Command Pattern

Jim Fawcett
CSE776 — Design Patterns
Fall 2014

Library
Events Operation:
Register(command*);

Operation();

Operation:
execute()=0;

library code

client code

receiver concreteCommand

Operation: Operation:
action(); execute();

Command Pattern Intent

A command encapsulates a request as an object. A
reference to the command is given to an invoker for later
Invocation.

* |Intent:

* decouple the event triggering a command from the processing associated
with the command.

* The invoker of a command knows about the _trigg_lgr event but does not need
to know anything about command'’s processing. The creator of the

command class knows about the processing but nothing about the invoker’s
event.

* With commands, you can control their selection, sequencing, queue them,
undo them, and otherwise manipulate them.

* Commands are an object-oriented replacement for function pointers.

Motivation

* Command addresses the need
to issue requests to objects
without knowing anything
about the objects themselves.

* Atinstantiation, the Command
is given any information it will
need to later carry out its task.

* The actual order to carry out
that request is given at a later
time.

* The key to this patternis an
abstract Command Class.

Menultem K>
| command

Clcked() 9

Open(
Close()
Cut(

Copy()
Paste()

Command

Document

Open()
Close()
Cut()

Copy(
Paste()

document

Command

Execute()

A

PasteCommand

document->Paste() =

Command

Execute()

A

Application

OpenCommand
Add(Document) application P

AskUser()

Execute() Q

name = AskUser()

doc = new Document(name)
application->Add(doc)
doc->Open()

Command

Execute()

MacroCommand

commands

g

Execute() Q

for all ¢ in commands N

c—>Execute()

Method
* Aclient encapsulates a

request, along with needed Operation:
state, by deriving a specialized execute()=0;
command from the invoker’s
abstract base command class.

* Client associates command
with a receiver (by the
processing it encapsulates) and
sends it to the invoker.

concreteCommand

* The invoker simply uses the Operation:
command interface to cause execute();
execution in the receiver

Command Structure

invoker

Operation:
Register(command*);
Operation();

command

Operation:
execute()=0;

library code

client code

receiver

> Operation:
action();

concreteCommand

Operation:
execute();

Command Participants

* Command provides an interface for executing commands

* ConcreteCommand provides binding between a receiver
and command. It implements execution by calling receiver
methods.

* Client creates a concreteCommand object, sets its receiver,
and registers command with invoker

* Invoker issues command when an invoker event occurs

* Receiver actually performs the command processing

" 4

Collaborators

* Client creates concreteCommand and specifies
receiver

* Invoker stores concreteCommand for later use

* Invoker issues request by calling execute() on
command

* ConcreteCommand object invokes operations
on its receiver to carry out the request

Command Event Trace

receiver

concreteCommand

create
command

register
receiver

register command

invoker

action(...)

execute()

Applicability
* Use the command when you want to:

* parameterize objects by an action to perform (menu items)

* specify, queue, and execute requests at different times
(a command object can have lifetime independent of the
original request)

* respond to library events in client code
(library calls client functions even though the library knows
nothing of client code)

Applicability

* As an object-oriented replacement for callback functions. Such functions are
typically useful when designing menus and other user interfaces.

* Specify, queue, and then execute requests at different times. Command
objects have lifetimes independent of their original request.

* Respond to library events in client code (library calls client functions even
though the library knows nothing of client code).

* Supporting undo-able transactions. If the Command stores the relevant state
of the receiver, it can reverse its own effects upon the receiver.

* Defining the structure of a system such that a broad class of high-level
operations are built out of primitives. The Command allows various types of
transactions to be invoked in the same way.

Consequences

* Command decouples the object that invokes an
operation from the one that’knows how to
perform it.

« Commands are first-class objects. They can be
manipulated and extended like any other object.

* You can assemble commands into a composite
command.

* It's easy to add new commands, because you don't
have to change existing classes.

Known Uses

* Office —Word, Excel, ...

* Virtually every graphical user interface known
to mankind uses either callbacks, delegates, or
commands. The object oriented ones use
commands. MFC uses callbacks. .Net uses

delegates.

* .Net delegates are a limited form of command

Navigator - Part of Code Analyzer

depends

et

& defProc

fileInfo

QQT—

nameTable

! ﬁT

passOne ----

dependencyTable

passTwo

¢

grammar

Related Patterns

* The relationships to other patterns as mentioned in
the class text are rather tenuous.

* The command pattern is similar to the observer
pattern. In both patterns an interested party can
register to be notified of an event.

Command Pattern Skeleton Code

invok command _
Invoker Operation: client

Attribute: execute(invoker::events event) = 0;
vector<command*> registrants

void main() {
- concreteCommandl comm1 (“client #1");
Operation: _ concreteCommand2 comm2("client #2");
Efgirfr;(;ﬁg? and); invoker inv,
doEvents(); o inv.Register(&comm21);
inv.Register(&comm?2);
inv.doEvents();

receiver

Attribute: H

string _name; receiver
Attribute:

string _name;

Operation:
receiver(string &name);
action(); Operation:

receiver(string &name);

action();

concreteCommandl concreteCommand?2

Attribute: Attribute:
string ccl; string ccl;

Operation: Operation:
concreteCommandl(string s); concreteCommandl(string s);
execute(invoker::events event); execute(invoker::events event);

invoker

navigate directory
subtree

navig

Class Diagram - Catalog Program

default processing of
files and directories
while navigating

command

defProc

Attribute:
virtual void dirsProc(const string &dir);
virtual void fileProc(const fileInfo &fi);

client

catalog::main()

{ program executive }

{

concrete
command

receiver

userProc

application specific
file/dir processing

wildcards

typedef map<string,fileSet> dirMap

< STL containers >

filter filenames
with wildcards

Note that catalog::main() and navig actually refer to
a userProc object through defProc pointers

typedef set<fileInfo,smallert> fileSet

¢

L/
fileInfo

find files in a dir
extract file information

¢

L/
smaller

define ordering
for filelnfo objects

{ store a set of directories and their associated files }

;

Application to Graph Algorithms

- Many graph algorithms are
based on a traversal process

» Breadth First Search
 Shortest paths
* Diameter

» Depth First Search
 Strong components
» Topological sorting

« All of the above may be
evaluated by executing
functions on the graph nodes
during search.

Command Pattern Applied to Graphs

/\

Invoker

StrongCompCommand TopoSortCommand
|

Receiver

End of Presentation

