Final Project

Software Renaissance

Redefining Configuration Management
A-Level Specification

Version 1.1
Vijay Appadurai
03 October 2005
Repository and Testbed System (RTS)
1. Introduction:
The Repository Testbed System is designed to help manage and test code produced in a large software development project. Repository and Testbed has facilities for:

· Source code check-in, check-out and versioning.

· Defining, building, and executing test configurations remotely.

· Reporting test results.

[image: image1.emf]Repository Server

Testbed Server

RT Client

File Manager

Test Harness

Communication

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

Figure 1 – Repository and Testbed System Context Diagram

The Repository and Testbed System Architecture consists of the partitions:

1. Repository Server

Maintains a persistent, versioned, set of components, using XML manifests to identify a component’s constituent parts.
2. Testbed Server

Supports test configuration and execution for multiple, concurrent clients.

3. RT Client

Provides an interface for accessing and controlling the various Repository Testbed services and products.
4. Checkinout Service

Manages storage of new versions of components on the Repository Server.

5. Test Service

Provides a test configuration and execution facility on the Testbed Server and also on RT Clients.
6. Component Management and Communication Service

Manages the transfer of component parts across the internet, using web service(s). Also responsible for establishing a file cache on each RT Client and maintaining its coherency, while avoiding the transfer of files already on the target. It manages extraction of components for modification or viewing.

[image: image4.wmf]FileInfo Requests

Files

Repository

Testbed

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Test results

,

path

,

help info

Figure 2 – Repository and Testbed System Package Diagram
2. Reference Documents:

1. Repository and Testbed System Preliminary Architectural Concept, 25 September 2005.

2. Repository and Testbed System Statement of Work, 25 September 2005.

3. Requirements:

The Repository and Testbed System is a tool designed to help manage code development, control, and testing. The requirements are allocated below, to each of the major partitions described in Section 1.

Definitions:

a. Version – a number, generated in sequence by the Repository Server, assigned to a file. This number is encoded in the file specification, using the convention:

filename.VersionNumber.Extension
Each checked-in modification of a file results in a new version number, generated sequentially. Should a version be removed from the Repository Server – a very rare event – versions of this file with higher version numbers will not be re-versioned. All files stored in the repository, including XML manifest files will be versioned.

b. Item – a named, versioned, XML manifest file and all the files on which it holds references, excluding references to other items. Each item refers directly to exactly one product source code module, that is to one C# source file or two C++ files, a header file and an implementation file. A manifest may also hold references to documentation files and other items on which it depends. Each Item represents a module and must refer to a Responsible Individual (RI), that is, some member of the development team.

c. Component – one root item and all the items it references, either directly or indirectly. That is, a component is a top-level item and the closure of all its references. The name of a component is the name of its top-level item. Its version is the version of its top-level item. Programs are Items that refer only to module items and documentation. Systems are items that refer only to program items and documentation.

d. Test Configuration – a named, versioned, XML manifest file that refers to production source code items and any number of test source code files for each source item. This XML file is referred to as a test item. A test item may refer to lower-level test items. That is, composition of test configurations is supported.

e. Check-in – process of storing all the files of an item in the repository and providing sequenced version numbers, as described above. Only an item’s RI may check it in. On check-in, the item is given a unique identifier and version number. Check in does not replace files with earlier version numbers. Once an item is checked in it is immutable.

f. Check-out – process of transferring files of an item to an RT Client for the express purpose of modification. Only the item’s RI may check it out.

g. Extraction – process of transferring a component’s files to an RT Client. Extraction is not limited to the item’s RI. However, no extracted items may be checked back in. Both RT Clients and the Testbed Server are expected to use extraction.
3.1. Functional Requirements

The Repository and Testbed System supports the control, building, and testing of project code.
3.1.1. The Repository Server shall support check-in of items and test configurations from RT Clients.
3.1.2. Each check-in shall result in creating a new version number for the checked-in item and the marking of the item with a unique identifier
. Any source code and documentation files supplied for this checking process shall be given new version numbers. All of these presented files shall then be stored in the Repository.
3.1.3. Check-in shall succeed only if the check-in process presents to the Repository Server an item file and all the files to which it refers, if those files do not already exist on the Repository Server. Also, check-in shall succeed only if one of the following two conditions is satisfied:
3.1.3.1. the item file is un-versioned, has no unique identifier, and the Repository Server does not contain another item with the same name
.
3.1.3.2. the item file is versioned, has a unique identifier, and the user requesting check-in is authenticated as the item’s Responsible Individual (RI).
3.1.4. Check-ins shall support an open version status. When open an item may be modified without changing its version by accepting new references to items and files or changing an existing reference.
 3.1.4.1 Check-in of open items which were previously open results in overwriting the previous files with the newer ones.
 3.1.4.2 Making a previously open item as closed during Check-in results in overwriting previous files with newer ones and marking the item as closed.
3.1.5. Check-ins shall fail if the any of the items referenced by this item is open.
3.1.6. The Repository Server shall allow only the Responsible Individual of the item to change its status from open to closed. Once closed, the Repository Server shall not allow its status to be changed to open.
3.1.6.1 The Repository Server shall support only one RI for each module.
3.1.7. The Repository Server shall support check-out of items and test configurations by RT Clients. For check-out to succeed, the Repository shall authenticate the user as RI for the requested item and shall identify the item as checked out
.
3.1.8. Check-outs of items which have previously been checked out shall fail.
3.1.9. Check-outs of items with old versions of a module shall fail.
3.1.10. Check-outs of an item with open status shall fail.
3.1.11. The Repository server shall provide a link to every item that is checked-in in a super component. Deletion of a component shall result in a link being removed from the super component.
3.1.12. The Repository Server shall have the hash values of all the referenced files in their item manifests.
3.1.13. The Repository server shall support directory browsing requests from the RTClients and the Testbed server.
3.1.14. shall support extraction of components
 and test configurations by either the Testbed Server or RT Clients, using a Component Manager. No authentication as RI is required for extraction. Extracted items shall have their unique identifiers removed
.
3.1.15. The Component Manager shall support stopping extraction at any time.
3.1.16. The Component Manager shall support multiple file uploads and extractions.
3.1.17. The Component Manager shall support scope for the extraction operation that is one of the following: (a) source code, (b) test and source code (c) all files including documentation or (d) only Xml Manifests.
3.1.18. Both check-out and extraction shall transfer only versions of files not currently existing on the target. This implies the presence of file caches on both the Testbed Server and RT Clients.
3.1.19. shall use Base64 conversion to transform files into strings that will become bodies of XML messages.
3.1.20. shall verify that the files are transferred properly by verifying the hashes in the items’ manifests with the hash of the downloaded file.
3.1.21. shall support creation of items and test configurations on RT Clients
.
3.1.22. Creation of an item shall consist of the creation a named XML manifest file that refers to all the items and files the item depends on directly. Each item shall define an Responsible Individual and shall provide keywords and a small amount of text describing the item
.
3.1.23. Creation of a test configuration shall consist of creation of a named XML manifest that refers to one or more test source code files. Each test configuration shall provide a small amount of text describing the purpose of the test.
3.1.24. RT Clients shall support the creation of a test configuration by composition with existing configurations.
3.1.25. The Test Configurer shall allow the user to browse through test descriptions and configuration descriptions, to configure a new test run, composed, perhaps, of merging two existing configurations and adding new test libraries. That shall check-in the test configuration and extract files that make up the configuration, from the repository.

3.1.26. The Testbed Server shall support the execution of test configurations. All components and test configurations placed on the Testbed Server shall be transferred only from the Repository Server, using its extraction process. This transfer shall occur when an RT Client requests test execution of a configuration that does not currently exist on the server.
3.1.27. Upon receiving a request to execute a test configuration, the Testbed Server shall verify that a build exists for that configuration. If not, the Testbed Server shall request an extraction of the configuration and its corresponding components and build the required libraries that will be loaded by the Test Harness for execution
.
3.1.28. The Test Harness shall log all results for each test configuration execution in the testbed server with a testing summary including all test module names, and pass or fail status for each. and send it back to the RT Client.
3.1.29. The Test Harness shall record time-date stamps for each test configuration execution.
3.1.30. shall support the display of test results on the RT Client requesting the execution of a specified test configuration with a testing summary including all test module names, and pass or fail status for each.

3.1.31. shall support the execution of test configurations on RT Clients for components and configurations. These are not required to originate from the Repository Server.
3.1.32. The Test
Harness shall support the concurrent execution of test configurations.
3.1.33. Any RT Client shall be allowed to request a test execution without the authentication as the test configuration Responsible Individual.
3.1.34. The Testbed Server shall direct test output to the requesting RT Client. The Testbed Server shall also accept requests to change between quiet and verbose output modes. The Test Harness shall request tests to change mode on receipt of an output mode change request
.

3.1.35. The Testbed Server shall accept requests to pause or stop execution of any test configuration by the RT Client that requested its execution. Paused test executions shall resume at the state of execution that was present when paused
.
3.1.36. The RT Client shall support cloning of a test configuration, consisting of making a new version of an existing test configuration, in which one or more tests or components have new versions.
3.1.37. Each RT Client shall support a user interface providing operations for creating items and test configurations, checking items and test configurations in and out of the Repository Server, requesting test executions on the Testbed Server and pausing, resuming or stopping running tests, change between quiet and verbose modes. The RT Client interface shall also support the removal of specified files from the Client’s file cache.
3.1.38. Each RT Client interface shall support browsing the entire code, test and document collection, using a tree view. On visiting each component, a brief message describing the responsibilities of the component are displayed, along with links to more detailed documentation and to child components.
3.1.39. Each RT Client shall support the execution of test configurations and the building of Components that include program executables
 for testing on the RT Client before checking-in the Repository and executing on the Testbed Server.
3.1.40. The Repository Server shall support a user interface intended for administration. This interface shall support the all the operations of the RT Client, but also include deletion of items from the Repository.
3.1.41. The Repository Server shall not allow deletion of items which are referenced by other items.
3.1.42. The Testbed Server shall support an interface intended for administration. This interface shall support all the operations of the RT Client, but also include deletion of test configurations and removal of files from its file cache.

3.1.43. Any operation that requires authentication of a Responsible Individual shall succeed if the requestor is authenticated as an RT administrator.

3.1.44. The interfaces for the Repository Server, Testbed Server, and RT Clients shall provide help for their respective operations. This help should be detailed enough that a new user can start with no other instruction.
3.1.45. The Repository Testbed system shall use an XML-based message-passing communication layer for all communication between machines
 implemented using web services.
3.1.46. The web service shall consist of a blocking queue that provides a global place to store messages. The queue shall validate that readers and writers reside on approved lists.
3.1.47. The File Manager shall support removal of files from its file cache
3.2. Process Requirements:

These requirements specify the physical structure of delivered code and the environment where it must operate.

3.2.1. Physical Structure

3.2.1.1. The Repository and Testbed System source code shall be composed of modules.
3.2.1.2. Repository and Testbed System builds shall be composed of managed or unmanaged code executables and dynamic-link libraries
.
3.2.1.3. The User Interfaces shall delegate all operations, not directly associated with providing the user interfaces, to server modules, e.g., Communication, Data Management and all operations specifed in this document.
3.2.1.4. All modules shall be provided with manual pages and correct maintenance pages.
3.2.1.5. Each server module shall be provided with a test configuration that is held by the Repository Server and can be executed by the Testbed Server on request from an RT Client.
3.2.1.6. Code that implements services shared by Repository, Testbed, and or RT Clients shall be implemented with identical code, with the possible exception of configuration files
.
3.2.2. Development

3.2.2.1. The Repository and Testbed development process shall use the Repository Server, Testbed Server, and RT Clients for final integration and for Qualification testing.
3.2.3. Development Environment
3.2.3.1. The Repository and Testbed System shall build and operate in the ECS clusters, e.g., 010 Link, 202 Link, or 2-122 CST.
3.2.4. Program Management
3.2.4.1. The Repository and Testbed System shall be developed subject to the conditions specified in the Repository and Testbed System Statement of Work, of the latest version.

Changes:

Old:
 Extraction is accomplished by recursively traversing the component’s items, sending the files of each item to the requesting client.
New: Extraction is accomplished by getting the files of the first item from the repository server and then recursively requesting referenced items from the repository server.

[image: image2.emf]Repository

1

Test bed Server

2

Component Manager

and Communication

3

RT Client

4

User Commands

Files

File Info

Requests

Status Messages,

error messages

help info

Repository Commands, Comm

Authentication Data, Rep Authentication

Data, Data. (XML Format)

Files, Status Messages, error

messages, Comm

Authentication Data.

(XML Format)

Test Commands, Authentication

Data. (XML Format)

Repository Commands, Comm

Authentication Data, Status

Messages, Test results, error

messages

File Info

Requests

Files

User Commands

Status Messages,

error messages

Test Results, help info, path

File Info Requests

Files Messages

Messages, Connection

Requests

Comm Authentication Data,

Status Messages, Test

results, error messages

Repository

Commands, Comm

Authentication

Data, Rep

Authentication

Data, Test

Commands, Data.

(XML Format)

Test Results, help info,

path

User Commands

Status Messages, error

messages

File Info Requests

Files

REPOSITORY AND TESTBED SERVER

Partitions:

Repository Server:
The Repository Server Team implements the Repository Server, the Checkinout Manager and the Version Control system. The Team is responsible for satisfying the following requirements.
	3.1.1

	3.1.2

	3.1.3

	3.1.4

	3.1.5

	3.1.6

	3.1.7

	3.1.8

	3.1.9

	3.1.10

	3.1.11

	3.1.13

	3.1.43

Communication:

The Communication Team implements the Communication, the Component Manager and the File Manager. The Team is responsible for satisfying the following requirements.
	3.1.14

	3.1.15

	3.1.16

	3.1.17

	3.1.18

	3.1.19

	3.1.20

	3.1.45

	3.1.46

	3.1.47

RT Client:

The RT Client Team implements the RT Client user interface, the Test Configurer. The Team is responsible for satisfying the following requirements.
	3.1.12

	3.1.21

	3.1.22

	3.1.23

	3.1.24

	3.1.25

	3.1.30

	3.1.36

	3.1.37

	3.1.38

	3.1.40

	3.1.42

	3.1.44

Test bed Server:
The Test bed server team implements the Test bed Server, the Test Harness and the Builder. The Team is responsible for satisfying the following requirements.
	3.1.26

	3.1.27

	3.1.28

	3.1.29

	3.1.31

	3.1.32

	3.1.33

	3.1.34

	3.1.35

	3.1.39

	3.1.41

CRITICAL ISSUES:

Scanning:

Problem:

Traversing through the repository structure is accomplished by recursively scanning the manifests. Since the software dependency structure resembles a graph, it may result in scanning the same items over and over again.

Possible Solution:

Maintain a hash table of all the items visited and lookup this table before scanning the next items’ manifest.

Deletion from Repository:

Problem:

Deletion of an item from the Repository should be done only when no other item is referencing it. However there is no way to identify directly if some other item is dependent on the item which we want to remove from the repository.

Possible Solution:

This can be done by keeping track of the number of references for each item in the super component. During check-in and check-out by the repository, we can add or subtract the number of references by comparing the previous references with the newer ones.
Test Harness Loader Memory Problems:
Problem:
The Test Harness loads a set of test dlls continuously and executes tests on each one of them. When the number of dlls become large, the test harness may not have sufficient memory to load more dlls.

Possible Solution:

This can be overcome by loading the dlls in a child AppDomain instead of loading directly into the primary AppDomain. The child AppDomain can be loaded and unloaded dynamically and so it can load and unload dlls dynamically.

Loader Locking Problems:

Problem:

The Test Harness runs each test configuration in a separate thread. It is possible that two test configurations can depend on a single build. If the loader in one of the threads is using a build’s dll or exe, it takes a read lock on the file to ensure that no changes are made to the underlying executable image, thus preventing other loaders from using it and hence severely affecting performance.
Possible Solution:

Loading the dll or exe by “Shadow Copying” solves this problem. It is recommended that shadow copying be enabled for each thread’s AppDomain.

CLR Loader Optimization:
Problem:

The Test Harness will have Multiple Application Domains running at the same time. Since the JIT compiler generates code separately for each AppDomain by default, it becomes highly inefficient to load and compile code for common libraries from the GAC for each AppDomain.

Solution:

The Problem can be solved by using the Loader Optimization in the CLR. When the Loader optimization value is set to MultiDomainHost, it has a single copy for assemblies from the GAC and separate copies for the assemblies of local applications. Furthermore, the Test Harness can have a ability to start either in MultiDomain or MultiDomainHost mode, since using MultiDomain mode can help in sharing compiled code for assemblies shared by two different applications which is a likely scenario. This helps in improving performance considerably.

Builder Optimization:
Problem:

To execute a test configuration, it is necessary that the builder build the entire files needed for executing it. Since builds are immutable, building the same build over and over again is a redundant task.

Possible Solution:

We can maintain a build cache in the Test bed Builder which checks the cache before trying to build an item. If such a build exists in the cache, it is copied from the cache to the builder output directory directly.
Web Services:

Problem:

Transfer of binary components through web services is very slow since SOAP encodes every byte inside a <soap:byte>0</soap:byte> tag resulting in sending 24 bytes for every single byte.

Possible Solution:

All data transferred shall be Base64 encoded and transmitted as a string.

Web Services Security:
Problem:

Only public methods are allowed in Web Services. How do you allow restricted access to the blocking queue of the system?

Possible Solution:

Send user authentication data in the Soap Header and the actual data in the Soap body. Before the web service is executed on the server side, it validates the authentication information using an access control list which it maintains.
Multiple File Uploads:
Problem:

Check-in results in multiple files being uploaded at once. What if the total size of the uploaded files is large?

Possible Solution:

One solution is to chunk the messages if the size of the message exceeds a certain length.
� EMBED Visio.Drawing.6 ���

� Check in results in a new item being placed in the Repository, not the replacement of the older version. Thus, every item, once checked-in, becomes immutable.

� It may be necessary to use namespaces as part of the Repository’s naming convention.

� It is recommended that this be accomplished by marking each checked-out item with a secure hash which is also stored on the Repository Server. The stored hash would then be compared with the item’s hash to authenticate subsequent check-in.

� Extraction is accomplished by getting the files of the first item from the repository server and then recursively requesting referenced items from the repository server.

� Note that this implies that an item may be cloned by extracting from the Repository, given a new name, and presented for Check-in, starting a new version sequence. This is the accepted way to start a new branch of the versioning sequence, e.g., by starting with the branch as a new version root.

� It is desirable, but not required, that this be accomplished by drag and drop operations in the RT Client interface.

� Typically, this will be a phrase consisting of a few words.

� Note that builds do not get out-of-date. All components and test configurations are immutable. When an RT Client checks-in a new item, a test configuration for that version must be created in order to run tests against that version.

� What this mode change means to the test is left to the designer of the test, except that the ITest interface must support this request.

� This can be accomplished by pausing the test’s thread of execution. This implies that every test execution must run on its own thread.

� Testbed Server test configurations consist of Dynamic Link Libraries, loaded by the Test Harness.

� The intent of this requirement is to produce a reusable communication subsystem.

� This is intended to allow the Project Management to select either C++, C#, or both as implementation languages.

� It is expected that each shared service is implemented by a single team, with the consultation of other affected teams.

[image: image3.wmf]FileInfo Requests

Files

Repository

Testbed

Directory

Services

Network

Services

User

Interface

controls

Display

Information

Messages

Messages

,

Connection Requests

User Commands

Status Messages

,

error messages

Test results

,

path

,

help info

_1189796058.vsd
Repository Server

Testbed Server

RT Client

File Manager

Test Harness

Communication

Component Manager

Version Control

Test Configurer

Checkinout Manager

Builder

_1189811250.vsd
Repository
1

Test bed Server
2

Component Manager and Communication
3

RT Client
4

User Commands

Files

File Info Requests

Status Messages, error messages

help info

Repository Commands, Comm Authentication Data, Rep Authentication Data, Data. (XML Format)

Files, Status Messages, error messages, Comm Authentication Data.
(XML Format)

Test Commands, Authentication Data. (XML Format)

Repository Commands, Comm Authentication Data, Status Messages, Test results, error messages

File Info Requests

Files

User Commands

Status Messages, error messages

Test Results, help info, path

File Info Requests

Files

Messages

Messages, Connection Requests

Comm Authentication Data, Status Messages, Test results, error messages

Repository Commands, Comm Authentication Data, Rep Authentication Data, Test Commands, Data. (XML Format)

Test Results, help info, path

User Commands

Status Messages, error messages

File Info Requests

Files

REPOSITORY AND TESTBED SERVER

_1189103925.vsd
State

Process name

Class name

Event_name

Repository Testbed

Directory
Services

Network
Services

User
Interface controls

Display
Information

Files

FileInfo Requests

Messages

Messages,
Connection Requests

User Commands

Status Messages,
error messages

Test results,
path,
help info

