Refactoring to Patterns

Jim Fawcett

CSE776 - Design Patterns
Summer 2005

Reference

Refactoring to Patterns, Joshua Kerievsky,
Addison-Wesley, 2005

Agenda

This presentation provides a summary of
the content from this well received book.

Background

Evolutionary Programming

A development process that focuses on
incremental development.

Usually set up as a sequence of development
cycles, each culminating in a software
release.

Each item from the sequence provides some
planning, design, implementation, and test.

Sometimes the elements are inverted, as is
the case for extreme programming:

Extreme Programming

Process Model Phases:
A sequence of releases as per Evol. Prog.
Steps to achieve a release:
Specify the functionality for next release
Design Test(s)
Write code to make tests pass
Refactor code to improve the design

Constantly run regression tests on the entire build
Goal is to stay in state where all tests pass

Release when the implemented functionality is
incorporated in the build.

Refactoring

Refactoring is a major part of the
Evolutionary style of programming,
especially for Extreme Programming.
But how do you successfully refactor?

What are the goals?

When should you refactor?

How do you do it?

How do you know when to stop?

A Selection of Chapters

Chap 3: Patterns

Chap 4: Code Smells

Chap 5: Catalog of Refactorings to Patterns
Chap 6: Creation

Chap 7: Simplification

Chap 8: Generalization

Chap 9: Protection

Chap 10: Accumulation

Chap 11: Utilities

Patterns

What is a pattern?

"Each pattern is a three-part rule, which expresses
a relation between a certain context, a problem, and
a solution”

- Christopher Alexander, Architect

There are many ways to implement a pattern

"Every pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a million
times over, without ever doing it the samy way
twice." - Christopher Alexander

Refactoring to, fowards, and
away from Patterns

"Good designers refactor in many
directions, always with the goal of reaching
a better design. While many of the
refactorings I apply don't involve patters
(i.e., they're small, simple transformations,
like Extract Method ...), when my
refactorings do involve patterns, I
refactor to, towards, and even away from
patterns.” - Joshua Kerievsky

Code Smells

"It's ... necessaryto learn common design
problems so you can recognize them in your
code.”

Robert Martin, Martin Fowler, and Kent
Beck have all written about specific "Code
Smells”

10

Catalog of Code Smells

Duplicated Code

Long Method
Conditional Complexity
Primitive Obsession
Indecent Exposure
Solution Sprawl
Alternative Classes with Different Interfaces
Lazy Class

Large Class

Switch Statements
Combinational Explosion
Oddball Solution

11

Catalog of Patterns

Replace Ctors with Creation methods, chain Ctors
Encapsulate Classes with Factory

Introduce Polymorphic Creation with Factory Method
Replace Conditional Logic with Strategy

Form Template Method

Compose Method

Replace Implicit Tree with Composite

Encapsulate Composite with Builder

Move Accumulation to Collecting Parameter

Extract Composite, Replace one/many with Composite.
Replace Conditional Dispatcher with Command
Extract Adapter, Unify Interfaces with Adapter
Replace Type Code with Class

12

Catalog of Patterns

Replace State-Altering Conditionals with State
Introduce Null Object

Inline Singleton, Limit Instantiation with Singleton
Replace Hard-Coded Noftifications with Observer

Move Embellishment to Decorator, Unify Interfaces,
Extract Parameter

Move Creation Knowledge to Factory
Move Accumulation to Visitor
Replace Implicit Language with Interpreter

13

A Typical Catalog Item

States Pattern Name and Intent
Gives an application example
Discusses motivation
Benefits and Liabilities
Mechanics

Specific things to do
Presents detailed example

14

Some non-GoF Patterns

Compose Method

Extract blocks of code as methods with intent
revealing names

Chain Constructors

Remove duplicate code in constructors by calling, in
a constructor, other constructor(s).

Extract Parameter

Assign, to a field, a caller provided parameter
instead of a locally instantiated object.

Move Accumulation to Collecting Parameter

Replace a complex function that accumulates results
with a set of Composed Methods which are passed a
Collecting Parameter.

15

Summary

Interesting ideas, presented clearly

Book is on restricted hold in Sci-Tech
library.

16

