
Design Patterns
Introduction

Jim Fawcett

CSE776 – Design Patterns

Fall 2017

Design Patterns Class

•Run in Seminar Style
• Each class consists of student presentations of design

patterns

• Each presentation is followed by a discussion of the
material presented

•We will cover all 23 patterns in the text plus
additional material.

•I will serve as moderator and organizer.

•You will do all of the work preparing for and
delivering presentations on each pattern

•I will present a few of the patterns.
• First pattern today

•About 20 % of the remainder

Your Responsibilities as Presenters

•Prepare a Power-Point presentation for
delivery in class following the pattern format
discussed in the text.

•Prepare two pieces of C++, C#, or Java code.

• an operational skeleton which compiles, links, and
runs, but has no more code than absolutely
necessary to illustrate how the pattern works

• a more detailed example, just large enough to show
how the pattern is used in a realistic context

•Deliver your presentation using guidelines
discussed in subsequent slides today.

•Lead a discussion of the pattern.

•prepare a list of questions, assertions, and issues to
use for this part -- don’t make slides for this part,
just use the notes to help you organize and lead the
discussion

• I will help, but it’s your responsibility to get the
discussion going.

Grades

•Grades are based on:

• your presentation

• but not affected by your command of the English
language

• your code samples

• these will be put on a class directory, accessible from ECS
cluster:
www.ecs.syr.edu/faculty/fawcett/handouts/CSE776

• the closing discussion you lead, focused on your
pattern

• Your participation in discussions of patterns presented
by other students

•Most patterns will be presented by three or four
students.

•Usually two students prepare and present the
pattern-based part of the presentation.

•Twp other members of the team prepare and
present code examples.

•The specifics of how you do this is up to you and
your presentation partner(s) .

Patterns
•A pattern is a model of a software component

which has a specific structure allowing it to
successfully solve some set of design problems.

• Patterns convey their message with text and
diagram descriptions of a specific design idiom at
the architectural and implementation levels.

• Architecture is shown using class diagrams and object
relationships in the OMT notation.

• Implementation is shown with sample code fragments.

• A pattern provides:

• a name which, given a catalog of patterns, allows
designers to communicate precisely about their
designs.

• a statement which describes a design problem the
pattern is trying to handle.

• a solution in terms of architecture and
implementation.

• a brief description of each of the collaborators in the
pattern.

• optionally, a critique describing the strengths and
weaknesses of the pattern.

Uses

• Patterns are used to describe:

• software architectural components
(class text)

• language specific patterns and design idioms

• frameworks
(like Microsoft Foundation Classes - MFC)

• software architectures

• systems and distributed processing

• process and organization

• business objects

• Sources of patterns:

• Design Patterns, Gamma, Helm, Johnson, Vlissides
Addison-Wesley, 1995

• Pattern Languages of Program Design (PLOP)
conference proceedings, vol. 1, 2, 3, or 4
on restricted hold in Sci Tech Library, Carnagie

• Books held in Sci-Tech Library

• C++ Report, many articles in back issues

Pattern Grammar
• Intent

• the purpose of this pattern

• Motivation
• an example application

• Forces (not in class text)
• conflicting forces and constraints

• Applicability
• when would you expect to use this pattern

• Structure
• what is the static structure of this pattern
• expressed using class diagram(s) to show logical structure

• Participants
• name each component and tell what it does - this text goes

along with the diagram shown in Structure.

• Collaborations
• how do the participants interact with each other and with the

client – text, often accompanied by a sequence diagram.

• Consequences
• what are the advantages and disadvantages of using this

pattern

• Implementation
• code fragments showing how to use the pattern
• a complete example

• known uses
• where has this pattern been used before?

• related patterns

Presentation Pattern

•The next few slides are concerned with
making good presentations.

•They are presented in the pattern format,
using pattern grammar.

•They are not an ideal example of how
patterns are used, but will get us used to the
pattern ideas and grammar.

•Later today I will present the first of the
patterns covered in this course.

• Intended to introduce you to patterns

• I’ll make some remarks about how to present
patterns as that presentation unfolds.

•My presentation should be a good example of how
to present in this class.

Presentation Pattern

• Intent:

• help you avoid common idiocies most of us fall into from
time to time as we prepare and give technical presentations

•Motivation:

• The presentations we will all been giving in CSE776 are
typical of those you will be required to give early in your
professional careers.

• Applicability:

• You may be asked to give presentations to:

– report progress

– communicate bad news

– sell a product, service or idea

– recommend a strategy

– train other technical people

– make other general presentations

The pattern structure works for all of these.

• Structure:

• The “Design Patterns” book uses a very specific structure
that we will follow throughout this course.

• When giving professional presentations this pattern often
will fit well – it is always a good place to start.

• See also the Microsoft suggested Content examples.

Presentation Pattern

•Participants:
• you and the audience

–do you tailor your presentation for yourself?

–or your audience?

•Collaborators:
• presenter makes eye contact, talks with moderate

pace to the back of the room, and frequently asks
questions

•your talk is successful if the audience:

▪pays attention

▪asks questions

▪argues

▪gets emotionally involved, e.g., intrigued, excited,
angry, pleased

•your talk is not successful if the audience:

▪goes to sleep

▪sits in stony silence

▪carries on parallel conversations

▪gets up and leaves

Presentation Pattern

•Consequences:

• if successful you get one or more of the
following:

–promoted

–a salary increase

–a pat on the back

–your boss takes the credit

• if unsuccessful you get one or more of
these:

–no raise

–your work station replaced with a
486 Windows 95 machine

–the opportunity to seek new employment

Presentation Pattern Implementation

•Sign post:

▪tell them what you’re going to tell them

▪tell them

▪tell them what you told them

•Limit detail:

▪no more than five items per level

▪usually no more than two levels

•Don’t read your slides:

▪best to leave off details

▪use brief bullets

▪verbalize the details in your own words, using notes
if you need to

▪have back up slides with details if your audience
asks questions

▪ leave unexplored packets of information with your
audience

•Never, never, never, never, never apologize.

Presentation Pattern Implementation (continued)

• Encourage questions:

▪ stop frequently and ask questions of audience

▪badger them

▪say outrageous things

• Pick out three or four people in the audience:

▪ speak directly to them in near conversational manner

▪ adjust your pace based on their reactions

▪ look them in the eyes

• Keep it interesting:

▪ Tell one or two really corny jokes.

▪wave you arms, walk around, gesture (politely)

▪ vary your pitch and volume

• Be as positive and optimistic as you can be.

• Rules of thumb:

▪ allow 3 minutes per slide

▪don’t time yourself during the talk.

▪plan 3 to 5 hours of preparation for each hour of delivery

• Stop before you get boring
(unless you’re avoiding a quiz).

Presentation Pattern

•Known Uses:

•You will make many presentations
during your career
• Selling ideas to your boss and customers

• Providing status reports on the work of your team

• Participating in interviews

•As candidate

•As recruiter

• Demonstrating finished work

• Training new hires

Presentation Pattern

End of Pattern

Next - More about Patterns

Pattern Types

•Creational Patterns

defer some part of the object creation
process to subclasses or to other objects

• abstract factory
provide interface for building related or dependent
objects without specifying their concrete classes

•builder
separate construction from representation so one
construction process can build many
representations

• factory method
define interface for creating object but let
subclasses decide which object to create

•prototype
specify object to create using a prototype and
construct by cloning

• singleton
ensure class has only one object

Pattern Types

•Structural

Describe useful ways of building inheritance
hierarchies or assembling objects to deal
effectively with some design problem.

• adapter (wrapper)
wrap a new interface around an existing class or
module

•bridge (handle/body)
decouple abstraction from its implementation so
that each can change independently

• composite
build recursive structure representing part/whole
com-positions

•decorator
attach responsibilities to an object dynamically

• facade
provide one interface for a set of objects with
logically connected but different interfaces

• flyweight
use state sharing to support use of many fine-
grained objects

•proxy
provide surrogate object to another to control
access to it

Pattern Types

•Behavioral

group classes or objects into patterns which
perform some task in a particularly effective
way

• chain of responsibility
decouple requestor from receiver by allowing more
than one object to handle request

• command
encapsulate request as object, separating request
from execution, and dynamically binding invoker
with receiver

• interpreter
represent and process a grammar

• iterator
access container elements sequentially without
breaking encapsulation

•mediator
lets objects communicate without knowing about
each other explicitly

Pattern Types

•Behavioral patterns (continued)

•memento
capture and return a state (or partial state)
snapshot supporting undo and checkpointing

•observer
when one object changes state all dependents are
notified and updated

• state
represent finite state machine (remember elevator
simulation)

• strategy
define a public interface for a family of algorithms
which will be used interchange-ably

• template
factor common steps of a family of algorithms into
a base class and define subclasses to complete the
family

• visitor
represent an operation to be performed on each
element of a container

Additional Patterns

•Plop 4 Conference

•Pattern Languages Of Programming

•Books on hold in Sci-Tech Library

•Design Patterns, Gamma et. al., Addison-
Wesley, 1995

•Refactoring to Patterns, Kerievsky,
Addison-Wesley, 2005

•Patterns of Enterprise Application
Architecture, Fowler, Addison-Wesley,
2003

•Enterprise Integration Patterns, Hohpe and
Woolf, Addison-Wesley, 2004

•Pattern Oriented Software Architecture,
Schmidt, Wiley, 2000

•Head First Design Patterns, Freeman and
Freeman, OReilly,2004

http://st-www.cs.uiuc.edu/~plop/plop97/Workshops.html

Patterns Support Change

• Design patterns can help to avoid massive redesign when
faced with the need for change.

• Creating an object using a class name commits you to an
implementation as well as an interface. To avoid this create
objects indirectly:

abstract factory, factory method, prototype

• Specifying a request by name commits you to one specific
member operation. You can avoid specific requests by
using:

chain of command, command

• If clients know how an object is represented or
implemented, or where it is located, then the client may
need to change if the object changes. This kind of
information can be hidden using the patterns:

abstract factory, bridge, memento, proxy

• Objects that depend on algorithms have to change when
the algorithm changes. The algorithms can be isolated
using:

builder, iterator, strategy, template, visitor

Patterns Support Change

• Tightly coupled classes mean you can’t remove or
change a class without understanding and changing
many other classes. Loose coupling is supported by
the patterns:

abstract factory, bridge, chain of responsibility,
command, facade, mediator, and observer

• Extending functionality by subclassing is not always
easy. Object composition and delegation provide an
alternate flexible means for extending functionality.
Many of the patterns, discussed in the class text,
allow you to customize by defining one subclass and
composing its objects with existing classes. See:

bridge, chain of responsibility, composite,
decorator, observer, strategy

• If you need to modify behavior of a class, but can’t
directly do so conveniently (perhaps there are too
many subclasses) try some of the patterns:

adapter, decorator, visitor

A Surprise

•You may be surprised that the Design
Patterns book does not use C++
templates

•Templates were just being introduced at
the time the book was published.

•Very few compilers implemented them
correctly, if at all, at that time.

•You are encouraged to implement patterns
in your demonstrations using templates.

Design Patterns Course

•There are no examinations.

•You can expect to make several
presentations.

•Only small amounts of coding are required.

• The smallest demo you can devise that implements
the pattern, using all the participant names

•A slightly larger example that shows how the
pattern could support some application

•Leading effective presentations and
contributing during other’s is an important
part of this class.

End of Presentation

