
RESTful Service Pattern
Cheng Wang, Jiayu Li, Rohit More, Zheng Zhan

CSE 776 Design Pattern

REST
A software architectural style that defines a set of constraints to be used for
creating web services.

REpresentation
State
Transfer

RESTful web services allow the requesting systems to access and manipulate
textual representations of web resources by using a uniform and predefined set of
stateless operations.

2

URI
URI: A Uniform Resource Identifier (URI) is a string of characters that unambiguously
identifies a particular resource.

URI = scheme:[//authority]path[?query][#fragment]

3

without REST
POST /library/book1/getBook

POST /library/createBook

POST /library/book3/updateBook

POST /library/book4/deleteBook

4

URI with CRUD in REST

Operation RESTful WS

Create POST

Read (Retrieve) GET

Update (Modify) PUT

Delete (Destroy) DELETE

1. GET /library/book1/
Obtain book1 information

2. POST /library
Create a book

3. PUT /library/book3
Update book3 information

4. DELETE /library/book4
Delete book4 information

5

Six Constraints

1. Client-Server
2. Stateless
3. Cache
4. Uniform Interface
5. Layered System
6. Code-On-Demand

6

Client-Server
Client-server: Separation of concerns. By separating the user interface concerns
from the data storage concerns

Pros: Portability, Scalability

7

Stateless
Stateless: Requests from client to server must contain all of the information
necessary to understand the request, and cannot take advantage of any stored
context on the server.

Pros: Visibility, Reliability, Scalability

Cons: Decreasing network performance

8

Cache
Cache: Data within a response to a request be implicitly or explicitly labeled as
cacheable or non-cacheable. If a response is cacheable, then a client cache is
given the right to reuse that response data for later, equivalent requests.

Pros: Efficiency, less latency

Cons: Reliability(stale data), Inconsistency

9

Uniform Interface
Resource identification in requests: Individual resources are identified in
requests (URI).

Resource manipulation through representations: When a client holds a
representation of a resource, it has enough information to modify or delete the
resource.

Self-descriptive messages: Each message includes enough information to
describe how to process the message.

Hypermedia as the engine of application state: a REST client should then be
able to use server-provided links dynamically to discover all the available actions
and resources it needs.

10

Layered System and Code-On-Demand
Layered System (hierarchical layers): Each component cannot "see" beyond the
immediate layer.

Example: Legacy services, Legacy clients, New services, simplifying components
by moving infrequently used functionality to a shared intermediary

Code-On-Demand allows client functionality to be extended by downloading and
executing code in the form of applets or scripts.

Pros: Extensibility

11

Small Example
1. Resources: polls and votes

2. Containment Relationship

3. URIs embed IDs of “child” instance resources

4. POST on the container is used to create child
resources

5. PUT/DELETE for updating and removing child
resources

12

Small Example

13

Small Example

14

Small Example

15

Endpoint Redirection
Problem:

❖ Service inventories may change overtime.
❖ Really difficult to replace references of old endpoints.

Solution:

❖ Automatically redirect consumers when request to old consumer is made.

16

Endpoint Redirection
Example:

❖ 301- Moved Permanently
❖ 307-Temporary redirect

Note: Be cautious about
redirection loops

17

Content Negotiation
Problem:

❖ Different consumers may accept
different data format.

❖ Service contract may be
changed frequently.

❖ New feature may be added to
existing consumers.

18

Content Negotiation
Solution:

❖ Include multiple standardized types in contract.
❖ Data format is negotiated at run time

19

Content Negotiation
Example

:Client’s request:

20

Content Negotiation
Response from server:

Advanced content negotiation:

21

Content Negotiation
Multi dimensional negotiation is also possible:

22

Entity Endpoint
❖ Access to end points requires

two identifiers.
❖ Entity identifier will vary from

service to service.

23

Entity Endpoint
Solution:

❖ Expose each entity as individual
lightweight endpoints of the service.

❖ Provides global addressability of
entities

24

Pattern: Uniform Contract
How can consumers take
advantage of multiple evolving
service endpoints?

25

Problem:
1. Accessing similar services requires consumers to access capabilities expressed

in service-specific contracts.
2. The consumer needs to be kept up to date with respect to many evolving

individual contracts.

Pattern: Uniform Contract

Solution: Standardize a uniform contract across alternative service
endpoints.

Pros: Service Abstraction, Loose Coupling, Reusability, Discoverability,
Composability.

26

Example Uniform Contract

CRUD REST

Create POST Create a sub resource

Read GET Retrieve the current state of the resource

Update PUT Initialize or update the state of a resource
at the given URI

Delete DELETE Clear a resource, after the URI is no longer
valid

27

Objective: an internet size network of REST services

Solution: have to enforce global concepts, like standards to make them
understand each other.

WHY?

Pattern: Idempotent Capability
How can a service
consumer recover from
Failures?

Problem:
1. Failures (such as the loss of messages) may occur during service capability

invocation.
2. A lost request should be retried, but a lost response may cause unintended

side-effects if retried automatically.

Pattern: Idempotent Capability

Solution: use an ESB (Enterprise Service
Bus), with support for reliable messaging.

Problem: do we always need this? Are
there some messages more critical than
others?

Pattern: Idempotent Capability

An idempotent method means that the
result of a successful performed request is
independent of the number of times it is
executed.

Simpler Solution: use idempotent service
capabilities to provide a guarantee that
capability invocations are safe to repeat in
the case of failures that could lead to a
response message being lost.

Idempotent vs. Unsafe

Antipatterns

● An anti-pattern is a common response to a recurring problem that
is usually ineffective and risks being highly counterproductive.

● there must be at least two key elements present to formally
distinguish an actual anti-pattern from a simple bad habit, bad
practice, or bad idea:

1. A commonly used process, structure, or pattern of action that
despite initially appearing to be an appropriate and effective
response to a problem, has more bad consequences than good
ones.

2. Another solution exists that is documented, repeatable, and proven
to be effective.

Bad idea

Antipattern

Pattern

32

Tunneling everything through GET
● Tunnel through one HTTP Method
GET /api?method=addCustomer&name=Pautasso
GET /api?method=deleteCustomer&id=42
GET /api?method=getCustomerName&id=42
GET /api?method=findCustomers&name=Pautasso*

▪ Everything through GET
▪ Advantage: Easy to test from a Browser address bar (the “action” is represented in the

resource URI)
▪ Problem: GET should only be used for read-only (= idempotent and safe) requests.
 What happens if you bookmark one of those links?
▪ Limitation: Requests can only send up to approx. 4KB of data (414 Request-URI Too Long)

Tunneling everything through POST

▪ Tunnel through one HTTP Method

▪ Everything through POST

▪ Advantage: Can upload/download an arbitrary amount of data (this is
what SOAP or XML-RPC do)
▪ Problem: POST is not idempotent and is unsafe (cannot cache and

should only be used for “dangerous” requests)

Demo

35

1. A Nodejs Project

2. Google Calendar API

36

