
CSE 776-Design Patterns
Factory Method

Mrunal Dharmendra Maniar
Yuxuan Xie

INTRODUCTION

● Factory method is a creational design pattern
● INTENT :

“Define an interface for creating an object, but let
subclasses decide which class to instantiate”

● Also known as virtual constructor

MOTIVATION

● FRAMEWORKS :
○ Most of the frameworks use abstract classes to define

various objects and maintain relationships between them.
They are also responsible for application specific object
creation

○ Unless specified, the type of object to be created is not
known to the library. In such cases, factory method can be
used.

MOTIVATION EXAMPLE

FORCES

● The need to use reusable classes with the flexibility to extend
them

● The provision to operate on objects without knowing what type
of object creation in advance

APPLICABILITY

● Needed when required type of object instantiation is unknown
at compile time.

● When the class needs its subclass to specify the object it creates.
● Developer wants to localize the knowledge of helper subclasses

BASIC STRUCTURE

PARTICIPANTS

● Product(IBrowser)
○ Defines an interface which is implemented by classes whose

objects are returned by the factory method
● Concrete Product(Firefox, Chrome)

○ Classes that implement the the above interfaces
● Creator(BrowserFactory)

○ Factory method is declared here. There may or may not be a
default implementation

● Concrete Creator (ChromeBrowser)
○ Overrides the factory method and returns an object of

concrete product

COLLABORATORS

● Creator depends on its subclasses for creation of objects of
Concrete Product

● Creator may or may not perform series of operations on the
object created and simply returns a reference to Product

RESULTING ARCHITECTURE

CONSEQUENCES

● Details of concrete subclasses are decoupled from the client
● New concrete subclass can be added easily
● It might lead to creation of many subclasses if the object of

Product needs an additional object.

CONSEQUENCES (continued)

IMPLEMENTATION

● Abstract creators with no default implementation
● Concrete creator class with default implementation
● Parameterized methods
● Templates

PARAMETERIZED FACTORY

PARAMETERIZED FACTORY - (continued)

TEMPLATIZED FACTORY

KNOWN USES

● Android
● Several places in Java API
● TestNG
● .NET framework class library

DISADVANTAGES

● Codebase tends to become huge because of so many subclasses.
● Reading and understanding the code becomes difficult because

of the high level of abstraction

REFERENCES

● https://en.wikipedia.org/wiki/Factory_method_pattern

● Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, et. al.,

Addison-Wesley, 1994, ISBN 0-201-63361-2

● https://sourcemaking.com/design_patterns/factory_method

● Instructor presentation of Prof. Fawcett

https://en.wikipedia.org/wiki/Factory_method_pattern
https://sourcemaking.com/design_patterns/factory_method

THANK YOU

