SECURITY PATTERNS

Vibhu A. Bharadwaj, Koushik Godbole, Lingyun Ke, Sai Vardhan Lella
CSE-776 (Design Patterns), Fall 2018
Syracuse University

Intent and Motivation

m Information and identity are valued much more than before.

m Lack of foresight in security implementation leaves the gates wide open for
exploitation.

m Improvementin tech has made ‘Hacking’ easier than ever before with novel means
being discovered each day.

m Asecurity patternis a solution that addresses a class of security problems/flaws.

m Security Patterns offer comprehensive solutions by treating Security as a Functional
requirement in software design.

m Security patterns help achieve CIA (Confidentiality, Integrity and Availability) of

information.

Classification of Security Patterns

Data Storage and Handling Network Management and Availability
(Man-in-the-Middle/Public-readable (Physi sl nfe
ysical breach/Denial-of
data/Database leakage/SQLI/Data- Service/Traffic-Congestion/Power-
loss/Copyright Infringement) Outage/Environmental issues/Network
Setup and Configuration)

Restrictive Memory Access

Information Security Policy and Risk
(Side-channel attacks/Buffer
Overflow/Race-conditions/Dirty — (Intrusions/Threat Intelligence/Malware
Copy-on-Write/Privilege leaking) _—/—' Injection/Firewall-evade/Insider
- threats/Vulnerability Tracking/Below-par
Secu I‘Ity | standards)

Input Sanitization

L%ae
f- Patterns

(SQL Injection/Format String/Shell- | g - Awareness and Training

shock/Cross-site Request

Forgery/Cross-site Scripting) (Insider Threats/Espionage/Unpatched

software/Outdated practices/Protocol
violations)

Authentication and Encryption Penetration Testing and Code Review

(Identity Theft/Brute-force/Privacy (Bug_exploitslinsecure
violation/Secret leakage) libraries/unexpected glitches)

Some Examples of Security Flaws and exploitation

The program has been running 70452 times so far.
./exploit-T4.sh: line 13: 10182 Segmentation fault ./stack Privi|ege Escalation! void myprintf(char xmsg)

{

2 minutes and 4 seconds elapsed.

;I;hciedprogram has been running 70453 times so far. | printf(msg);
uiﬂ=0(root) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip),46(plugdev),113(1lpadmin),b128(sambashare) } printf("%s",msq);
| 2l

char stringl[20];
TOC'I'I'OU Example Red ux Buffer Overflow?

T - B strncpy(stringl,
OAttack ordered before or after check and use “This is a really long string”, 20);
e System transactions save the day
Victim Attacker Process Address Space
. A\ 1A\ m., Sign in
Symlmk(secret’, foo)’)XFFFF | Top of Stack . 2?7
_SyS—Xbegi‘n O; , Stack Overflow? s
|f(aCCGSS(‘ fOC‘) ’)) ”{ Race Condition!)‘\ test@example.com'OR1=1 --
fd = open('foo’); Stack | [Return Address | |sying
sys_xend(); Growth | |Canary Word Growth e
_ . e L.ocal Variables ... S
time) symlink(“secret”,"foo”); iEF e

Y
A 000 m v’ Stay signed in

Demo of Buffer Overflow:

Race Condition example

Privileged program {set-uid root)

‘tmp/X pointsto
an attacker-owned
file

Context
switch

TOCTTOU "
window

-

Write to /etc/passwd

Attacker program

Make /tmro/y
- —alldos £,

point Ic
/etc/passwd

Restrictive Memory Access Pattern

The possible exploitation: -
m Heap Buffer Overflow
m Shellshock-BashCGl
m Side Channel Attacks
m Dirty Copy-on-Write

write ()
[Step A: Make a copy oifrtrlgrmapped }

memory
1
™ madvice ()

(Step »B: Change the page taple, so the using MADV DONTNEED
virtual memory now points to —

Y:hange théip;rage table, so the virtual
memory now points back to

i <::;[

Step C: Write to the memory]

(a) The sequence of actions

(Taken as per Linux context)

Implementation of Restrictive Memory
Pattern

1. Eliminate Racing or make winning odds unfavorable for attacker
2. Usesecure libraries/frameworks

3. Least Privilege Principle and service privilege levels

4. Sandboxing/clear memory boundaries
5

Update systems and applications

<stdio.h>

int main()
{
int id = 100, age =25;
charx name = "Smith";
printf("ID:%d \nName:%s \nAge:%d\n",id, name);
03

Formatted Strings

1
2
3
a4
5
6
7
8
9

<stdio.h>

@ @ 1| Desk
int main() ~
{ Koushiks—MBP:Desktop koushik$ gcc ex.c
int id = 100, age =25; warning:
5 printf("ID:%d \nName:%s \nAge:%d\n",id, name);
charx name = "“Smith"; g el !
printf("ID:%d Name:%s Age:%d\n",id, name, age);
2;

1 warning generated.
Koushiks—MBP:Desktop koushik$./a.out
ID:100

Name:Smith

Age:—283980752

Koushiks—MBP:Desktop koushik$ [

>
1
P
4
5
6
7
8
O

0x6000

Format String:
0x6000

=l
2 ©)
é% B > age: 25
- >
\‘2) name: 0x5000 —> “Bob Smith” <not an argument _ Pglin_dfr_y_ L
SN 1 2; -
g R > id: 100 name: 0x5000
©
= 5 ing: > :
- @ Format String id: 100 “Bob Smith”
2
e

'

—>
O

Counter Measures

1. Developers must have a good practice to not use user inputs as an part of a format
string.

2. Compilers these days have built-in counter measures for detecting potential format
string vulnerabilities.

3. Address Randomization

10

SQL Injection
e One of the most common attacks on web applications.
e Sqlisacodeinjection technique.

e Exploits vulnerabilities between web applications and database servers.

e Occurs when userinputs are not properly checked.

11

Activity Diagram

client server database

the data inject to

change the input the SQL execute the SQL
'——> data such as —| command with changed
username out being command

checked

return the result
of injection to
the user

SQL Injection Demo

1. User:Admin Pass:seedadmin
2. User:Alice Pass:seedalice
3. User:Admin'#

13

SQL Injection preventive measures

e Do Some validation checks at client.
e Usage of Prepared statements.

14

Client Input Filter Pattern (Sanitize i/p)

lgnore the client validation. Do the validation at the server once again.

Data validity checks

Sensitive information from the client should be kept in a encrypted, tamper-proof
form.

Discard request that are obviously questionable.

Filter the data submitted from the client.

Remove script tags.

15

Trade offs

Accountability
Availability
Confidentiality

Integrity

Manageability

Usability

Performance

Cost

No effect.

If overly sensitive, this pattern can have an adverse effect on
availability, preventing legitimate users from using the site.

No effect.

This pattern greatly enhances the integrity of the data processed by a
Web site.

The management burden could be increased if overly sensitive sanity
checks result in a high number of false reports of attacks that must be
investigated.

No effect.

This pattern will incur a small performance penalty, since it requires
some time to perform checks. If data is stored in encrypted form on
the client, encrypting and decrypting the data will also exact a
performance hit.

This pattern has fixed implementation costs. However, if overly
sensitive it could greatly increase the customer service burden on the
site.

16

More examples: Lack of Input Sanitization

m System() call
m Shell-Shock - Command Injection
m XSS (Cross Site Scripting)

m Kernel Memory Access using Loadable Kernel Module

17

System()

e ACfunctionin stdlib.h
e Execute ashell command.
e Treatsthe argument as shell command.

18

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

int main(int argc, char *argv[])

{
char *v[3];
char *command;
if(argc < 2)
{
printf("Please type a file name.\n");
return 1;
}
v[0] = "/bin/cat"; v[1] = argv[1l]; v[2] = NULL;
command = malloc(strlen(v([@]) + strlen(v[1]) + 2);
sprintf(command, "%s %s", v[0], v[1]);
// Use only one of the followings.
system(command) ;
// execve(v[O], v, NULL);
—__return 0 ;
}

[09/12/18]seed@VM:~/.../Labl-SetUID$./Task8 "filetoread; mv filetoread fileread"
reading. ..

[09/12/18] seed@VM:~/.../Labl-SetUID$ ls *file*

fileread

[09/12/18]seed@VM:~/. ../Labl-SetUID$ f§

19

Shell-Shock — Command Injection

[11/04/18] seed@VM: . ../Elgg$ /bin/bash shellshock
[11/04/18] seed@VM: . ../Elgg$ foo='() { echo "hello"; }'
(11/04/18]seed@VM: . ../Elgg$ echo $foo

() { echo "hello"; }

(11/04/18] seed@VM:.../Elgg$ export foo

(11/04/18] seed@VM: . ../Elgg$ /bin/bash _shellshock
(11/04/18]seed@VM:.../Elgg$ foo

hello

-
[09/30/18]seed@VM:~$ foo='() { echo "hello world"; }; echo "extra";'

[09/30/18]seed@/M:~$ export foo
[09/30/18] seed@VM:~$ /bin/bash shellshock
extra

20

Shell-Shock — Command Injection

**)xkx*x Environment Variable *¥*x*x
HTTP_HOST=1localhost
ATTP USER AGENT=curl/7.47.0
HTTP ACCEPT=*/*
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin
SERVER SIGNATURE=<address>Apache/2.4.18 (Ubuntu) Server at localhost Pc
rt 80</address>

SERVER SOFTWARE=Apache/2.4.18 (Ubuntu)

SERVER NAME=localhost

SERVER ADDR=127.0.0.1

SERVER PORT=80

REMOTE ADDR=127.0.0.1

DOCUMENT ROOT=/var/www/html

REQUEST SCHEME=http

CONTEXT PREFIX=/cgi-bin/

CONTEXT DOCUMENT ROOT=/usr/lib/cgi-bin/

curl -A, --user-agent <agent string>

Shell-Shock — Command Injection

[09/30/18]seed@VM:.../cgi-bin$ curl -A 'hello' http://localhost/cgi-bir
/showEnviron.cgi

¥kkkkk Environment Variable *¥¥¥*x

HTTP_HOST=localhost

HTTP_USER AGENT=hello

HTTP ACCEPT=*/*

PATH=/usr/local/sbin:/usr/local/bin: /usr/sbin:/usr/bin:/sbin:/bin
SERVER SIGNATURE=<address>Apache/2.4.18 (Ubuntu) Server at localhost Pc
rt 80</address>

SERVER SOFTWARE=Apache/2.4.18 (Ubuntu)

SERVER NAME=localhost

SERVER ADDR=127.0.0.1

SERVER PORT=80

REMOTE ADDR=127.0.0.1

DOCUMENT ROOT=/var/www/html

REQUEST SCHEME=http

CONTEXT PREFIX=/cgi-bin/

CONTEXT DOCUMENT ROOT=/usr/lib/cgi-bin/

SERVER ADMIN=webmaster@localhost

SCRIPT FILENAME=/usr/lib/cgi-bin/showEnviron.cgi

REMOTE PORT=38710

GATEWAY INTERFACE=CGI/1.1

SERVER PROTOCOL=HTTP/1.1

REQUEST METHOD=GET

QUERY STRING=

REQUEST URI=/cgi-bin/showEnviron.cgi
SCRIPT_NAME=/cgi-bin/showEnviron.cgi

[11/04/18] seed@/M:~$ curl -A '() { echo "hello"; }; rm -rf ./' http://19.97.31.1
28/webll

22

XSS (Cross Site Scripting)

It is a security vulnerability attack for web applications, which is a kind of
code injection. It allows malicious users to inject code into a web page, and
other users are affected when they view the web page. This type of attack

usually includes HTML and a client-side scripting language.

© | Instagram @ O &

YOUR NAME ceditprofie O

120 posts 869 followers 438 following

YOUR INTRO HERE . . i
What if | change my intro to malicious

javascript code?

23

Kernel Memory Access

m Often when users are required to interact directly with kernel using features like

Loadable Kernel Modules (LKM), we neglect that invalid usage might lead to the
application crashing.

m While thisis an built functionality in linux to prevent modification and access to
protected memory, it is essential to note that these accesses to memory must be

pre-defined and ‘white-listed’ while other exceptions must be handled so that they
may not affect program functionality.

Client Server
€«— 4:Server Response

1:Request———»

A

2:User Verification

3:Verification Result

\ 4

Kernel

24

Similarity Among Code-Injection Attacks

‘User Data Mixing .
, - HTML HTML
Cont page parser

Mixing Shell Data’ it
}—o.—; Command —’parser_’ { .

W
I

T\ i
' Data , Mixin F ata’
i\ vl 6 Format S Onee
A\ i — String— 4 o o
_ s parser gl

b s e
.

25

Input Sanitization Pattern

Identify input

m Inputvalidation should be done at trusted server/client side cources

— Ildentify the source
— Parts in software which reads the input \
P Identify reads of Add code to
— Define criteria for validation input sources check & handle
A
- Handling invalid cases
\ 4

- Code for validation and handling invalid cases. Define criteria Specify handling
for valid data invalid data

26

Advantages of Implementing Security Patterns:

Secure coding techniques ensure greater system security.
Security is viewed as functional requirement in Software Engg.
The confidentiality & privacy of client will be improved.

A small number of patterns would improve performance, like
Client Data Storage pattern, etc.

While cost of implementation is incurred, it is a better than the
cost incurred when there a security flaw is exploited.

27

Disadvantages of implementing Security
Patterns:

e Most of patterns would incur a performance penalty.
e Costinterms of manpower, training, testing and infrastructure

Increases.
e Specific security solutions get outdated quickly and there is a

constant need to be updated.

28

—_—

References:

COONOORAWN =

Coursework and Labs : CSE 644 (Internet Security),SU

Coursework and Labs : CSE 643 (Computer Security),SU

Coursework and Labs : IST 704 (Applied Information Security),SU

Code Demonstrations :

Security Patterns Repository v1.0 Darrell M. Kienzle et. al

SU IT Services-InfoSec (Information Security Policy) -

Computer Security, A Hands-on Approach by Wenliang Du

Special Thanks - Chris Croad (CISO, ITS, SU), Dr Kevin Du (EECS, SU), Benson Poikayil (InfoSec Ops, ITS, SU)
Design Patterns, Erich Gamma et. al
http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

29

http://www.cis.syr.edu/~wedu/seed/labs.html
https://its.syr.edu/about-us/departments/information-security/

