E /'76-Design Patterns
Factory Method

INTRODUCTION

e Factory method is acreational design pattern
e INTENT:

“Define an interface for creating an object, but let
subclasses decide which class to instantiate”

e Also known as virtual constructor

MOTIVATION

FRAMEWORKS:

©)

Most of the frameworks use abstract classes to define
various objects and maintain relationships between them.
They are also responsible for application specific object
creation

Unless specified, the type of object to be created is not
known to the library. In such cases, factory method can be
used.

MOTIVATION EXAMPLE

+ greeting(): void
I A

Y

+ createBrowser(): *IBrowser + greeting(): void
|

|
Browserlnitializer ChromeCreator

+createBrowser(): *IBrowser + createBrowser(): *IBrowser

FORCES

e The need to usereusable classes with the flexibility to extend
them

e The provision to operate on objects without knowing what type
of object creation in advance

APPLICABILITY

e Needed when required type of object instantiation is unknown

at compile time.
e When the class needs its subclass to specify the object it creates.

e Developer wants to localize the knowledge of helper subclasses

BASIC STRUCTURE

Creator

FactoryMethod)

AnOperation() ©-

ConcreteProduct

PARTICIPANTS

e Product(IBrowser)
o Defines an interface which is implemented by classes whose
objects are returned by the factory method
e Concrete Product(Firefox, Chrome)
o Classes that implement the the above interfaces
e Creator(BrowserFactory)
o Factory method is declared here. There may or may not be a
default implementation
e Concrete Creator (ChromeBrowser)
o Overrides the factory method and returns an object of
concrete product

COLLABORATORS

e Creator depends on its subclasses for creation of objects of
Concrete Product

e Creator may or may not perform series of operations on the
object created and simply returns a reference to Product

RESULTING ARCHITECTURE

Client

+ greeting(): void + createBrowser(): *IBrowser
A A

+ greeting(): void + createBrowser(): *IBrowser + createBrowser(): *IBrowser
|

CONSEQUENCES

e Details of concrete subclasses are decoupled from the client

e New concrete subclass can be added easily

e |t mightlead to creation of many subclasses if the object of
Product needs an additional object.

CONSEQUENCES (continued

Client

+ search
& areateBrowser(. Br e +5toreCL())ok|es()
A

+ createBrowser(): Browser + createBrowser(): Browser +storeCookies(+storeCookies(

IMPLEMENTATION

Abstract creators with no default implementation
Concrete creator class with default implementation
Parameterized methods

Templates

PARAMETERIZED FACTORY

IChannel ChannelFactory
+ inform(): void + createChannel(): *IChannel

+ inform(): void + inform(): void

PARAMETERIZED FACTORY - (continued)

class ChannelFactory
{
public:
IChannel* createChannel (const char* device):
}i

IChannel* ChannelFactory::createChannel (const char* device)
{

IChannel* channel = nullptr;

if (device == "Mobile")

{

channel = new Mobile():

else if (device == "Web")
{

channel = new Web():;

}

return channel;

}

//In the client
IChannel* mobile channel = ChannelFactory() .createChannel ("Mobile");
IChannel* web channel = ChannelFactory().createChannel ("Web"):;

TEMPLATIZED FACTORY

class ChannelFactory {

public:
ChannelFactory() { }
virtual IChannel* CreateChannel ()

= 0;
}

template <class T>
class Channel public ChannelFactory ({

public:
IChannel* CreateChannel () {
return new T;

}

| &
// In the Client

Channel<Mobile> myMobile;

\ KNOWN USES

e Android

e Several placesin Java API

o TestNG

e .NET framework class library

\ DISADVANTAGES

e Codebase tends to become huge because of so many subclasses.
e Reading and understanding the code becomes difficult because
of the high level of abstraction

REFERENCES

https://en.wikipedia.org/wiki/Factory method pattern

e Design Patterns, Elements of Reusable Object-Oriented Software, Erich Gamma, et. al.,
Addison-Wesley, 1994, ISBN 0-201-63361-2
https://sourcemaking.com/design patterns/factory method

e Instructor presentation of Prof. Fawcett

https://en.wikipedia.org/wiki/Factory_method_pattern
https://sourcemaking.com/design_patterns/factory_method

THANK YOU

