Five Fundamental Patterns
Working with Classes and Interfaces

Jim Fawcett

CSE776 - Design Patterns
Summer 2004




Reference

Working with Classes and Interfaces, five fundamental
patterns, Dirk Riehle, C++ Report, March 2000.



A Pattern Language for OOD

Small patterns
Design idioms
Good practice

Pattern language
Coordinated set of patterns
One focused topic area

Individual patterns often stated in abbreviated
style



Simple Class Pattern

Problem:
You need to design and implement a concept.

Context:
One implementation is sufficient, no other is needed.
Changes to implementation may affect clients.
You want to make it as simple as possible, but not simpler.

Solution:
Implement the concept as a single class



Design by Primitives

Problem:
You need to implement a class.

Context:
You expect to evolve the class.
You want it to be easy to add new member functions.

You want to avoid a fragile class in which changes to a function affect
many other functions.

You want to make it as simple as possible, but not simpler.

Solution:
Separate more complex non-primative member functions from primitive
member functions.
Determine the primitive member functions that best help implement
the class.
Implement non-primitive member functions using primitive member
functions.



Interface Class

Problem:
You need to design and implement a concept with different implementations.

Context:
You want to give clients freedom of choice:
for selecting an implementation.
to not care about the implementation.
You want to change implementations without affecting clients.
You want to intfroduce new implementations without making clients notice.
You want to separate implementations from their clients.
You want to make it as simple as possible, but not simpler.

Solution:
Determine the functionality of the concept separately from its
implementations.
Represent the functionality as an interface class (only pure virtual
functions).
Make implementation classes inherit and implement the interface class.



Abstract Base Class

Problem:

You need to ensure identical behavior of concept implementations where
functionality is identical, and provide different behavior, where
functionality is different.

Context:
You want to avoid redundant code.
You want to ease adding other implementations.
You want to make it as simple as possible, but not simpler.

Solution:

Separate variant functionality of the implementations from invariant
functionality.

Ilmplemen‘r the invariant part as shared functionality in an abstract base
class.

Declare the variant part in the abstract base class using pure virtual
functions.

Make implementations subclasses of the abstract base class that implement
the variant part.



Narrow Interface Class

Problem:

You need to minimize effort to introduce new subclasses of an abstract
base class.

Context:

You are using an abstract base class with many pure virtual member
functions.

You expect existing subclasses to evolve and new subclasses to enter
the system.

You want to make it as simple as possible, but not simpler.

Solution:
Reduce the number of pure virtual member fuctions to it minimum by
using design by primitives.
Provide default implementations of primitives were possible.
Implement all non-primitive member functions using primitives.



