
Five Fundamental Patterns
Working with Classes and Interfaces

Jim Fawcett

CSE776 – Design Patterns

Summer 2004



Reference

 Working with Classes and Interfaces, five fundamental 
patterns, Dirk Riehle, C++ Report, March 2000.



A Pattern Language for OOD

 Small patterns
 Design idioms

 Good practice

 Pattern language
 Coordinated set of patterns

 One focused topic area

 Individual patterns often stated in abbreviated 
style



Simple Class Pattern

 Problem:

 You need to design and implement a concept.

 Context:

 One implementation is sufficient, no other is needed.

 Changes to implementation may affect clients.

 You want to make it as simple as possible, but not simpler.

 Solution:

 Implement the concept as a single class



Design by Primitives

 Problem:
 You need to implement a class.

 Context:
 You expect to evolve the class.
 You want it to be easy to add new member functions.
 You want to avoid a fragile class in which changes to a function affect 

many other functions.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Separate more complex non-primative member functions from primitive 

member functions.
 Determine the primitive member functions that best help implement 

the class.
 Implement non-primitive member functions using primitive member 

functions.



Interface Class

 Problem:
 You need to design and implement a concept with different implementations.

 Context:
 You want to give clients freedom of choice:

 for selecting an implementation.
 to not care about the implementation.

 You want to change implementations without affecting clients.
 You want to introduce new implementations without making clients notice.
 You want to separate implementations from their clients.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Determine the functionality of the concept separately from its 

implementations.
 Represent the functionality as an interface class (only pure virtual 

functions).
 Make implementation classes inherit and implement the interface class.



Abstract Base Class

 Problem:
 You need to ensure identical behavior of concept implementations where 

functionality is identical, and provide different behavior, where 
functionality is different.

 Context:
 You want to avoid redundant code.
 You want to ease adding other implementations.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Separate variant functionality of the implementations from invariant 

functionality.
 Implement the invariant part as shared functionality in an abstract base 

class.
 Declare the variant part in the abstract base class using pure virtual 

functions.
 Make implementations subclasses of the abstract base class that implement 

the variant part.



Narrow Interface Class

 Problem:
 You need to minimize effort to introduce new subclasses of an abstract 

base class.

 Context:
 You are using an abstract base class with many pure virtual member 

functions.
 You expect existing subclasses to evolve and new subclasses to enter 

the system.
 You want to make it as simple as possible, but not simpler.

 Solution:
 Reduce the number of pure virtual member fuctions to it minimum by 

using design by primitives.
 Provide default implementations of primitives were possible.
 Implement all non-primitive member functions using primitives.


