
Refactoring to Patterns

Jim Fawcett

CSE776 – Design Patterns

Summer 2005

2

Reference

 Refactoring to Patterns, Joshua Kerievsky,
Addison-Wesley, 2005

3

Agenda

 This presentation provides a summary of
the content from this well received book.

4

Background

 Evolutionary Programming

 A development process that focuses on
incremental development.

 Usually set up as a sequence of development
cycles, each culminating in a software
release.

 Each item from the sequence provides some
planning, design, implementation, and test.

 Sometimes the elements are inverted, as is
the case for extreme programming:

5

Extreme Programming

 Process Model Phases:
 A sequence of releases as per Evol. Prog.

 Steps to achieve a release:

 Specify the functionality for next release

 Design Test(s)

 Write code to make tests pass

 Refactor code to improve the design

 Constantly run regression tests on the entire build
▪ Goal is to stay in state where all tests pass

 Release when the implemented functionality is
incorporated in the build.

6

Refactoring

 Refactoring is a major part of the
Evolutionary style of programming,
especially for Extreme Programming.

 But how do you successfully refactor?

 What are the goals?

 When should you refactor?

 How do you do it?

 How do you know when to stop?

7

A Selection of Chapters

 Chap 3: Patterns

 Chap 4: Code Smells

 Chap 5: Catalog of Refactorings to Patterns

 Chap 6: Creation

 Chap 7: Simplification

 Chap 8: Generalization

 Chap 9: Protection

 Chap 10: Accumulation

 Chap 11: Utilities

8

Patterns

 What is a pattern?
 “Each pattern is a three-part rule, which expresses

a relation between a certain context, a problem, and
a solution”

– Christopher Alexander, Architect

 There are many ways to implement a pattern
 “Every pattern describes a problem which occurs

over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a million
times over, without ever doing it the samy way
twice.” – Christopher Alexander

9

Refactoring to, towards, and
away from Patterns

 “Good designers refactor in many
directions, always with the goal of reaching
a better design. While many of the
refactorings I apply don’t involve patters
(i.e., they’re small, simple transformations,
like Extract Method …), when my
refactorings do involve patterns, I
refactor to, towards, and even away from
patterns.” – Joshua Kerievsky

10

Code Smells

 “It’s … necessaryto learn common design
problems so you can recognize them in your
code.”

 Robert Martin, Martin Fowler, and Kent
Beck have all written about specific “Code
Smells”

11

Catalog of Code Smells

 Duplicated Code
 Long Method
 Conditional Complexity
 Primitive Obsession
 Indecent Exposure
 Solution Sprawl
 Alternative Classes with Different Interfaces
 Lazy Class
 Large Class
 Switch Statements
 Combinational Explosion
 Oddball Solution

12

Catalog of Patterns

 Replace Ctors with Creation methods, chain Ctors
 Encapsulate Classes with Factory
 Introduce Polymorphic Creation with Factory Method
 Replace Conditional Logic with Strategy
 Form Template Method
 Compose Method
 Replace Implicit Tree with Composite
 Encapsulate Composite with Builder
 Move Accumulation to Collecting Parameter
 Extract Composite, Replace one/many with Composite.
 Replace Conditional Dispatcher with Command
 Extract Adapter, Unify Interfaces with Adapter
 Replace Type Code with Class

13

Catalog of Patterns

 Replace State-Altering Conditionals with State

 Introduce Null Object

 Inline Singleton, Limit Instantiation with Singleton

 Replace Hard-Coded Notifications with Observer

 Move Embellishment to Decorator, Unify Interfaces,
Extract Parameter

 Move Creation Knowledge to Factory

 Move Accumulation to Visitor

 Replace Implicit Language with Interpreter

14

A Typical Catalog Item

 States Pattern Name and Intent

 Gives an application example

 Discusses motivation

 Benefits and Liabilities

 Mechanics

 Specific things to do

 Presents detailed example

15

Some non-GoF Patterns

 Compose Method
 Extract blocks of code as methods with intent

revealing names
 Chain Constructors

 Remove duplicate code in constructors by calling, in
a constructor, other constructor(s).

 Extract Parameter
 Assign, to a field, a caller provided parameter

instead of a locally instantiated object.
 Move Accumulation to Collecting Parameter

 Replace a complex function that accumulates results
with a set of Composed Methods which are passed a
Collecting Parameter.

16

Summary

 Interesting ideas, presented clearly

 Book is on restricted hold in Sci-Tech
library.

