build Process which is an integral part of the Testbed server, initiate testing, and report results to the requesting client.

Preliminary Partitions and Their Functions:
Processing required to support the Repository and Testbed’s activities is divided into the following subsystems:

1. Repository-Testbed Client

A local process, initiated by a user, that supports:

· Primary interface of the system, providing the services that follow.

· Check-in of existing source code to the Repository server.
· Check-out of source code, for modification, from the Repository server.

· Download of source from the Repository server for viewing.
· Configuration of software files, existing on the client, into items, described by an XML manifest that refers to one specific module – a single file in C#, or a pair of files in C++ - associated documentation files, and other items on which it depends. An item and the closure of all the items on which it depends, directly or indirectly, is called a component.
· Defining a test configuration by selection or drag-and-drop operations from lists of components on the Repository server, or selection and composition of existing test configurations.

· Requesting the execution, pausing, or halting of an existing test configuration.

2. Repository Server

A dedicated server that supports:

· The extraction of a component using only the name of the component
.

· Check-in and Check-out for modification of existing items.

· Check-in of a component will send only modified files and new files to the Repository.

· Each file checked-in will be given a version number by the server.

· All earlier versions will be retained in the Repository.

· Each check-in results in creation of a new item manifest with an incremented version.
· Each item and test configuration is immutable – never changes and is only rarely deleted from the Repository. Code changes are effected by creating new versions.
3. Testbed Server

A dedicated server that supports

· Building test configurations using a Build Process:
· All test configurations are defined on RT clients.

· Testbed is responsible for compiling files in extracted components to satisfy a test configuration. Each component, held by Repository server contains the specification for its build. The specification, when received along with its component, is used by the Testbed Build Process to create test libraries, which will be consumed and used by Testbed’s Test Harness.
· Executing test configurations using a Test Harness:

· Test harness accepts a build configuration’s test libraries, loads them, and executes each test defined by each of the configuration’s libraries. Test harness will generate a resulting test report.

· Testbed will send the test report back to the requesting client.

[image: image1.emf]Repository Server

Component request

Component’s files

T

e

s

t

r

e

q

u

e

s

t

s

F

i

l

e

s

T

e

s

t

r

e

s

u

l

t

s

Test Server

Test Harness

Build Process

Client

Test Harness

Build Process

Remote Repository-Testbed Structure

Repository – Testbed Packages

A set of candidate packages for the Repository Testbed System (RTS) is shown on the next page. This structure incorporates a particular philosophy of design that defines a set of services, provided independent of where that service is delivered. For example, instances of Component Manager may exist on the Repository, Testbed Server, and Client machines, providing functionality specialized to each of these machines. Never-the-less, all of these functionalities are provided by the single service and probably developed by a single team. The intent of this philosophy is to help ensure consistency of concept and implementation, and to make integration easier, since teams are only required to integrate services.
The services are:

1. Component Management
Responsible for assembling files into components by creating and managing XML manifest files, and providing navigation services that insert, search, and extract components. Note that items are immutable. They are never modified, and rarely deleted. Development proceeds by creating new versions of items in each component.
2. Communication
Component management requires sending files and messages between machines. The communication package is responsible for this process using web service(s).
3. File Management
A typical system contains a large number of files. The File manager is responsible for passing files to a machine only if the specific versions requested do not already exist on the target machine. This service is also responsible for establishing and managing caches of files on any given machine, deciding on the lifetime of files in the cache and ensuring the coherency of the files within a cache.
4. Test Configuration
It is likely that concurrent clients will want to define sets of components that will be tested in a given test run. The Test Configurer will create one configuration for each request, e.g., simply a list of component tests to run. It will request the set from the Repository, and pass the configuration to the Test Harness for testing.
5. Building
The building service is used by Test Configurer for generating dynamic link libraries for testing
 by building test code extracted from the repository. The service is provided on both client machines and Testbed Server. The testbed builds tests on integrated code from multiple teams, while clients will often build just the code developed by a single team and executables for manual testing. This usually focuses on building the top level forms used for a program, after all its library services have been thoroughly tested on the Testbed Server.

6. Test Execution
The Test Harness is responsible for running all the tests defined by a test configuration, in sequence, concurrently with any other running tests.
7. Management of Check-in and Check-out
Checkinout manager will ensure that only RIs Check-in modified components and Check-out for modification existing components in the Repository. It will support the extraction for viewing for any client, but will not accept any of these files back into the Repository.
8. Versioning
This package is responsible for assigning version numbers to new and modified items and files. It is used exclusively by the Repository Server and is not accessible to the RT Clients.

[image: image2.emf]Repository Server

Testbed Server

RT Client

File Manager

Test Harness

Communication

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Repository-Testbed Candidate Packages
Component Structure

A key property of the Repository is that it manages source code as items and components.

1. An item is a single production source code file, combined with documentation files, and related information that helps users and other parts of the system use the code. Each item may refer to lower-level items, and is bound to its constituent parts with an XML manifest file. Each reference to source code, documentation, lower level items, or other information is encoded by XML tags and attributes within the manifest file.
2. A Component is an item and all the lower level items it references. All code in the repository is accessed as either items or components.
If we want to build a component we simply extract the component by name from the repository which yields the source code of the top-level item in the component and all items on which it depends.

If we want to modify a source file we check-out the item referring to that source file. Check-out and extraction are managed by the checkinout service that, using the services of the File Manager, sends all files in the item that we do not already have
.
Items define specific versions of modules, programs, or systems. Thus, if a client extracts a program, all the files required for the version of the program requested will be sent to the client, if it does not already have them with the correct version.

[image: image3.emf]mod1.3.xml

mod2.1.xml

mod3.2.xml

file1.2.cs

file2.3.doc

file3.1.cs

file4.1.doc

file5.2.cs

file6.1.doc

program1.2.xml

program2.1.xml

system1.3.xml

Item Manifest files contain:

-a brief summary

-a list of keywords

-a list of references to

 lower level components

 and files.

Definitions

· Item:

A manifest and all the files it

directly references.

· Component:

An item and all the items it

references.

Component Representation

[image: image4.emf]New Versions

M1.1

S1.1

P1.1

M2.1

F2.1.cs F1.3.doc F4.1.cs

M3.1

F5.2.cs

M1.2

M2.2

F2.2.cs

New versions caused by change in file F2:

· F2.2 is the new version of file F2.1

· M2.2 is new version of module manifest M2.1, resulting from

referring to new version of F2. Note that it still refers to the same

files, F1.3 and F3.2 as M2.1

· Module M1.2 is new version of M1.1 resulting from referring to new

version, M2.2 It still refers to F4.1.

· The RI for Program P1 has not decided to use the new version of

M1 yet.

RI for a module may link a new version of her manifest to any file or

lower level manifest. The RI may NOT link a higher level manifest to

the new version. That is allowed only by the RI for the higher level

module.

The versioning of M1.2 is open – indicated by dashed lines – meaning

that its RI may change links in that manifest without generating a new

version.

However, M1.2 may not be checked-out for modification until its

versioning is closed. Also, it may only be a part of a test configuration

that does not have modules linking to it, until its versioning is closed.

Older versions:

Older versions are retained in the Repository. This supports two critical

activities:

· Developers can access complete configurations for older products

that are still in service to provide support for customers.

· A configuration can be easily rolled back should an earlier change

prove to be incorrect or lead to other problems in the developing

system.

Manifests and Files:

Manifests are XML files that define

Systems, Programs, and Modules,

simply by linking to lower level

manifests and files. Files are shown

with hatched pattern, manifests have a

solid background.

All links are dependency relationships.

Thus, Both modules M2.1 and M2.2

depend on file F1.3. If two modules

have no dependency on each other,

they are not linked.

Note that the Repository need make no

distinction between Systems,

Programs, and Modules. That is

simply a developer’s design distinction.

F3.2.doc

Versioning Concept

Test Harness

The test harness provides a testing service for both Testbed Server and each RT Client. The harness contains a test aggregator, called tester, that loads a specified set of test Dynamic Link Libraries (DLLs). Each test library is required to support the ITest interface, so the aggregator creates instances of each test it loads (one per library), bound to the ITest interface, and executes the test by invoking a test() method declared by the interface and implemented by the class that implements the interface.
The test class derives from the ITest interface and aggregates a default TestVectorGenerator class and set of Logger classes. The TestVectorGenerator provides facilities for generating test inputs that classes derived from test use while testing. An example of one such facility reads a specified file line by line, supplying a new line each time its GenerateNext() function is called.

The FileLogger, ConsoleLogger, and MemoryLogger each derive from the ILogger interface and provide default facilities for writing test output to a file, stream, or saved to memory, for use later in the test.

We expect that a class, aTest, derived from test will be created for each module of source code to be tested, which must implement the test() function, defining specific testing operations. The designer of the derived aTest class will often provide classes derived from TestVectorGenerator and one or more of the loggers to provide the test inputs and logging needed for this specific test.
Note that both the Testbed Server and RT Clients have Test Harnesses, Test Configurers, and Builders. The RT Client will use these facilities to develop a team’s tested source code before checking in the code’s component to the Repository Server. The Testbed Server uses these facilities to run, perhaps many, concurrent tests on code combined from two or more of the teams working on the project.

Note also, that it would make a lot of sense to dedicate one of the RT Clients for each team to act as a local Testbed Server to integrate the team’s code, before passing it to the repository to be integrated with other team’s code.

[image: image5.emf]+write()

+showAll()

«interface»

ILogger

MemoryLogger

+test() : bool

+registerTest() : void

-ArrayList

-failed : unsigned int

tester

+test() : bool

+title() : string

-tout : ILogger

-title : string

test

aTest -Application Specific Test Driver

1 *

MemoryStream

ConsoleLogger

Console

FileLogger

FileStream

+test() : bool

«interface»

ITest

1 *

class from Tested Module #1

+GenerateNext() : object

«interface»

ITestVectorGenerator

TestVectorGenerator

ApplicationTVG

ApplicationFL ApplicationCL ApplicationML

Test Harness Concept

Critical Issues:

The following issues will need attention at the beginning of the project:

1. Design Concept

Each service, outlined above, has been described as being implemented as a single component, probably by one team, even though its functionality may be specialized for the three types of location, e.g., Repository Server, Testbed Server, or RT Client. This appears to be an effective way to develop the system, but it will be up to the project management to decide if this strategy is appropriate for the teams on this project.

2. Build Process

As projects mature, there may be thousands of files in larger test configurations. A prototype of the build process will be needed to explore how to provide a suitable directory structure to hold test source and libraries which supports efficient loading by the test harness.

3. Test harness structure and activities

Tests will be loaded dynamically and test class instances created using reflection and construction in child application domains. A prototype will help explore effective ways of doing that. The test harness will need to provide default Test Vector Generation (generation of test inputs) and default output Logging base classes. Application specific input generation and output logging will be developed by deriving from the base services. The prototype can be used to explore these issues.

4. Client Activities

Building test configurations will require disclosing, to a requesting client, information about components held in the Repository. Allowing browsing of the Repository by every client may overload the Repository server, so some distributed file management is required. One model would cache all of the Repository’s manifests on each client for browsing and send files to the Test Harness only if not already there. A client, when started, could interrogate the Repository for all new manifests since the client last logged on.

5. Communication service

Communication between RT clients, Repository, and Testbed are specified to be implemented with Web Services. Since there may be multiple clients communicating concurrently with either or both of these servers, the initial system design should focus on the communication structure needed to support the client and server activities described above.

� e.g., hosted by a web server on a machine connected to the internet.

� This implies that many files are extracted using only one component name.

� The Testbed Server provides the executable typically used for running tests, but the Test Harness should support standalone operation on a client machine.

� Note that, as described below, each version of a component is immutable, containing a specific set of versioned files. If a requester has some earlier version of a file referred to by the component, directly or indirectly, the version of the file referred in the component is sent.

PAGE
8

_1189136333.vsd
Repository Server

Testbed Server

RT Client

File Manager

Test Harness

Communication

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

_1189497506.vsd
Class name

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

mod1.3.xml

mod2.1.xml

mod3.2.xml

file1.2.cs

file2.3.doc

file3.1.cs

file4.1.doc

file5.2.cs

file6.1.doc

program1.2.xml

program2.1.xml

system1.3.xml

Item Manifest files contain:
- a brief summary
- a list of keywords
- a list of references to   lower level components
 and files.

Definitions
Item: A manifest and all the files it directly references.
Component: An item and all the items it references.

_1189498339.vsd
Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

M1.1

S1.1

P1.1

M2.1

F2.1.cs

F1.3.doc

F3.2.doc

F4.1.cs

M3.1

F5.2.cs

M1.2

M2.2

F2.2.cs

New Versions

New versions caused by change in file F2: 
F2.2 is the new version of file F2.1
M2.2 is new version of module manifest M2.1, resulting from referring to new version of F2. Note that it still refers to the same files, F1.3 and F3.2 as M2.1
Module M1.2 is new version of M1.1 resulting from referring to new version, M2.2 It still refers to F4.1.
The RI for Program P1 has not decided to use the new version of M1 yet. 
RI for a module may link a new version of her manifest to any file or lower level manifest. The RI may NOT link a higher level manifest to the new version. That is allowed only by the RI for the higher level module.

The versioning of M1.2 is open – indicated by dashed lines – meaning that its RI may change links in that manifest without generating a new version.   However, M1.2 may not be checked-out for modification until its versioning is closed. Also, it may only be a part of a test configuration that does not have modules linking to it, until its versioning is closed.

Older versions: 
Older versions are retained in the Repository. This supports two critical activities: 
Developers can access complete configurations for older products that are still in service to provide support for customers.
A configuration can be easily rolled back should an earlier change prove to be incorrect or lead to other problems in the developing system.

Manifests and Files: 
Manifests are XML files that define Systems, Programs, and Modules, simply by linking to lower level manifests and files. Files are shown with hatched pattern, manifests have a solid background.

All links are dependency relationships. Thus, Both modules M2.1 and M2.2 depend on file F1.3. If two modules have no dependency on each other, they are not linked.

Note that the Repository need make no distinction between Systems, Programs, and Modules. That is simply a developer’s design distinction.

_1189068773.vsd
Repository Server

Test Server

Test Harness

Build Process

Component request

Component’s files

Client

Test Harness

Build Process

Test requests

Files

Test results

_1189095643.vsd
+test() : bool

«interface»
ITest

1

ConsoleLogger

+write()
+showAll()

«interface»
ILogger

MemoryLogger

+test() : bool
+registerTest() : void

-ArrayList
-failed : unsigned int

tester

+test() : bool
+title() : string

-tout : ILogger
-title : string

test

+aTest(output& out) : test(out)()

aTest - Application Specific Test Driver

1

*

Console

-End3

MemoryStream

1

-End4

FileLogger

FileStream

*

*

class from Tested Module #1

-End3

1

+GenerateNext() : object

«interface»
ITestVectorGenerator

+operator()() : bool
+aTest(output& out) : test(out)()

TestVectorGenerator

+aTest(output& out) : test(out)()

+aTest(output& out) : test(out)()

-End4

*

-End3

1

-End4

*

+operator()() : bool
+aTest(output& out) : test(out)()

ApplicationTVG

ApplicationFL

ApplicationCL

ApplicationML

