
RESTful Service
Pattern

Adarsh Venkatesh Bodineni
Yunsheng Guo
Jiacheng Zhang

Introduction

● ● Structured request and structured

response

● What is Web service?

● What is REST?

● What is API?

Architectural Constraints

● These constraints restrict the ways the server can process and respond to client

requests, so that by operating within these constraints, the system gains desirable

non-functional properties

● Performance - how fast the requests can be processed

● Modifiability - of components to changing requirements

● Simplicity - of a uniform interface

● Portability - of components by moving program code with the data

● Reliability - in resistance to failures at system level

● If a system violates any of these constraints then it is not considered Restful

Client-server Architecture

● Separates user interface concerns from data storage concerns

● This improves the portability of user interface across multiple platforms

● This separation helps them to evolve independently

Statelessness

● ● What is stateless communication

between client and server?

● Statelessness is helpful

Overhead on client side:

● It makes client to add additional

information everytime it makes a

request

Cacheability

● ● Responses must implicitly or explicitly

define themselves as cacheable

● This can improve performance

● Decreases reliability - if cache data

differs significantly from the data that

would have been obtained had the

request been directly sent to the

server

Layered System

● This does not let a component to see

beyond the intermediate layer with

which they are interacting

● Improves system scalability by

distributing load balance across

multiple networks and processes

● Layers allow security policies ondata

crossing the organizational boundary

as is required by firewalls

Code on demand

● Servers can temporarily extend or customize the functionality of a client by transferring

executable code

● Eg: Javascript

● Improves system extensibility

Uniform interface

● The uniform interface is a

fundamental constraint to the RESTful

system.

● Simplifies and decouples architecture

and enables each part to evolve

independently

● REST is defined by four interface

constraints:

● Identification of resources

● Manipulation of resources through

representations

● Self descriptive messages

● Hypermedia as the engine of

application state

Architectural Properties

● Performance
○ Net Performance
○ User-Perceived performance
○ Network Efficiency

● Scalability
● Simplicity

● Modifiability
○ Evolvability
○ Extensibility
○ Customizability
○ Configurability
○ Reusability

● Visibility
● Portability
● Reliability

Deriving REST*

● Starting with the Null Style
● Adding constraints

Deriving REST

● Starting with the Null Style

● Adding constraints

Deriving REST

● Starting with the Null Style

● Adding constraints

Architectural Elements

Connector

 Connectors represent the activities involved in accessing resources and
transferring representations.

Components

In REST, the various software that interacts with one another are called components.

Origin Server Uses a server connector to receive the
request, and is the source for
representations of its resources.

Apache httpd, Microsoft
IIS

User Agent Uses a client connector to initiate a
request and becomes the ultimate
recipient of the response.

Browser

Intermediary
Components

act as both a client and a server in order
to forward

Gateway,Proxy

Data Elements

 The key aspect of REST is the state of the data elements. Components communicate by
transferring representations of the current or desired state of data elements.

· Resource : dynamic or static

· Resource Identifier: URI

· Resource Metadata: source link, alternates, vary

· Representation: XML, HTML or text

· Representation Metadata: media type, last-modified time

Applied to Web Service

Web service APIs that adhere to the REST architectural

constraints are called RESTful APIs. HTTP-based

RESTful APIs are defined with the following aspects:

· a base URL, such as http://api.example.com/resources;

· a media type that defines state transition data

elements

· standard HTTP methods (e.g., OPTIONS, GET, PUT,

POST, and DELETE).

HTTP Methods for RESTful Services

HTTP CRUD idempotent

GET READ YES

POST CREATE NO

PUT UPDATE/REPLACE YES

DELETE DELETE YES

Request

Request Line: GET /utilities/weatherfull/city/Syracuse HTTP/1.1
Request Method: GET
Request Time: 2018-11-25 15:33:20
Accept-Encoding: gzip, deflate
Accept-Language: en,zh-CN;q=0.9
Host address: restapi.demoqa.com
Client Port: 49652
User-Agent: Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102
Safari/537.36
Request body:

Response

Status Line: HTTP/1.1 200 OK
Response status code -> 200 OK
Server: openresty
Content-Type: application/json; charset=utf-8
Content-Length: 433
X-Cache-Key:
/data/2.5/weather?APPID=199c0c704dcd69f
f1a88fc99385dae08&q=Syracuse
Response Body: {

 "City": "Syracuse",
 "Temperature": "44 ℉",
 "Humidity": "70 Percent",
 "Description": "cloudy",
 "WindSpeed": "9 mph",
 }

Questions?

Thank you!

