
Design Pattern Summary
Design Patterns, Gamma et. al, Addison Wesley, 1995

Jim Fawcett

CSE776 – Design Patterns

Summer 2006

Pattern Summary 2

Contents

• Abstract Factory

• Builder

• Factory Method

• Prototype

• Singleton

• Adapter

• Bridge

• Composite

• Decorator

• Facade

• Flyweight

• Proxy

• Chain of Responsibility

• Command

• Interpreter

• Iterator

• Mediator

• Memento

• Observer

• State

• Strategy

• Template Method

• Visitor

Pattern Summary 3

Abstract Factory

• Intent:

– Provide an interface for creating families of related or
dependent objects without specifying their concrete
classes.

• Applicability – Use this pattern when:

– A system should be independent of how its products are
created, composed, and represented.

– A system should be configured with one of multiple families
of products.

– A family of related product objects is designed to be used
together, and you need to enforce this constraint.

– You want to provide a class library of products, and you
want to reveal just their interfaces, not their
implementations.

Pattern Summary 4

 CreateProdA()
 CreateProcB()

AbstractFactory

 CreateProdA()
 CreateProcB()

ConcreteFactory1

 CreateProdA()
 CreateProcB()

ConcreteFactory2

AbstractProductA

ConcreteProductA1 ConcreteProductA2

AbstractProductB

ConcreteProductB1 ConcreteProductB2

Abstract Factory Structure

client

Pattern Summary 5

Builder

• Intent

– Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

• Applicability – use this pattern when:

– The algorithm for creating a complex object should be
inde-pendent of the parts that make up the object and how
they’re assembled.

– The construction process must allow different
representations for the object that’s constructed.

Pattern Summary 6

Client

construct()

Director

BuildPart()

Builder

builder

BuildPart()

GetResult()

ConcreteBuilder

Builder Structure

for all objects in structure {

 builder->BuildPart

}

Pattern Summary 7

Factory Method

• Intent

– Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

• Applicability – use Factory Method when:

– A class can’t anticipate the class of objects it must create.

– A class wants its subclasses to specify the objects it
creates.

– Classes delegate responsibility to one of several helper
subclasses, and you want to localize the knowledge of
which helper subclass is the delegate.

Pattern Summary 8

FactoryMethod()

Operation()

Creator

FactoryMethod()

ConcreteCreator

Factory Method Structure

Product

ConcreteProduct

product = FactoryMethod()

return new ConcreteProduct

Pattern Summary 9

Prototype

• Intent
– Specify the kinds of objects to crate using a prototypical

instance, and create new objects by copying this prototype.

• Applicability – Use this pattern when:
– A system should be independent of how its products are

created, composed, and represented; and:
• When the classes to instantiate are specified at run-time; or

• To avoid building a class hierarchy of factories that parallels
the class hierarchy of products; or

• When instances of a class can have one of only a few
different combinations of state. It may be more convenient
to install a corresponding number of prototypes and clone
them rather than instantiating the class manually, each time
with the appropriate state.

Pattern Summary 10

clone()

prototype

clone()

ConcretePrototype1

clone()

ConcretePrototype2

 Operation()

client

p = prototype->clone()

return copy of self return copy of self

Prototype Structure

Pattern Summary 11

Singleton

• Intent

– Ensure a class only has one instance, and provide a global
point of access to it.

• Applicability – use the Singleton pattern when:

– There must be exactly one instance of a class, and it must
be accessible to clients from a well-known access point.

– When the sole instance should be extensible by
subclassing, and clients should be able to use an extended
instance without modifying their code.

Pattern Summary 12

 Operation()

client

Singleton *pS = Singleton::Instance();

Singleton Structure

 static uniqueInstance
 singletonData

 static Instance()

 SingletonOperations()

 GetSingletonData()

Singleton

return &uniqueInstance

Pattern Summary 13

Adapter

• Intent

– Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn’t otherwise because of incompatible interfaces.

• Applicability – use the Adapter when:

– You want to use an existing class, and its interface does
not match the one you need.

– You want to create a reusable class that cooperates with
unrelated or unforeseen classes, that is, classes that don’t
necessarily have compatible interfaces.

– (object adapter only) you need to use several existing
subclasses, but it’s impractical to adapt their interface by
subclassing every one. An object adapter can adapt the
interface of its parent class.

Pattern Summary 14

Request()

Target

Request()

ObjectAdapter

Adapter Structure

client

adaptee->SpecificRequest()

 SpecificRequest()

Adaptee

Request()

Target

Request()

ClassAdapter

client

SpecificRequest()

 SpecificRequest()

Adaptee

Pattern Summary 15

Bridge

• Intent
– Decouple an abstraction from its implementation so that the two

can vary independently.

• Applicability – use Bridge when:
– You want to avoid a permanent binding between an abstraction and its

implemen-tation. This might be the case, for example, when the
implementation must be selected or switched at run-time.

– Both the abstractions and their implementations should be extensible by
subclass-ing. In the case, the Bridge pattern lets you combine the
different abstractions and implementations and extend them
independently.

– Changes in the implementation of an abstraction should have no impact
on clients; that is, their code should not have to be recompiled.

– You want to hide the implementation of an abstraction completely from
clients.

– You have a proliferation of classes. Such a class hierarchy may indicate
the need for splitting an object into two parts.

– You want to share an implementation among multiple objects, perhaps
using reference counting, and this fact should be hidden from the client.

Pattern Summary 16

Client

 Operation()

Abstraction
 OperationImp()

Implementor

RefinedAbstraction

imp->OperationImp()

 OperationImp()

ConcreteImplementorA
 OperationImp()

ConcreteImplementorB

Bridge Structure

Pattern Summary 17

Composite

• Intent

– Compose objects into tree structures to represent part-
whole hierarchies. Composite lets clients treat individual
objects and compositions of objects uniformly.

• Applicability – use composite when:

– You want to represent part-whole hierarchies of objects.

– You want clients to be able to ignore the difference
between compositions of objects and individual objects.
Clients will treat all objects in the composite structure
uniformly.

Pattern Summary 18

 Operation()
 Add(Component) ?
 Remove(Component) ?

 GetChild(int) ?

Component

 Operation()
 Add(Component)
 Remove(Component)
 GetChild(int)

Composite

 Operation()

Leaf_B

for all g in children
g.Operation()

add g to list of components

Composite Structure

 Operation()

Leaf_A

Pattern Summary 19

Decorator

• Intent

– Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.

• Applicability – use Decorator:

– To add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

– For responsibilities that can be withdrawn.

– When extension by subclassing is impractical. Sometimes
a large number of independent extensions are possible and
would produce an explosion of subclasses to support every
combination. Or a class definition may be hidden or
otherwise unavailable for subclassing.

Pattern Summary 20

Operation()

Component

Operation()

Decorator

Operation()

ConcreteComponent

component->Operation()

Decorator Structure

Operation()
AddedBehavior()

ConcreteDecoratorB

addedState

Operation()

ConcreteDecoratorA

Decorator::Operation();
AddedBehavior();

Pattern Summary 21

Facade

• Intent
– Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem
easier to use.

• Applicability – use Facade when:
– You want to provide a simple interface to a complex subsystem.

Subsystems often get more complex as they evolve. Most patterns, when
applied, result in more and smaller classes. This This makes the
subsystem more reusable and easier to customize, but it also becomes
harder to use for clients that don’t need to customize it. A façade can
provide a simple default view of the subsystem that is good enough for
most clients. Only clients needing more customizability will need to look
beyond the facade.

– There are many dependencies between clients and the implementation
classes of an abstraction. Introduce a facade to decouple the subsystem
from clients and other subsystems, thereby promoting subsystem
independence and portability.

– You want to layer your subsystems. Use a facade to define an entry point
to each subsystem level. If subsystems are dependent, then you can
simplify the depen-dencies between them by making them communicate
with each other solely through their facades.

Pattern Summary 22

subsystem classes

Facade

Facade Structure

Pattern Summary 23

Flyweight

• Intent
– Use sharing to support large numbers of fine-grained

objects efficiently.

• Applicability – apply the Flyweight pattern when all
of the following are true:
– An application uses a large number of objects.

– Storage costs are high because of the sheer quantity of
objects.

– Most object sate can be made extrinsic.

– Many groups o objects may be replaced by relatively few
shared objects once extrinsic state is removed.

– Application doesn’t depend on object identity. Since
flyweight objects may be shared, identity tests will return
true for concept-ually distinct objects.

Pattern Summary 24

 GetFlyweight(key)

FlyweightFactory

 Operation(extrinsicState)

Flyweight

 intrinsicState

 Operation(extrinsicState)

ConcreteFlyweight

 allState

 Operation(extrinsicState)

UnsharedConcreteFlyweight

Client

 if(flyweight(key) exists) {

 return existing flyweight

 } else {

 create new flyweight

 add to pool of flyweights

 return new flyweight

 }

Flyweight Structure

Pattern Summary 25

Proxy

• Intent
– Provide a surrogate or placeholder for another object to

control access to it.

• Applicability
– A remote proxy provides a local representative for an

object in a different address space.

– A virtual proxy creates expensive objects on demand.

– A protection proxy controls access to the original object
Protection proxies are useful when objects should have
different access rights.

– A smart reference is a replacement for a bare pointer that
performs additional actions when an object is accessed,
e.g., reference counting, loading persistent objects when
referenced, and managing object locks when referencing
the real object in a multi-threaded environment.

Pattern Summary 26

 Request():

Subject

Client

 Request():

Proxy

 Request():

RealSubject

realSubject->Request();

Proxy Structure

Pattern Summary 27

Chain of Responsibility

• Intent

– Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the
request. Chain the receiving objects and pass the request
along the chain until an object handles it.

• Applicability – use Chain of Responsibility when:

– More than one object may handle a request, and the
handler isn’t known a’priori. The handler should by
ascertained automatically.

– You want to issue a request to one of several objects
without specifying the receiver explicitly.

– The set of objects that can handle a request should be
specified dynamically.

Pattern Summary 28

HandleRequest()

Handler

 HandleRequest()

ConcreteHandler2

 HandleRequest()

ConcreteHandler1

client

Chain of Responsibility Structure

Pattern Summary 29

Command

• Intent

– Encapsulate a request as an object, thereby letting you
parameterize clients with different requests, queue or log
requests, and support undoable operations.

• Applicability – use Command when you want to:
– Parameterize objects by an action to perform. You can express such

parameterization in a procedural language with a callback function, that is, a
function that’s registered somewhere to be called at a later point. Commands are an
object-oriented replacement for callbacks.

– Specify, queue, and execute requests at different times. A Command object can
have a lifetime independent of the original request. If the receiver of a request can
be represented in an address space-independent way, then you can transfer a
command object for the request to a different process and fulfill the request there.

– Support undo. The Command’s Execute operation can store state for reversing its
effects in the command itself.

– Support logging changes so that they can be reapplied in case of a system crash.

– Structure a system around high-level operations built on primitive operations. Such
a structure is common in information systems that support transactions.

Pattern Summary 30

 Register(command*);

 Operation();

invoker

 execute()=0;

command

 execute();

concreteCommand

client
 action();

receiver

client code

library code

Command Structure

Pattern Summary 31

Interpreter

• Intent

– Given a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret senten-ces in the language.

• Applicability – use the Interpreter pattern when:

– The grammar is simple. For complex grammars, the class
hier-archy for the grammar becomes large and
unmanageable.

– Efficiency is not a critical concern. The most efficient inter-
preters are usually not implemented by interpreting parse
trees directly but by first translating them into another
form.

Pattern Summary 32

 Interpret(Context)

AbstractExpression

 Interpret(Context)

NonTerminalExpression

 Interpret(Context)

TerminalExpression

Interpreter Structure

client

context

Pattern Summary 33

Iterator

• Intent

– Provide a way to access the elements of an aggregate
object sequentially without exposing its underlying
representation.

• Applicability – use the Iterator pattern to:

– Access an aggregate object’s contents without exposing its
internal representation.

– Support multiple traversals of aggregate objects.

– Provide a uniform interface for traversing different
aggregate structures (that is, to support polymorphic
iteration).

Pattern Summary 34

First()
Next()
IsDone()
CurrentItem()

Iterator

Iterator Structure

ConcreteIterator

 CreateIterator()

Aggregate

 CreateIterator()

ConcreteAggregate

return new ConcreteIterator(this)

client

Pattern Summary 35

Mediator

• Intent

– Define an object that encapsulates how a set of objects
interact. Mediator promotes loose coupling by keeping
objects from referring to each other explicitly, and it lets
you vary their interaction independently.

• Applicability – use Mediator when:

– A set of objects communicate in well-defined but complex
ways. The resulting interdependencies are unstructured
and difficult to understand.

– Reusing an object is difficult because it refers to and
communi-cates with many other objects.

– A behavior that’s distributed between several classes
should be customizable without a lot of subclassing.

Pattern Summary 36

Mediator Structure

ConcreteMediator

Mediator Colleague

ConcreteColleague1 ConcreteColleague2

Pattern Summary 37

Memento

• Intent

– Without violating encapsulation, capture and externalize an
object’s internal state so that the object can be restored to
this state later.

• Applicability – use Memento when:

– A snapshot of (some portion of) an object’s state must be
saved so that it can be restored to that state later, and

– A direct interface to obtaining the state would expose
implemen-tation details and break the object’s
encapsulation.

Pattern Summary 38

 state

 SetMemento(Memento m)
 CreateMemento()

Originator

 state

 GetState()
 SetState()

Memento
caretaker

return new Memento(state)

state = m->GetState()

Memento Structure

Pattern Summary 39

Observer

• Intent

– Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are
notified and updated automatically.

• Applicability – use Observer in any of the following:

– When an abstraction has two aspects, one dependent on
the other. Encapsulating these aspects in separate objects
lets you vary and reuse them independently.

– When a change to one object requires changing others,
and you don’t know how many objects need to be
changed.

– When an object should be able to notify other objects
without making assumptions about who these objects are.
In other words, you don’t want these objects tightly
coupled.

Pattern Summary 40

 Attach(Observer)

 Detach(Observer)

 Notify()

Subject

Observer Structure

 Update()

Observer

observerState = subject->GetState()

 subjectState

 GetState()

 SetState()

ConcreteSubject observerState

 Update()

ConcreteObserver

for all o in

observers {

 0->Update();

}

return subjectState;

Pattern Summary 41

State

• Intent

– Allow an object to alter its behavior when its internal state
changes. The object will appear to change its class.

• Applicability – use in either of the following cases:

– An object’s behavior depends on its state, and it must
change its behavior at run-time depending on that state.

– Operations have large, multipart conditional statements
what depend on the object’s state. This state is usually
represented by one or more enumerated constants. Often,
several operations will contain this same conditional
structure. The State pattern puts each branch of the
conditional in a separate class. This lets you treat the
object’s state as an object in its own right that can vary
independently from other objects.

Pattern Summary 42

 Handle():

State

 Handle():

ConcreteStateA

 Handle():

ConcreteStateB

state->Handle()

State Structure

 Request():

client

Pattern Summary 43

Strategy

• Intent
– Define a family of algorithms, encapsulate each one, and make

them interchangeable. Strategy lets the algorithm vary
independently from clients that use it.

• Applicability – use strategy when:
– Many related classes differ only in their behavior. Strategies

provide a way to configure a class with one of many behaviors.

– You need different variants of an algorithm. For example, you
might define algorithms reflecting different space/time trade-offs.
Strategies can be used when these variants are implemented as a
class hierarchy of algorithms.

– An algorithm uses data that clients shouldn’t know about. Use
the Strategy pattern to avoid exposing complex, algorithm-
specific data structures.

– A class defines many behaviors, and these appear as multiple
conditional statements in its operations. Instead of many
conditionals, move relate conditional branches into their own
Strategy class.

Pattern Summary 44

 AlgorithmInterface():

Strategy

Strategy Structure

 ContextInterface():

Context

 AlgorithmInterface():

ConcreteStrategyA

 AlgorithmInterface():

ConcreteStrategyB

Pattern Summary 45

Template Method

• Intent
– Define the skeleton of an algorithm in an operation, deferring

some steps to subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the
algorithm’s structure.

• Applicability – use Template Method:
– To implement the invariant parts of an algorithm once and leav3 it

up to subclasses to implement the behavior that can vary.

– When common behavior among subclasses should be factored
and localized in a common class to avoid code duplication. You
first identify the differences in existing code and then separate
the differences into new operations. Finally, you replace the
differing code with a template method that calls one of these new
operations.

– To control subclasses extensions. You can define a template
method that calls “hook” operations at specific points, thereby
permitting extensions only at those points.

Pattern Summary 46

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

AbstractClass

PrimitiveOperation1()
PrimitiveOperation2()

ConcreteClass

Template Method Structure

PrimitiveOperation1()

PrimitiveOperation2()

Pattern Summary 47

Visitor

• Intent
– Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

• Applicability – use Visitor pattern when:
– An object structure contains many classes of objects with differing

interfaces, and you want to perform operations on these objects
that depend on their concrete classes.

– Many distinct and unrelated operations need to be performed on
objects in an object structure, and you want to avoid “polluting”
their classes with these operations. Visitor lets you keep related
operations together by defining them in one class. When the
object structure is shared by many applications, use Visitor to put
operations in just those applications that need them.

– The classes defining the object structure rarely change, but you
often want to define new operations over the structure. Changing
the object structure classes requires redefining the interface to all
visitors, which is potentially costly.

Pattern Summary 48

v->VisitConcreteElementA(this) v->VisitConcreteElementB(this)

client VisitConcreteElementA(ConcreteElementA)

 VisitConcreteElementB(ConcreteElementB)

Visitor

 VisitConcreteElementA(ConcreteElementA)
 VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor1

 VisitConcreteElementA(ConcreteElementA)
 VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

ObjectStructure
 Accept(Visitor)

Element

 Accept(Visitor v)
 OperationA()

ConcreteElementA

 Accept(Visitor v)
 OperationB()

ConcreteElementB

Visitor Structure

Pattern Summary 49

Pattern Relationships

• Control creation of objects
– Abstract Factory, Builder, Factory Method, Prototype, Singleton, Flyweight

• Establish object connection structure
– Composite, Decorator, Facade, Chain of Responsibility, Mediator, Observer

• Construct loosely coupled systems
– Abstract Factory, Factory Method, Prototype, Bridge, Command, Iterator

• Support change
– Adapter, Bridge, Facade, Command, Strategy, Visitor

• Simplify communication
– Facade, Chain of Responsibility, Mediator

• Organize behavior of a family of classes
– Interpreter, State, Strategy, Template Method, Visitor

• Manage the state of object(s)
– Memento, Proxy, State

• Manage access to objects
– Singleton, Adapter, Facade, Flyweight, Proxy, Iterator, Mediator, Visitor

Pattern Summary 50

Basic Techniques

• Defer definition

– Provide protocol with abstract base, interpret protocol with
derived (specialized) classes at some later time (Command,
Visitor).

• Support interchangeability

– Provide base class as a proxy definition for a set of
interchangeable derived classes (Composite, State, Strategy).

• Promote loose coupling between components

– Use abstract interfaces.

– delegate creation (Factory Method).

– hide implementation behind an opaque pointer (Bridge).

• Support heterogeneous collections

– Provide reference to base class objects from other base or
derived objects (Composite, Decorator, …).

