
Security Patterns Repository
Version 1.0

Darrell M. Kienzle, Ph.D.

Matthew C. Elder, Ph.D.

David Tyree

James Edwards-Hewitt

Executive Summary
A security pattern is a well-understood solution to a recurring information security problem.
They are patterns in the sense originally defined by Christopher Alexander (the basis for much of
the later work in design patterns and pattern languages of programs), applied to the domain of
information security. A security pattern encapsulates security expertise in the form of worked
solutions to these recurring problems, presenting issues and trade-offs in the usage of the pattern.
This document presents version 1.0 of our Security Patterns Repository.

The Security Patterns Repository Version 1.0 consists of 26 patterns and 3 mini-patterns. (A
mini-pattern is a shorter, less formal discussion of security expertise in terms of just a problem
and its solution.) To define the scope of the problems our patterns address, we focused on the
domain of web application security. The patterns are divided between structural patterns and
procedural patterns. Structural patterns are patterns that can be implemented in an application;
they encompass design patterns (such as those presented by the Gang of Four), but can also
apply at the architectural or implementation levels. Procedural patterns are patterns that can be
used to improve the process for development of security-critical software; they often impact the
organization or management of a development project. Following the presentation of security
patterns in this document, we include a comprehensive bibliography collecting references from
all the patterns with other relevant web application security and patterns material.

To supplement this patterns repository document, we have developed a Web application that is a
functional repository for these Security Patterns. Our repository application enables viewing of
patterns, submitting of feedback on the patterns, and editing of patterns for authorized users. We
will include relevant example code within the repository document when this application is
finalized.

The Security Patterns repository is available at http://www.securitypatterns.com. Feedback
will be accepted on that Web site and updates will be posted there.

Security Patterns Repository v1.0

- 3 -

A. Security Patterns
There is a huge disconnect between security professionals and systems developers. Security
professionals are primarily concerned with the security of a system, while developers are
primarily concerned with building a system that works. While security is one of the non-
functional goals with which developers must be concerned, it is but one of many. And while
security professionals complain that developers don’t take security seriously, developers are just
as frustrated that security professionals don’t understand that security is not their only concern.

Security patterns are proposed as a means of bridging this gap. Security patterns are intended to
capture security expertise in the form of worked solutions to recurring problems. Security
patterns are intended to be used and understood by developers who are not security
professionals. While the emphasis is on security, these patterns capture the strengths and
weaknesses of different approaches in order to allow developers to make informed trade-off
decisions between security and other goals.

Above all, security patterns are meant to be constructive. Far too much of the available security
expertise is presented in the form of laundry lists of what not to do. The poor developer who
attempts to understand security is likely to be overwhelmed by these lists. Security patterns
instead try to provide constructive assistance in the form of worked solutions and the guidance to
apply them properly.

A.1. What Is a Security Pattern?

A security pattern is a well-understood solution to a recurring information security problem.
They are patterns in the sense originally defined by Christopher Alexander, applied to the
domain of information security. While some of these patterns will take the form of design
patterns, not all security patterns are design patterns.

Because of the popularity of design patterns in the software engineering community, the natural
inclination is to assume that anything going by the name “security patterns” should be described
using a UML diagram and include sample source code. While it is true that many interesting
security patterns can be presented this way, there are many other important patterns that do not
fit within these constraints.

We make no attempt to categorize different classes of pattern formally. We have observed a few
broad types, but we don’t feel it important to rigidly enforce any formal identification. For
informational purposes, we identify two broad categories:

• Structural patterns. These are patterns that can be implemented in the final product. They
encompass design patterns, such as those used by the Gang of Four. They often include
diagrams of structure and descriptions of interaction.

• Procedural patterns. These are patterns that can be used to improve the process for

Security Patterns Repository v1.0

- 4 -

development of security-critical software. They often impact the organization or
management of a development project.

Our patterns adhere to the following security patterns template:

• Name (including aliases—“a.k.a”—parenthetically)

• Abstract

• Problem

• Solution

• Issues

• Trade-Offs

• Related Patterns

• References

There are numerous existing templates for design patterns, security patterns, and other patterns
efforts. We have examined previous patterns templates and settled on the above structure
specific to our security patterns.

Version 1.0 of the Security Patterns Repository, presented in this document, consists of 26
patterns and 3 mini-patterns. A mini-pattern is a shorter, less formal discussion of security
expertise in terms of just a problem and its solution. There are 13 structural patterns and 3
structural mini-patterns. There are 13 procedural patterns.

It is important to note that there are a number of different efforts bearing the name “security
patterns”. Please see the section on Related Work in our Template and Tutorial document for a
discussion of other approaches to (and other definitions of) security patterns.

A.2. Structural Patterns

The table below outlines the structural security patterns and mini-patterns presented in Section B.

Pattern Name Abstract

Account Lockout

Passwords are the only approach to remote user authentication
that has gained widespread user acceptance. However, password-
guessing attacks have proven to be very successful at discovering
poorly chosen, weak passwords. Worse, the Web environment
lends itself to high-speed, anonymous guessing attacks. Account
lockout protects customer accounts from automated password-

Security Patterns Repository v1.0

- 5 -

guessing attacks, by implementing a limit on incorrect password
attempts before further attempts are disallowed.

Authenticated Session

An authenticated session allows a Web user to access multiple
access-restricted pages on a Web site without having to re-
authenticate on every page request. Most Web application
development environments provide basic session mechanisms.
This pattern incorporates user authentication into the basic session
model.

Client Data Storage

It is often desirable or even necessary for a Web application to
rely on data stored on the client, using mechanisms such as
cookies, hidden fields, or URL parameters. In all cases, the client
cannot be trusted not to tamper with this data. The Client Data
Storage pattern uses encryption to allow sensitive or otherwise
security-critical data to be securely stored on the client.

Client Input Filters

Client input filters protect the application from data tampering
performed on untrusted clients. Developers tend to assume that
the components executing on the client system will behave as
they were originally programmed. This pattern protects against
subverted clients that might cause the application to behave in an
unexpected and insecure fashion.

Directed Session

The Directed Session pattern ensures that users will not be able to
skip around within a series of Web pages. The system will not
expose multiple URLs but instead will maintain the current page
on the server. By guaranteeing the order in which pages are
visited, the developer can have confidence that users will not
undermine or circumvent security checkpoints.

Hidden Implementation

The Hidden Implementation pattern limits an attacker’s ability to
discern the internal workings of an application—information that
might later be used to compromise the application. It does not
replace other defenses, but it supplements them by making an
attacker's job more difficult.

Encrypted Storage

The Encrypted Storage pattern provides a second line of defense
against the theft of data on system servers. Although server data
is typically protected by a firewall and other server defenses,
there are numerous publicized examples of hackers stealing
databases containing sensitive user information. The Encrypted
Storage pattern ensures that even if it is stolen, the most sensitive
data will remain safe from prying eyes.

Minefield The Minefield pattern will trick, detect, and block attackers during
a break-in attempt. Attackers often know more than the

Security Patterns Repository v1.0

- 6 -

developers about the security aspects of standard components.
This pattern aggressively introduces variations that will counter
this advantage and aid in detection of an attacker.

Network Address Blacklist

A network address blacklist is used to keep track of network
addresses (IP addresses) that are the sources of hacking attempts
and other mischief. Any requests originating from an address on
the blacklist are simply ignored. Ideally, breaking attempts
should be investigated and prosecuted, but there are simply too
many such events to address them all. The Network Address
Blacklist pattern represents a pragmatic alternative.

Partitioned Application

The Partitioned Application pattern splits a large, complex
application into two or more simpler components. Any
dangerous privilege is restricted to a single, small component.
Each component has tractable security concerns that are more
easily verified than in a monolithic application.

Password Authentication

Passwords are the only approach to remote user authentication
that has gained widespread user acceptance. Any site that needs
to reliably identify its users will almost certainly use passwords.
The Password Authentication pattern protects against weak
passwords, automated password-guessing attacks, and
mishandling of passwords.

Password Propagation

Many Web applications rely on a single database account to store
and manage all user data. If such an application is compromised,
the attacker might have complete access to every user’s data. The
Password Propagation pattern provides an alternative by
requiring that an individual user’s authentication credentials be
verified by the database before access is provided to that user’s
data.

Secure Assertion

The Secure Assertion pattern sprinkles application-specific sanity
checks throughout the system. These take the form of
assertions – a popular technique for checking programmer
assumptions about the environment and proper program behavior.
A secure assert maps conventional assertions to a system-wide
intrusion detection system (IDS). This allows the IDS to detect
and correlate application-level problems that often reveal attempts
to misuse the system.

Server Sandbox

Many site defacements and major security breaches occur when a
new vulnerability is discovered in the Web server software. Yet
most Web servers run with far greater privileges than are
necessary. The Server Sandbox pattern builds a wall around the
Web server in order to contain the damage that could result from

Security Patterns Repository v1.0

- 7 -

an undiscovered bug in the server software.

Trusted Proxy

A trusted proxy acts on behalf of the user to perform specific
actions requiring more privileges than the user possesses. It
provides a safe interface by constraining access to the protected
resources, limiting the operations that can be performed, or
limiting the user’s view to a subset of the data.

Validated Transaction

The Validated Transaction pattern puts all of the security-relevant
validation for a specific transaction into one page request. A
developer can create any number of supporting pages without
having to worry about attackers using them to circumvent
security. And users can navigate freely among the pages, filling
in different sections in whatever order they choose. The
transaction itself will ensure the integrity of all information
submitted.

A.3. Procedural Patterns

The table below outlines the procedural security patterns presented in Section C.

Pattern Name Abstract

Build the Server from the
Ground Up

Many Web compromises and defacements occur because of
unnecessary and potentially vulnerable services present on the
Web server. Default installations of many operating systems and
applications are the source of many of these services. This
pattern advocates building the server from the ground up:
understanding the default installation of the operating system and
applications, simplifying the configuration as much as possible,
removing any unnecessary services, and investigating the
vulnerable services that are a part of the Web server
configuration.

Choose the Right Stuff

Many security problems can be avoided during system design if
components, languages, and tools are selected with security in
mind. This is not to say that security is the only criterion of
concern – merely that it should not be ignored while making these
decisions. This pattern provides guidance in selecting appropriate
Commercial-Off-the-Shelf components and in deciding whether
to use build custom components.

Document the Security
In order for developers to make consistent, intelligent
development choices regarding security, they have to understand

Security Patterns Repository v1.0

- 8 -

Goals the overall system goals and the business case behind them. If the
security goals are not documented and disseminated, individual
interpretation could lead to inconsistent policies and inappropriate
mechanisms.

Document the Server
Configuration

Web servers and application servers are extremely complex, and
complexity is a major impediment to security. In order to help
manage the complexity of Web server and application
configurations, developers and administrators must document the
initial configuration and all modifications to Web servers and
applications.

Enroll by Validating Out of
Band

When enrolling users for a Web site or service, sometimes it is
necessary to validate identity using an out-of-band channel, such
as postal mail, telephone, or even face-to-face authentication.
The out-of-band channel can be used to establish a shared secret,
which can then be used to establish identity during enrollment.

Enroll using Third-Party
Validation

When enrolling users for a Web site or service, it is always easier
to allow some other party to take on the difficult task of
authenticating user identity. When a third-party service is
available and sufficiently reliable, the Web application can
offload this task on the third party. This approach is becoming
more common as third-party services become available. The
most common form of transaction authentication—credit card
authentication—is a form of third-party validation.

Enroll with a Pre-Existing
Shared Secret

When enrolling users for a Web site or service, sometimes it is
sufficient to validate identity using a pre-existing shared secret,
such as a social security number or birthday. The use of a pre-
existing shared secret enables enrollment without prior
communication specific to setting up an account.

Enroll without Validating

When enrolling users for a Web site or service, sometimes it is
not necessary to validate the identity of the enrolling user. When
there is no initial value involved in the Web site or service for
which enrollment is occurring, validation is an unnecessary
procedure and can be eliminated.

Log for Audit

Applications and components offer a variety of capabilities to log
events that are of interest to administrators and other users. If
used properly, these logs can help ensure user accountability and
provide warning of possible security violations. The Log for
Audit pattern ties logging to auditing, to ensure that logging is
configured with audit in mind and that auditing is understood to
be integral to effective logging.

Security Patterns Repository v1.0

- 9 -

Patch Proactively

During the lifetime of a software system, bugs and vulnerabilities
are discovered in third-party software, and patches are provided to
address those issues. Rather than waiting for the system to be
compromised before applying patches (“patching reactively”),
administrators of software systems should monitor for patches
often and apply them proactively.

Red Team the Design

Red teams, which examine a system from the perspective of an
attacker, are commonly used to assess the security of a finished
system. However, the earlier in development that a problem is
found, the easier it is to fix. The Red Team the Design pattern
effects a security evaluation of the application at the stage when it
is most possible to fix any problems identified.

Share Responsibility for
Security

The Share Responsibility for Security pattern makes all
developers building an application responsible for the security of
the system. Security consists of more than just encryption, anti-
virus software, and firewalls. Any element of a system can have
security concerns, and system developers have to understand and
address those concerns. Use of this pattern avoids the common
problem of “the security guy” or security team being pitted
against the rest of the development team.

Test on a Staging Server

Web site development requires extensive testing to enable
availability, protect confidentiality, and ensure integrity. While
unit testing can be done on development machines, system and
integration testing should take place on machines as similar to the
production servers as possible. The use of a staging server
enables necessary testing while preventing the outages that often
occur when developers and administrators experiment with the
live production system on the fly.

Security Patterns Repository v1.0

- 10 -

B. Structural Patterns
The following structural patterns are presented in this section:

• Account Lockout

• Authenticated Session

• Client Data Storage

• Client Input Filters

• Directed Session (mini-pattern)

• Hidden Implementation (mini-pattern)

• Encrypted Storage

• Minefield

• Network Address Blacklist

• Partitioned Application

• Password Authentication

• Password Propagation

• Secure Assertion

• Server Sandbox

• Trusted Proxy

• Validated Transaction (mini-pattern)

Account Lockout Security Patterns Repository v1.0

- 11 -

Account Lockout
(a.k.a. Disabled Password)

Abstract

Passwords are the only approach to remote user authentication that has gained widespread user
acceptance. However, password-guessing attacks have proven to be very successful at
discovering poorly chosen, weak passwords. Worse, the Web environment lends itself to high-
speed, anonymous guessing attacks. Account lockout protects customer accounts from
automated password-guessing attacks, by implementing a limit on incorrect password attempts
before further attempts are disallowed.

Problem

Many servers require that users be identified before using the system, either to ensure
accountability or to protect user data between sessions of usage. At present, passwords are the
only approach to user authentication that has gained widespread user acceptance. While
passwords are extremely common, users tend to pick passwords that are easily guessed. It is
easy to build (and trivial to download) password-guessing tools that are very effective at
guessing poorly chosen passwords.

In the traditional, predominantly standalone computing environment, passwords might have been
strong enough to protect an important system. Users who sit at a keyboard and guess passwords
are exposed to detection and can only type so fast. Furthermore, many operating systems
implement login delays that get successively longer with each incorrect password. Using these
techniques, password-guessing attacks can be slowed to a crawl.

In the Web environment, however, an attacker can remain completely anonymous while guessing
tens of thousands of passwords per hour. Even if the system implements delays, they can be
circumvented by using numerous concurrent connections to make many guesses in parallel.

If a user account is compromised, the user will blame the Web site developer. Even if the
compromise is due to a poor password choice by the user, the site operators and developers will
lose customer goodwill and may even be considered negligent for not implementing best practice
solutions.

Solution

The Account Lockout pattern protects accounts from password-guessing attacks. For every user
account, the server maintains a count of incorrect password attempts. When a user successfully
logs in, the count is cleared. When the user provides an incorrect password, the count is
incremented. Once some predefined threshold of failed login attempts is reached, the account is
locked.

Account Lockout Security Patterns Repository v1.0

- 12 -

When a user attempts to authenticate against a locked account, the system logs that event but
never processes the request. It simply responds as if an incorrect password or username had
been provided. The user is never aware of the lockout mechanism, and an automated guessing
attack would progress, blithely unaware that all login attempts were actually being ignored.

The system also keeps track of the most recent login attempt. After some defined period of
inactivity, the account is automatically unlocked. As an option, the administrator can also
manually reset an account, should a customer request help.

Protected
Resource

Mediator

Account
Information

Login ScreenClient

User

Authentication Attempt

The following interactions occur on an authentication attempt:

• The client is provided with a transaction form or login screen requiring both a username and
password

• The user provides the username and password, and submits the request for a protected
resource

• The mediator checks the username, and if valid retrieves the account information. If the
username is invalid, return a generic failed login message.

• The mediator checks if this user’s account was locked out (number of successive failed
logins exceeds the threshold) and not yet cleared (last failed login time + reset duration >
current time). If locked out, skip to the increment step.

• The mediator checks the validity of the password.

• If the password is valid, reset the number of failed logins to 0, and execute the request
against the protected resource. (End of successful interaction.)

• If the password was not valid, increment the number of failed login attempts against the
account, and set the last failed login time to the current time.

Account Lockout Security Patterns Repository v1.0

- 13 -

• Return a generic failed login message.

Account Reset

The following interactions occur during an account reset:

• User contacts customer service and explains difficulty using the system

• Customer service representative optionally resets the password (see the Password
Authentication pattern).

• Customer service representative resets the number of failed logins to 0.

Issues

Note that account lockout can only protect an individual account. If an attacker chooses a weak
password (such as “password”) and then randomly guesses account names, no single account
will observe more than one incorrect attempt. And the attacker will eventually find an account
(probably many) with that password. For this reason, the Network Address Blacklist pattern
should also be implemented to protect valuable information.

The threshold for lockout cannot be too low. Many conventional systems (such as automated
tellers) only allow three unsuccessful login attempts. This number is too low for all but the most
critical systems. Web users typically have a number of different passwords and often will try
several different candidates before getting the correct password. A limit of three incorrect
attempts will inconvenience (even anger) legitimate users and will greatly increase the burden on
customer service. A limit of five to ten attempts is far more reasonable.

Communication with the User

When a user authenticates successfully, it is a good idea to inform him/her of the number of
failed login attempts since the last successful login. A user who mistyped his/her password will
recognize that the invalid attempts were legitimate. But the user whose account is under attack
will be alerted to the fact and may make the system administrators aware of the problem. For
similar reasons, it is a good idea to inform the user of the last successful login – if the account
has been compromised, the legitimate user may be made aware of that fact.

When a user fails to login correctly, a generic message should be provided. It should not provide
any indication of whether the account name was invalid, the password was incorrect, or the
account was locked out. A standard message could be the following: “The information entered
was incorrect. Please try again. Note that passwords are case sensitive and the Caps Lock key
should be turned off. If problems persist, please call customer service.” Alternately, instead of
directing the user to customer service, a message could say: “If problems persist, please wait and
try back in an hour.”

Note the importance of not revealing whether the account has been locked out. This ensures that
an attacker cannot know whether a password-guessing attack is actually covering the entire

Account Lockout Security Patterns Repository v1.0

- 14 -

password space or whether successive guesses are simply being dropped on the floor. It also
prevents the attacker from learning how many attempts are required in order to lock out an
arbitrary account. Finally, if counts of login attempts are only maintained for valid accounts,
informing the user that an account was locked out would reveal to an attacker that the account ID
was a valid account.

Many sites opt to inform the user of the lockout condition. There are valid reasons for doing
this. Most importantly, it avoids user frustration at being unable to login using the correct
password. It also has the effect of reassuring the user that the site takes security seriously.
However, an attacker will be able to learn how the account lockout mechanism works, and could
misuse this information to effect a large-scale denial of service attack. Even more dangerous, the
site would be forced to either (a) maintain a count of invalid logins for all account names, not
just actual account names, or (b) risk revealing which accounts are valid, and which are not—
since the system would only return a lockout condition for a valid account name. If you opt to
inform the user of lockout conditions, it is imperative that an automatic reset mechanism not be
implemented. An attacker would quickly determine the length of the delay and develop a
patient, automated password guesser.

Account Reset Considerations

When a user account is locked out, it can be unlocked in one of two ways. A customer service
representative can clear the lockout manually, or the lockout can clear automatically after a
certain amount of time has elapsed. Manual unlocking impacts both management cost and
usability. Automatic unlocking may allow a patient attacker to launch a slow password-guessing
attack. However, if the attacker cannot distinguish between a lockout response and an incorrect
guess, the automated guessing attack can be rendered ineffective.

When constructing an automatic reset mechanism, consider the rate at which guesses could be
made. If he system allows 10 invalid attempts before locking the user out and then resets after
15 minutes, an attacker who is knowledgeable of the workings of the lockout mechanism could
guess 960 passwords per day. That number is too large. Five guesses and an hour lockout drops
that number to a more reasonable 120 attempts per day. In either case, the system should track
lockout information and inform the system administrator of suspicious behavior. And if at all
possible, the details of the account lockout mechanism should not be apparent to the end user.

Examples

Account lockout is common in conventional password and PIN systems. PINs are particularly
susceptible to guessing attacks and are therefore usually protected with low limits on incorrect
guesses. Passwords would seem to be harder to guess based on the increased number of possible
passwords—for example, 8 characters of 96 printable ASCII codes gives approximately 7.2 x
1015 different possible passwords. However, studies have repeatedly shown that most users
choose passwords from a tiny subset of actual words and slight variations. Therefore, account
lockout is critical to protect against random guessing. FIPS 112 provides detailed instructions on
using passwords in traditional systems [3].

Account Lockout Security Patterns Repository v1.0

- 15 -

All of the on-line banking systems with which we are familiar provide an account lockout
mechanism. These generally have a low threshold of three incorrect attempts before the account
is locked out and requires manual intervention by a customer service representative. One of the
authors has the habit of forgetting which password was used for which account and has
personally observed the lockout mechanisms on a number of such sites.

We have implemented the Account Lockout pattern in our Web repository application. The code
will be made available on-line.

Trade-Offs

Accountability

Account lockout increases accountability by helping ensure that user
accounts will not be compromised using a password-guessing attack.
Furthermore, attempts by users to repudiate the transactions they
initiate will be made more difficult by inclusion of best practice
defenses such as account lockout.

Availability

Availability of individual accounts can be adversely affected by a low
account lockout limit. An attacker could also misuse the account
lockout mechanism to effect a large-scale denial-of-service attack on
the site.

Confidentiality
Confidentiality of user data will be increased by any additional
protection of the account.

Integrity
Integrity of individual accounts will be enhanced and this could
indirectly improve the integrity of the site.

Manageability
Manageability will be somewhat adversely affected by the inclusion of
an account lockout mechanism, as customer service calls will increase.
A limit that is too restrictive will increase this burden significantly.

Usability
Usability will be somewhat adversely affected if the limit on attempts
is too low, and more so if the system does not inform users of the
lockout condition.

Performance
Performance is affected slightly by the need to track failed login
attempts.

Cost
Development and quality assurance costs are increased by the need to
construct the lockout mechanism. Management costs can be increased
significantly.

Account Lockout Security Patterns Repository v1.0

- 16 -

Related Patterns

• Authenticated Session – a related pattern that can utilize an account lockout mechanism to
protect user sessions.

• Encrypted Storage – a related pattern that can protect against compromise of the password
store.

• Enroll without Validating – a related pattern that presents a procedure and circumstances for
when initial authentication credentials are not required.

• Enroll with a Pre-Existing Shared Secret – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Enroll by Validating Out of Band – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Enroll using Third-Party Validation – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Hidden Implementation – a related pattern advocating that the user is not provided with
information about the lockout scheme, or even that a lockout exists, in order to prevent it
being misused against the system.

• Network Address Blacklist – a related pattern that provides a complementary protection
mechanism to account lockout by locking out misbehaving client network addresses.

References

[1] Chun, M. “Authentication Mechanisms - Which is Best?”
http://rr.sans.org/authentic/mechanisms.php, April 2001.

[2] Common Criteria Project Sponsoring Organisations. Common Criteria for Information
Technology Security Evaluation Version 2.1. http://www.commoncriteria.org/cc/cc.html,
August 1999.

[3] National Computer Security Center. DoD 5200.28-STD, Trusted Computer System
Evaluation Criteria. December 1985.

[4] National Institute of Standards and Technology (NIST) Information Technology Library
(ITL). “Federal Information Processing Standards Publication 112: Password Usage”.
http://www.itl.nist.gov/fipspubs/fip112.htm, May 1985.

[5] Wheeler, D. “Secure Programming for Linux and Unix HOWTO – v2.965”.
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html, May 2002.

Authenticated Session Security Patterns Repository v1.0

- 17 -

Authenticated Session
(a.k.a. Server-Side Cookies, Single Sign-On)

Abstract

An authenticated session allows a Web user to access multiple access-restricted pages on a Web
site without having to re-authenticate on every page request. Most Web application development
environments provide basic session mechanisms. This pattern incorporates user authentication
into the basic session model.

Problem

HTTP is a stateless, transaction-oriented protocol. Every page request is a separate atomic
transaction with the Web server. But most interesting Web applications require some sort of
session model, in which multiple user page requests are combined into an interactive experience.
As a result, most Web application environments offer basic session semantics built atop the
HTTP protocol. And the protocol itself has evolved to provide mechanisms—such as basic
authentication and cookies—that allow session models to operate correctly across different Web
browsers.

An obvious use for session semantics is to allow users to authenticate themselves once instead of
every time they access a restricted page. However, great care must be taken when using session
semantics in a trusted fashion. Most session mechanisms are perfectly adequate for tracking
non-critical data and implementing innocuous transactions. In such cases, if an end user
circumvents the session mechanism, no harm is caused. But it is easy to make mistakes when
applying session mechanisms to situations where accountability, integrity, and privacy are
critical.

Solution

An authenticated session keeps track of a user’s authenticated identity through the duration of a
Web session. It allows a Web user to access multiple protected pages on the Web site without
having to re-authenticate him-/herself on every page request. It keeps track of the last page
access time and causes the session to expire after a predetermined period of inactivity.

The server maintains the authenticated user identity and the time of the last requests as part of
the client session data. Every protected page contains a standard header (executed on the server)
that checks the authentication information associated with the session.

The first time the user requests a protected page, the server executes the authentication check and
notes that no authenticated identity is present in the session information. At that point, the server
records the original request and redirects the user to a login page.

When the server receives and verifies a user’s login credentials (typically a username and
password), it redirects the user back to the originally requested page. On all subsequent page

Authenticated Session Security Patterns Repository v1.0

- 18 -

requests, the server checks the authenticated identity without requiring that the user re-
authenticate him or herself. If the authenticated user is allowed access to the page, the page is
served. Dynamically created pages can use the authenticated identity in order to incorporate data
that is sensitive to that user.

There are two ways in which an authenticated session can end. The user can explicitly invoke a
logout page, which causes the cached credentials to be flushed. Alternately, if the user session
remains inactive for some predetermined period of time, the session will time out and the first
subsequent request will again require authentication. In order to effect this, each page request
should check the current time against the recorded time of last page request, and update the time
of last page request appropriately.

The Authenticated Session pattern caches the user’s authenticated identity on the server.
Because it is stored on the server, the application can be more confident that the user has not
tampered with it. The only way that the authenticated identity session attribute can be set is if
the user successfully authenticated to the authentication module. The Authenticated Session
pattern relies on existing session mechanisms to associate the client with a particular session.

This pattern compartmentalizes the session security policy within a single component, so that
changes to the policy (affecting usability, accountability, and performance) do not impact the
client or other parts of the application.

Session ID

Server

Security
Checkpoint

Session Data :
Authenticated ID
Last Access Time
Orig. Page Req.

Other information

Protected Pages
(Login, Logout, etc.)

Client

User

Page request without valid authentication

The following interactions occur on a page request without valid authentication:

• The client requests a protected page from the server, passing the session identifier.

• The underlying session mechanism retrieves the session data and invokes the protected page
object.

• The protected page invokes the authentication checkpoint.

• The authentication checkpoint determines that the authenticated identity field is empty or that

Authenticated Session Security Patterns Repository v1.0

- 19 -

the last access time exceeds the session timeout window.

• The requested page URL and submitted data is stored in the session object as the page
originally requested.

• The authentication checkpoint redirects the client to the login screen.

Login

The following interactions occur in the login procedure:

• The client requests the login page, submitting a username and password. The session
identifier is passed as part of the request.

• The underlying session mechanism retrieves the session data and invokes the login page
object.

• The login object validates the username and password.

• If unsuccessful, the unsuccessful login page (“try again”) is returned to the user.

• If successful, the identity provided is stored in the authenticated identity field, and the current
time in the last access time.

• The user is redirected to the page originally requested (stored in the session data).

Page request with valid authentication

The following interactions occur on a page request with valid authentication:

• The client requests a protected page from the server, passing the session identifier.

• The underlying session mechanism retrieves the session data and invokes the protected page
object.

• The protected page invokes the authentication checkpoint.

• The authentication checkpoint validates the authenticated identity field in the session data
and ensures that the last access time does not exceed the timeout period.

• The authentication checkpoint stores the current time as the last access time.

• The authentication checkpoint returns to the protected page object, which composes and
delivers the requested page to the client.

Logout

The following interactions occur in the logout procedure:

Authenticated Session Security Patterns Repository v1.0

- 20 -

• The client requests the logout page from the server, passing the session identifier.

• The underlying session mechanism retrieves the session data and invokes the logout object.

• The logout object clears the authenticated user id field in the session.

• The logout object returns a “logged out” notification page or redirects the browser to the
home page.

Issues

The Authenticated Session pattern cannot be implemented using HTTP Basic Authentication,
because Basic Authentication caches the user’s password at the client and delivers it over the
network on each page request. Basic Authentication also lacks the flexibility needed to
implement session timeout and the Account Lockout pattern.

Some Web application environments permit session data to be stored on the client (as opposed to
storing only a session identifier on the client). For example, iPlanet Enterprise Server’s Server-
Side JavaScript offers this feature. In general, client-side storage should not be used with this
pattern. If the two absolutely must be combined, the Client Data Storage pattern must be used.
One simply cannot trust the client to accurately report the authenticated user identity.

Policy Considerations

Sessions and authentication need not always be combined. For example, many e-commerce sites
use sessions to track browsing habits and storing of items in a shopping cart. It is only the
checkout and purchasing procedures that need to be authenticated.

It might be possible to make sessions optional. For example, e-Bay appears to store all state in
the current URL and retain no session data on the server. When the user places a bid he/she is
given the option of creating a session in order to avoid having to re-enter his/her password with
each successive bid.

More dangerous transactions should not depend on session authentication and should require that
the current password be explicitly provided as part of the transaction. (See the Password
Authentication pattern.) If a session is somehow hijacked or a user walks away from the
computer, this ensures that critical transactions cannot be triggered by somebody else. For
example, authorization of an electronic funds transfer should always require authentication of the
transaction itself. Password change requests also should always require that the old password be
provided as part of the change request transaction.

Any page that contains sensitive data should include a header that instructs the browser not to
cache the page. Depending on the level of sensitivity and perceived risk, at the end of a session
involving sensitive data, the “logged out” page should either directly request the user's
permission to exit the browser or warn the user that they must exit the browser soon to ensure
that no one can see their sensitive data.

Authenticated Session Security Patterns Repository v1.0

- 21 -

Session Protection

This pattern maintains session data (including the authenticated user identity) on the application
server as part of a session object. In order to associate each client with a session object, the
application server assigns each session object a unique, random identifier. This session identifier
is then given to the client, and the client presents it on each subsequent page request.

The session identifier must be suitably random and hard to guess. Session identifiers are
generally provided by the application server and cannot be modified by custom applications.
Nevertheless, if the session identifier mechanism contains vulnerabilities, it could result in
attackers being able to predict or guess the session identifiers assigned to active users. This
would allow an attacker to hijack another user’s session and gain access to sensitive data.

Developers and administrators should research the method used to generate session identifiers
and check any known product vulnerabilities (at a site such as securityfocus.com). Examining
the contents of cookies (or URLs) will give a basic indication of how long each session identifier
is. Anything shorter than 20 hexadecimal characters (“hexits”) is probably too short.

Administrators must also be aware of any session-guessing attacks underway. When a user
submits an invalid session identifier, the application server should notify the application or the
system administrator of that event. Large numbers of invalid session identifiers are a clear
indicator that something is amiss (either the site is under attack or the server has just restarted).
If a single network address is the source of many invalid session identifiers, it should be added to
the network address blacklist (see the Network Address Blacklist pattern).

Session Encryption

If a site encrypts passwords, it should also encrypt any page that delivers an authenticated
session identifier to the server. If the data on the site or the services offered on the site are
sufficiently important, it should use encryption to protect passwords in transit (see the Password
Authentication pattern for more details). If the session identifier can be used to gain access to
password-protected pages, those pages should also be encrypted in order to protect the session
identifier in transit.

Once the user has been authenticated, the session identifier will be communicated along with
every page request. If those pages are not encrypted, the session identifier will be delivered in
the clear. An attacker who can monitor network communications could use the session identifier
to hijack the session. The attacker would not be able to see the user’s sensitive data (such as a
password or credit card number), but they would be able to use the session until the user logs out
(longer if the user walks away from the keyboard). Note that this is one reason why a Web site
should never echo the most sensitive information back to the user.

When using encrypted pages to protect session identifiers, it is important to understand how to
prevent session identifiers from being inadvertently delivered to an unprotected page:

• When using cookies to store session identifiers, the cookie option that requires the cookie to
only be delivered over an SSL-protected connection should be enabled. If the application
server does not allow this option to be configured, the application should be divided into two

Authenticated Session Security Patterns Repository v1.0

- 22 -

different servers: one for encrypted pages, one for other pages. The cookie identifier should
explicitly name only the encrypted server.

• When using URL’s to store session identifiers, the URL rewriting function that adds the
session identifier to any links in the page should only be invoked when those links target
other encrypted pages.

If all sessions on a server are authenticated, it might be possible to depend on the session
mechanism to provide the timeout. Applications constructed using servlets and Java Server
Pages even have access to per-application session timeout parameters. However, many session
mechanisms are geared at general site usage and have fixed timeouts that are often too long for
authenticated sessions.

Usability

The system should be tested with two sessions using the same user identity. Testing the system
with two open windows in the same instance of the Web browser should also occur to ensure an
appropriate user experience.

When an authenticated session times out, it should be possible to restore state to the page that
was last accessed. The login page should not blindly overwrite all session data.

The length of the authenticated session timeout is a trade-off between usability and security. It
should not be too short, because users often run multiple programs and work slowly. However,
to protect users from unauthorized access if they walk away from their keyboard without logging
out, the session timeout should not be more than 10-15 minutes.

The system must provide an explicit logout mechanism that clears the authenticated user
identifier from the session. The logout button should be available from every page when the
user’s session contains an authenticated identity.

Possible Attacks

There are a number of possible attacks that can be perpetrated on authenticated sessions:

• Session continuation – if session data is not properly cleared from the client, it is possible for
an attacker to revisit pages cached by the browser or even continue the authenticated session.

• Session hijacking – if the session identifier is observed traveling over the network, it is
possible to jump into the session by using the identifier as a part of requests from another
browser.

• Direct page access – if every page does not explicitly check authentication, it is possible to
guess URLs (or use URLs stored in another user's browser) and gain direct access to the
page.

• Manipulation of client data – if a session depends on data provided by the client (either
hidden fields, encoded URLs, cookies, or referring pages), it is possible for an attacker to

Authenticated Session Security Patterns Repository v1.0

- 23 -

manipulate that data to circumvent the server authentication model.

It is safe to use the referring page to ensure correct sequence within the application is observed,
but one should not depend on the referring page to indicate whether a request has been
authenticated.

Examples

Many significant Web banking and e-commerce applications rely on this pattern. Any site that
enforces user authentication and does not store that information on the client uses something
similar.

Trade-Offs

Accountability
This pattern increases accountability by providing a straightforward,
secure approach to repeated authentication.

Availability No effect.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability No effect.

Usability
The pattern increases usability by not requiring repeated logins.
However, if the session timeout is too short or overwrites the session
state, it will adversely affect usability.

Performance

There is little performance impact from storing authentication data on
the server. However, storing session data on the server can increase
server load and make load balancing difficult. If authentication data is
stored on the client, significant overhead will be incurred in
cryptographically validating the data against tampering.

Cost
Use of a standard authentication model for all protected pages can
lower cost by reducing the quality assurance burden.

Related Patterns

• Network Address Blacklist – a related pattern that demonstrates a procedure for blocking a
network address from further access attempts if a session identifier guessing attack is
conducted.

Authenticated Session Security Patterns Repository v1.0

- 24 -

• Password Authentication – a related pattern that presents the secure management of
passwords, which are almost always used as the authentication mechanism for this pattern.

References

[1] Coggeshall, J. “Session Authentication”.
http://www.zend.com/zend/spotlight/sessionauth7may.php, May 2001.

[2] Cunningham, C. “Session Management and Authentication with PHPLIB”.
http://www.phpbuilder.com/columns/chad19990414.php3?page=2, April 1999.

[3] Kärkkäinen, S. “Session Management”. Unix Web Application Architectures.
http://webapparch.sourceforge.net/#23, October 2000.

Client Data Storage Security Patterns Repository v1.0

- 25 -

Client Data Storage
(a.k.a. Cryptographic Storage, Tamperproof Cookie)

Abstract

It is often desirable or even necessary for a Web application to rely on data stored on the client,
using mechanisms such as cookies, hidden fields, or URL parameters. In all cases, the client
cannot be trusted not to tamper with this data. The Client Data Storage pattern uses encryption
to allow sensitive or otherwise security-critical data to be securely stored on the client.

Problem

Many Web application designs depend on the ability to store data on the client. From a security
perspective, it is almost always preferable to store data on the server. But there are
considerations other than security that may require client-side storage to be used:

• Load balancing across multiple application servers can be complicated by the need to share
session data across servers. It is much easier to store the session data on the client and have
the client provide that data with each request. Making the application servers stateless with
respect to any particular client allows large sites, such as e-Bay, to be far more responsive.

• Many e-commerce sites find considerable value in tracking users’ browsing habits across
visits. But such tracking can represent a significant amount of data that must be stored on the
server. Furthermore, the server will generally include large amounts of stale data that may
no longer be associated with any browser. It is far more economical to store this data on the
client.

• Some designs (including versions of the Password Propagation pattern) require that the
user’s password be stored on the client in order to effect single sign-on. Amazon.com’s one-
click shopping is an excellent example of this.

• Storing sensitive data, such as passwords and credit card numbers, on the client instead of the
server would prevent a compromise of the Web site from compromising the sensitive data
associated with every client.

• In order to access data stored on the server, the client needs to be able to identify that data
using a session identifier. The session identifier is itself sensitive.

Whatever the reason for storing sensitive data on the client, the problem arises that the client
cannot be trusted:

• If attackers manually inspect the contents of cookies and Web pages, they may be able to
glean information about the operation of the Web site that could later be used to compromise
the site.

Client Data Storage Security Patterns Repository v1.0

- 26 -

• If a security-conscious individual notes that sensitive data is stored in the clear, the results
can be a public relations disaster.

• If a user’s machine is stolen or otherwise compromised, an attacker would be able to gain
access to any sensitive client-resident data.

• Cross-site scripting attacks allow a remote Web site to gain access to cookies created by
another site. Any sensitive data in the cookie could be compromised remotely. Similarly,
sensitive data in a URL could be extracted from the browser’s referring page.

• If an attacker is able to modify authentication data on the client, the attacker could assume
the identity of another user and compromise that user’s account.

• If an attacker is able to modify sensitive application data, they could manipulate the
application into behaving improperly.

Solution

The Client Data Storage pattern uses encryption techniques to protect data that this stored on the
client. Using encryption ensures that sensitive data will not be inadvertently revealed. Using
message authentication codes ensures that the data cannot be tampered with on the client.

The Client Data Storage pattern employs these cryptographic techniques whenever sensitive data
is to be delivered to the client. When this data is retrieved from the client it is decrypted and
verified by a security checkpoint function. Any evidence of tampering is reported as a security-
relevant event.

The Client Data Storage pattern uses a single symmetric key to encrypt and authenticate all data
for all clients. When the technique is used to protect data within a single session, the key can be
quite short, but should be rotated frequently. When the technique must protect long-lived client
data across sessions, the key must be much stronger, as it will be very difficult to rotate keys
without significant impact on either development cost or usability.

The most straightforward approach adds two functions on the application server: one to store
sensitive data in the session object, and one to validate that data before it is used. When the user
logs in, the authenticated username should be hashed using a session key stored on the server.
The hash should be stored in the session data along with the username. When a protected page is
requested, the server should recompute the hash of the username stored in the session data, and
compare it to the hash stored in the session data. If the two match, the username can be trusted.

In order to protect against guessing attacks, the session key should be changed periodically. In
general, changing the key once a day should be sufficient. In order to validate username hashes
that span a change of keys, any failed hash comparison should be recomputed using the previous
key as well. If the old key successfully validates the hash, the username should be accepted and
a new hash created using the current key. In order to protect the key against brute force guessing
attacks, repeated incorrect hashes submitted from a single network address should result in that

Client Data Storage Security Patterns Repository v1.0

- 27 -

address being added to the network address blacklist. If the Network Address Blacklist pattern is
not used, these events should be closely monitored by system administrators.

Encrypted Session Data

Server

Encryption /
Decryption

Module

Session Key

Pages

Client

Issues

Many of the issues are identical to those of the Encrypted Storage pattern.

The following general principles should be followed:

• Never attempt to invent an encryption algorithm. Use a tested algorithm from Applied
Cryptography.

• If possible, use a freely available library rather than coding one from scratch.

• After sensitive data is used, the memory variables containing it should be overwritten.

• Ensure that sensitive data is not written into virtual memory during processing.

• Use only symmetric encryption algorithms. Asymmetric (public/private) algorithms are
computationally expensive and could easily result in processor resources being exhausted
during normal usage.

Protection of the Key

If at all possible, the key should not be stored on the file system. There are COTS devices
available that provide the system with a physical encryption card. These devices offer
performance benefits and also guarantee that the key cannot be read off the device. The key is
manually loaded into the card, the encryption takes place on the card, and the key cannot be
extracted from the card. The only downside to this approach is the cost – both the cost of
purchasing the hardware and the development and maintenance costs of programming around it.

A cheaper alternative to loading the key is to require that an administrator load the key at system
start, either from removable media or using a strong passphrase. This reduces the risk of having
the key on-line but does expose the key to a fair number of different people. This approach

Client Data Storage Security Patterns Repository v1.0

- 28 -

might also sacrifice some availability because an operator must manually intervene whenever the
system restarts.

If neither of these approaches is feasible, the Web server can read the key value from a file at
server startup. This approach ensures that the server can restart unattended but puts the key at
risk if the system is compromised. To reduce this risk, one or more of the Server Sandbox
pattern techniques should be used, even going so far as to chroot the server so that it cannot see
the key file once it has completed its initialization process.

Unless a hardware encryption device is used, the server will have to maintain a copy of the
encryption key in RAM in order to decrypt data as it is needed. The code modules that have
access to the key should be minimized. And if the operating system supports it, mark the
decryption module so that it will never be swapped to disk. Also be aware that a coredump file
might contain the key – these should be disabled on a production server.

In addition to protecting the key from attackers, the key must also be protected from
conventional loss. The loss of the key would be catastrophic, since all user data would become
inaccessible to the server. Maintain multiple backups of the key at various off-premises
locations. Recognize that multiple keys increase the risk that one could be stolen, and take care
to protect them all.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• If the data is not sufficiently protected, an attacker may be able to decrypt the data via a brute
force attack.

• An attacker that compromises the server may be able to gain access to the global encryption
key.

• Cross-site scripting can be used to force the browser to reveal cookies that are intended for a
different site.

Examples

Many application servers use cryptographic techniques to generate suitably random session
identifiers that are stored on the client

Many large Web sites store encrypted cookies on the client’s browser. They include
Amazon.com, Buy.com, and e-Bay. Because they are encrypted, it is impossible to know
precisely how they are being used.

Trade-Offs

Accountability No effect.

Client Data Storage Security Patterns Repository v1.0

- 29 -

Availability

Availability could be adversely affected if encryption keys are lost.
Also, if a global key must be reentered by a human operator each time
the system restarts, availability will suffer if an operator is not
available to restart the server.

Confidentiality
This pattern increases confidentiality by ensuring that the data is
secure, even if it has been captured in an encrypted form.

Integrity
This pattern helps to ensure the integrity of client data and processing
that depends on that data. Any data tampering on the client can be
detected.

Manageability
If system administrators must intervene to provide a global password
on system restart, this will require around-the-clock administration.

Usability No direct effect.

Performance
This pattern will have a negative impact on performance because of
the processing burden of encrypting and decrypting every message.

Cost
Costs will be incurred from additional processing required to
compensate for performance loss and the cost of adding encryption /
decryption logic to the application.

Related Patterns

• Client Input Filters – a related pattern that verifies all data coming from the client.

• Encrypted Storage – a related pattern utilizing encryption to protect confidential data.

References

[1] Landrum, D. “Web Application and Databases Security”.
http://rr.sans.org/securitybasics/web_app.php, April 2001.

Client Input Filters Security Patterns Repository v1.0

- 30 -

Client Input Filters
(a.k.a. Untrusted Client, Server-Side Validation, Sanity Checking)

Abstract

Client input filters protect the application from data tampering performed on untrusted clients.
Developers tend to assume that the components executing on the client system will behave as
they were originally programmed. This pattern protects against subverted clients that might
cause the application to behave in an unexpected and insecure fashion.

Problem

Web applications are client-server applications, in which the client executes on untrusted
hardware outside of the control of the Web application developer. Developers have a tendency
to believe that the application will execute as programmed.

However, it is often trivial for attackers to tamper with Web clients, causing them to behave in
an untrustworthy manner. For example, many sites depend on data validation performed by
JavaScript functions executed on the client. It is easy to copy the page source, remove those
checks, and execute the modified client code. Furthermore, the attacker can read the original
code and learn what sanity checks the application applies to data.

Other sites rely on an intricate back-and-forth sequence of form submissions, in which data from
earlier pages is stored in hidden fields on later pages. Again, it is trivial for the attacker to alter
the contents of those fields before submitting the final page. In one famous case, a number of e-
business sites used hidden fields to store catalog prices, so that a total selling price could be
quickly computed on the client. Attackers were able to freely substitute prices reflecting
extremely deep discounts.

A few sites even use client-side checks to enforce security measures, such as checking
passwords, enforcing access control restrictions, or implementing account lockout after several
failed password attempts. These measures cannot be trusted to execute properly, as attackers are
free to ignore them.

A related problem is that many sites depend on anonymous users to submit data that cannot
really be validated. For example, a site may ask users to provide their names and mailing
addresses before a file can be downloaded or a physical catalog is mailed out. If a malicious user
provides bogus data, the site might attempt to process the data. This can provide an avenue for
resource consumption attacks and, in the case of the physical catalog mailing, can be quite
expensive. Even if detected, a site flooded with spurious requests may cause valid transactions
to be discarded along with the invalid ones.

Solution

All data provided by the client should be treated as suspect and filtered at the server:

Client Input Filters Security Patterns Repository v1.0

- 31 -

• Calculated fields provided by the client should be ignored and recomputed at the server when
the data is processed.

• Data validity checks performed on the client should be repeated on the server before the data
is processed.

• Sensitive data that must be stored on the client should be kept in an encrypted, tamper-proof
form. (See the Client Data Storage pattern.)

• In addition to field-level validity checks, the server should look for specific signs of bogus
data submission and discard requests that are obviously questionable.

• Suspiciously long URLs and header fields should be dropped (and possibly logged).

• Text data that is submitted by the user should be filtered to eliminate scripting tags and other
questionable content.

Sanity checks can be integrated into standard page objects, or they can be implemented in
separate objects that use chaining (or servlet filtering) to intercept and modify the requests as
they are dispatched to the page objects. The latter approach is less efficient, but is easier to get
right. In either case, the client filters should always be invoked before any processing of the
client-supplied data occurs.

Client filters should be able to modify requests before delivering them to the intended object. If
the data cannot easily be fixed, the client filter should reject or simply drop the request. All
filtering events should be reported to the central logging mechanism – although many will be
benign, they might indicate a pattern of attempted misuse. If a filter detects an obvious attempt
to sidestep the security of the system, the request should be blocked and the event reported.

Client

Page 1

Filter

Page n

Page 2Server

Filter

Filter

Issues

If an authenticated user account is exhibiting signs of tampering with the client or client-resident
data, one possibility is that the account has been compromised. The legitimate user should be
contacted out-of-band, or the account should be disabled and the legitimate user will eventually
contact customer service.

Client Input Filters Security Patterns Repository v1.0

- 32 -

Many Web sites use hidden fields on the browser, or client-resident cookies, to maintain client
state. This can be more efficient than storing that state on the server. However, it is trivial for
users to inspect the contents of these fields. In particular, plaintext passwords should never be
stored in cookies, URLs, or browser pages.

When testing a Web site, there are a number of techniques that can be used to see all the content
that is usually invisible. Use “view source” to examine hidden fields, use “prompt for cookies” to
inspect the contents of cookies, and install a packet sniffer to examine the contents of header
fields. If using SSL, install a proxy so that the packet sniffer will be able to see decrypted
packets between the browser and the proxy. All of these techniques help you understand how
easy it is for attackers to look under the surface of an application.

Log all suspicious client behavior, including the originating network address. These logs may be
critical for later prosecution if the client turns out to be an attacker. Furthermore, these logs
should be integrated into the Intrusion Detection System in order to inform the system
administrators that the site may be under attack.

Duplicating Client Side Checks

Web sites often use client-side JavaScript to validate form submissions (either that individual
fields comply with formatting restrictions, or that specific fields have not been left empty). It is
trivial to bypass these checks. Some user firewalls and browsers even filter out JavaScript,
resulting in forms that work but are never validated. For these reasons, it is necessary to re-
validate all user-supplied data on the server. The client-side validation is a useful efficiency: it
provides greater response times and reduces the burden on the server. But it should never be
depended on.

Sensitive data calculated on the browser should be validated on the server. Some e-commerce
sites store unit pricing information on catalog Web pages, and then depend on the client browser
to calculate total prices. This allows the Web page to be more responsive to user changes then
one that must go back to the Web server for these calculations. However, it is critical that the
results of that calculation be validated on the server.

When replicating client-side checks on the server, it is crucial that the computations be
consistent. Continuing the previous example, if the server recalculates the total price and
computes a value that is higher than that calculated by the client, users will be very, very upset.
If there is any chance that the calculations could become inconsistent, it is better to take the
performance hit and simply calculate everything on the server.

Sanity Checks

For any transaction request that can be initiated by an unauthenticated user, the Web application
should invoke a sanity-checking module before processing the request. A sanity-checking
module will conduct checks such as: do any of the fields not comply with field-level checks that
should have been performed at the client? Is the request from an IP address that has made
similar requests recently? Is the request largely similar to another recent request? Do any of the
fields contain random garbage (e.g., “asdf” or other obvious sequences), or do multiple fields
appear suspect? Do specific field contents raise red flags (e.g., e-mail address of

Client Input Filters Security Patterns Repository v1.0

- 33 -

“president@whitehouse.gov”) Using this approach, it should be possible to filter out a large
proportion of obviously bogus submissions. Other questionable submissions can be flagged for
later observation by a human operator.

Filtering Possible Attacks

There are products that allow data submitted to the Web server to be filtered according to
predefined rules. For example, if any legitimate URL is no more than 256 characters, it would be
appropriate to truncate any longer request (which may contain a buffer overflow attack). If
binary files are never uploaded to the server, non-printable ASCII characters could be stripped
from all requests (again, thwarting potential buffer overflows).

Many sites allow users to upload text to be posted on the site (e.g., product reviews, general
message forums, auction postings, news stories). Users who know HTML enjoy adding tags to
their text in order to add formatting or draw the reader's attention. But any site that echoes user-
supplied HTML could be misused to attack other sites. Filter out anything but the most basic
HTML tags (font formatting). If links to other sites are provided by users, be careful to filter out
any scripting tags or escape sequences. There are libraries available to filter out cross-site
scripting attacks – use one.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Cross-site scripting attacks – this attack occurs when a Web server echoes user-provided
JavaScript containing links to a hostile site. For example, many sites include user comments
and reviews. If the site does not filter input, a client can be tricked into divulging sensitive
cookie data to the cross-linked site.

• Resource consumption attack against the server – if the server is required to keep state for
each client, this can lead to depletion of resources on the server if every new client consumes
some finite resource on the server.

• Automated submissions – it is straightforward to develop an automated tool for making large
numbers of form submissions to a Web site. There are even books explaining how to build
“votebots” that can skew on-line polls [6]. The most dangerous of these are password-
guessing attacks and enrollment secret-guessing attacks.

Examples

Operating systems do not trust the applications running on them. When applications attempt to
invoke operating system services, the operating system checks that the parameters are all valid
before executing the command. Operating systems also store critical data within protected
memory, providing only opaque handles to the application [5].

As an efficiency, early versions of Windows did not perform parameter validation, and the
results were a significant decrease in stability.

Client Input Filters Security Patterns Repository v1.0

- 34 -

At the network level, modern e-commerce sites have generally learned to employ these
techniques in order to avoid repeating the earlier mistakes of others. Amazon.com, for example,
maintains shopping cart data and all pricing information on the server. The client contains only a
session identifier. Session cookies are apparently used to track user browsing habits, but not
anything critical to the shopping transaction. Permanent cookies are used to identify the user
upon repeat visits, but do not authenticate the user. (One-click shopping, if enabled, is an
exception to this.)

This pattern is commonly used in almost all Web applications to verify e-mail addresses;
anything entered in an e-mail address field that is not valid will result in a warning.

On at least one Microsoft Web site that attempts to gather customer information, any attempt to
enter an e-mail address ending in “microsoft.com”, “msn.com” or “msnbc.com” will result in the
submission being rejected. This appears to be an instance of sanity checking.

Trade-Offs

Accountability No effect.

Availability
If overly sensitive, this pattern can have an adverse effect on
availability, preventing legitimate users from using the site.

Confidentiality No effect.

Integrity
This pattern greatly enhances the integrity of the data processed by a
Web site.

Manageability
The management burden could be increased if overly sensitive sanity
checks result in a high number of false reports of attacks that must be
investigated.

Usability No effect.

Performance

This pattern will incur a small performance penalty, since it requires
some time to perform checks. If data is stored in encrypted form on
the client, encrypting and decrypting the data will also exact a
performance hit.

Cost
This pattern has fixed implementation costs. However, if overly
sensitive it could greatly increase the customer service burden on the
site.

Related Patterns

• Network Address Blacklist – a related pattern the responds to suspicious client behavior; if

Client Input Filters Security Patterns Repository v1.0

- 35 -

any client-side validation fields have been obviously disabled, this should be input to the
network address blacklist.

References

[1] Dominy, R. “Focus on JavaScript: Email Field Validation”.
http://javascript.about.com/library/scripts/blemailvalidate.htm, 2002.

[2] INT Media Group. “Email Address Validation”.
http://javascript.internet.com/forms/check-email.html, 2002.

[3] Open Web Application Security Project (OWASP). “Input Filters”.
http://www.owasp.org/filters/index.shtml, May 2002.

[4] Peterson, S. and D. Fisher. “The next security threat: Web applications”.
http://zdnet.com.com/2100-11-503341.html?legacy=zdnn, January 2001.

[5] Silberschatz, A., J. Peterson, and P. Galvin. Operating System Concepts Third Edition.
Addison-Wesley, 1991.

[6] van der Linden, P. Just Java 2 – Fourth Edition. Prentice Hall, 1999.

Directed Session Security Patterns Repository v1.0

- 36 -

Directed Session
(Mini-Pattern)

Abstract

The Directed Session pattern ensures that users will not be able to skip around within a series of
Web pages. The system will not expose multiple URLs but instead will maintain the current
page on the server. By guaranteeing the order in which pages are visited, the developer can have
confidence that users will not undermine or circumvent security checkpoints.

Problem

Web applications often have to collect a great deal of data from a user in order to complete a
single transaction. E-commerce purchases, for example, require that a user select items to buy,
provide contact information and a shipping address, select shipping options, and provide credit
card information. Rather than simply present the user with a huge form with a bewildering array
of options, most sites prefer to guide the user through the process, validating each piece of data
as it is provided.

This approach can be vulnerable to attacks. An attacker can use known URLs to jump between
the different pages, in attempt to bypass some of the data validation checks. For example, if the
application developer is not extremely careful, it may be possible for the attacker to add items to
the order after having paid.

Solution

The Directed Session pattern exposes a single URL to the end user. All pages on the server are
accessed using that URL. Session data stored on the server is used to determine which page is
served. When no session data is present, the user is given the initial home page. As the user
navigates the system, the current selected page is maintained in the session data.

This approach ensures that users are not able to request specific URLs and thereby bypass data
validation checks. When a transaction consists of several separate pages, the user cannot request
the second page until the first page has been validated. The application designer has some
lenience here. If the user goes back to cached pages and resubmits an earlier page, it may be
acceptable to accept that page and notes that all subsequent pages must be resubmitted.
Alternately, the application designer can enforce a strict sequence and require that the user
navigate using “forward” and “back” commands on the page itself.

Note that many IIS .ASP pages use an approach like this to regulate user transactions. While not
intended for security, it can have positive impact on security. It also has some shortcomings
from a usability perspective, particularly where the back button on the browser is concerned.

Directed Session Security Patterns Repository v1.0

- 37 -

Related Patterns

• Authenticated Session – a related pattern that can use this directed session mechanism to
enforce a particular session interaction.

• Client Input Filters – a related pattern that can use this directed session mechanism to
enforce that client input is accepted and validated in a particular order.

• Validated Transaction – a complementary pattern for ensuring that client input validation is
performed on all user input.

References

None.

Encrypted Storage Security Patterns Repository v1.0

- 38 -

Encrypted Storage
(Cryptographic Storage)

Abstract

The Encrypted Storage pattern provides a second line of defense against the theft of data on
system servers. Although server data is typically protected by a firewall and other server
defenses, there are numerous publicized examples of hackers stealing databases containing
sensitive user information. The Encrypted Storage pattern ensures that even if it is stolen, the
most sensitive data will remain safe from prying eyes.

Problem

Web applications are often required to store a great deal of sensitive user information, such as
credit card numbers, passwords, and social security numbers. Although every effort can be taken
to defend the Web server, one can never be sure that some new vulnerability won’t be
discovered, leading to the compromise of the server. Hackers are known to specifically target
this sort of information.

Historically, Web sites that have experienced the loss of sensitive customer data have found it
very difficult to recover from the adverse publicity. While many sites have recovered from the
shame of being defaced, the large-scale loss of credit card numbers is a catastrophic failure.

Ultimately, it is always preferable not to store sensitive data. However, sometimes it is not
avoidable. For example, credit card transactions are often not a single event. If an item is back
ordered or the user requires a refund, the site must be able to access the credit card number that
was used. Similarly, many government and financial sites rely on the social security number as
the primary identifier for American users. These sites need a better approach to protecting this
data.

Solution

The Encrypted Storage pattern encrypts the most critical user data before it is ever committed to
disk. Before it can be used, it is decrypted in memory. If the Web server is compromised, an
attacker may be able to steal the data store, but will not be able to gain access to the sensitive
data.

In the most straightforward approach, each user’s data is protected using a single key. Under this
solution, the application server maintains a single key that is used to encrypt and decrypt all
critical user data. The key should be stored in a secure fashion, and especially not in the same
data store as the protected data.

The key should be changed occasionally. This requires that the system be able to decrypt data
using the old key and re-encrypt it using the new. Because of the complexity of encrypting and
decrypting data on the fly, this should be performed with the database off-line during a period of

Encrypted Storage Security Patterns Repository v1.0

- 39 -

downtime. If downtime is not possible, a large key should be selected with the expectation that
it will not be changed.

Server

Encryption /
Decryption

Module

Session
Key

Pages
Client

Database

Server startup:

• The server loads the key into the encryption module

• The server takes protective measures to ensure that the key cannot be further accessed

Receipt of sensitive data:

• The client submits a transaction containing sensitive data

• The server submits the data to the encryption module

• The server overwrites the cleartext version of the sensitive data

• The sensitive data is stored in the database with other user data and an identifier for the
sensitive information

Use of sensitive data:

• A transaction requiring the key is requested (usually from the client)

• The transaction processor retrieve the user data from the database

• The sensitive data is submitted to the encryption module for decryption

• The transaction is processed

• The cleartext sensitive data is overwritten

• The transaction is reported to the client without any sensitive data

Key refreshing:

Encrypted Storage Security Patterns Repository v1.0

- 40 -

• A utility program is started and loaded with both the old and the new key

• Each user record in the database is converted individually.

Issues

Never echo the sensitive data to the user. If you need to differentiate among several credit card
numbers, display only the last four digits of the card. These should be stored in the database
along with the encrypted card number. Both performance and security could suffer if the card
numbers are decrypted every time the last four digits are required.

Do not rely on any Operating System-level encrypting file system. Encrypting file systems are
adequate for defending against a lost hard drive. But if the system is compromised by a remote
attacker, the attacker will gain some sort of toehold on the system. In that case, the operating
system will dutifully decrypt all data as it is requested from the file system and deliver it to the
attacker.

The following general principles should be followed:

• Never attempt to invent an encryption algorithm. Use a tested algorithm from Applied
Cryptography.

• If possible, use a freely available library rather than coding one from scratch.

• After sensitive data is used, the memory variables containing it should be overwritten.

• Care must be taken to insure that sensitive data is not written into virtual memory during
processing.

• Use only symmetric encryption algorithms. Asymmetric (public/private) algorithms are too
computationally expensive and could easily result in processor resources being exhausted
during normal usage.

Protection of the Key

If at all possible, the key should not be stored on the file system. There are COTS devices
available that provide the system with a physical encryption card. These devices offer
performance benefits, and also guarantee that the key cannot be read off the device. The key is
manually loaded into the card, the encryption takes place on the card, and the key cannot be
extracted from the card. The only downside to this approach is the cost – both the cost of
purchasing the hardware and the development and maintenance costs of programming around it.

A cheaper alternative to loading the key is to require that an administrator load the key at system
start, either from removable media or using a strong passphrase. This reduces the risk of having
the key on-line, but does expose the key to a fair number of different people. This approach may
sacrifice some availability because an operator must manually intervene whenever the system
restarts.

Encrypted Storage Security Patterns Repository v1.0

- 41 -

If neither of these approaches is feasible, the Web server can read the key value from a file at
server startup. This approach ensures that the server can restart unattended, but puts the key at
risk if the system is compromised. To reduce this risk, use one or more of the Server Sandbox
pattern techniques, even going so far as to chroot the server so it cannot see the key file once it
has completed its initialization process.

Unless a hardware encryption device is used, the server will have to maintain a copy of the
encryption key in RAM in order to decrypt data as it is needed. Minimize the code modules that
have access to the key. And if the operating system supports it, mark the decryption module so
that it will never be swapped to disk. Also be aware that a coredump file might contain the key –
these should be disabled on a production server.

In addition to protecting the key from attackers, the key must also be protected from
conventional loss. The loss of the key would be catastrophic, since all user data would become
inaccessible to the server. Maintain multiple backups of the key at various off-premises
locations. Recognize that multiple keys increase the risk that one could be stolen, and take care
to protect them all.

Variation: One Key Per User

This alternative is similar to the Password Propagation pattern in that it requires that the
individual user’s password be available in order to gain access to that user’s data. The server
itself does not even have a key that will allow access to a user’s data. It is not really applicable
to the protection of credit card numbers, as those numbers must be available to the server even
when the user is not connected.

In this approach, the user’s password is used to encrypt the data that is sensitive to that user. To
decrypt the data, the user must again provide their password, which is never stored in decrypted
form. Because decryption of the data requires the user to provide his/her password, and because
that password is not known outside of the context of an authenticated user transaction, the site
administrator has no access to that data.

If the password itself is stored in the data, it should be stored in hashed form, using a different
algorithm than the hash function used to encrypt the sensitive data. If the password is stored in
plaintext or hashed using the same algorithm, the attacker will have the key needed to decrypt
the data.

If the user changes his/her password, the data must be decrypted using the old password and re-
encrypted using the new. If the user loses his/her password, encrypted data will be lost. Data
protected in this way must be data that can be recovered through some other means, such as the
user providing it again.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Search of virtual memory – if sensitive data is paged out of RAM into a disk-based virtual
memory file, it may be possible for an attacker to search the pagefile for obvious data

Encrypted Storage Security Patterns Repository v1.0

- 42 -

patterns (such as numeric strings that are recognized as credit card numbers).

• Key capture – an attacker will attempt to gain access to the key used to encrypt the data

• Dictionary attack – when encryption keys are generated from passwords, password-guessing
attacks are generally much less difficult than exhaustive search of all possible keys.

• Race condition attack – an attacker may be able to capture the data before it has been
encrypted.

Examples

The UNIX password file hashes each user's password and stores only the hashed form.

Several Web sites with which we are familiar use encryption to protect the most sensitive data
that must be stored on the server. All use variations on this pattern.

Trade-Offs

Accountability No effect.

Availability
Availability could be adversely affected if encryption keys are lost. If
a global key must be reentered by a human operator each time the
system restarts, availability can suffer in those circumstances as well.

Confidentiality
This pattern increases confidentiality by ensuring that the data cannot
be decrypted, even if it has been captured.

Integrity No direct effect.

Manageability

If system administrators must intervene to provide a global password
on system restart, this will require around-the-clock administration.
If individual passwords are used to encrypt data, administration will be
complicated when users lose their passwords, or if other access to user
data is required.

Usability
If individual keys are used, usability will suffer when a user loses
his/her password and consequently loses all encrypted data.

Performance
This pattern will have a slight impact on performance due to the
encryption algorithms and extra storage logic required.

Cost
Costs will be incurred from additional processing power required,
additional management overhead, and the cost of adding encryption
and decryption logic to the application.

Encrypted Storage Security Patterns Repository v1.0

- 43 -

Related Patterns

• Client Input Filters – a related pattern that verifies all data coming from the client.

References

[1] Landrum, D. “Web Application and Databases Security”.
http://rr.sans.org/securitybasics/web_app.php, April 2001.

Hidden Implementation Security Patterns Repository v1.0

- 44 -

Hidden Implementation
(Mini-Pattern)

Abstract

The Hidden Implementation pattern limits an attacker’s ability to discern the internal workings of
an application—information that might later be used to compromise the application. It does not
replace other defenses, but it supplements them by making an attacker's job more difficult.

Problem

Before an attacker can wage a successful attack on a system, he or she must understand how the
system operates. Current systems tend to provide the attacker with a great deal of information
about both the standard components and the custom elements. As a result, it can be very easy for
a potential attacker to assess whether an attack is likely to be successful—or at least go
undetected—before having to do anything that might expose him or her to risk.

There are numerous specific occasions in which implementation details are revealed, including
the following:

• Most Web servers greet the client with a detailed description of the Web server software,
even going so far as to indicate the precise patch level.

• Many Web application systems use telltale file extensions (.asp, .jsp, .cfm) that indicate what
sort of dynamic content generation is taking place.

• Web authoring environments often default to a standard directory layout that reveals the
specific product used for generation.

• Application error messages can give detailed information about the software that failed and
the nature of the failure.

• Field names in Web forms and hidden variables leak application variable names.

A savvy attacker can use all of this information to increase the effectiveness of an attack.

Solution

The Hidden Implementation pattern forces examination of all communication with the client for
anything that might provide information about the internal workings of the system. If the system
has already been designed, then consider implementing changes or installing filters that sanitize
the data received by the client. Otherwise, the system should be designed in such a fashion that
would make it impossible or difficult for an attacker to learn how the system is implemented.

Hidden Implementation Security Patterns Repository v1.0

- 45 -

One must examine the system to determine where information might be gathered and the
potential impact this could have on the system.

• Understand what pieces of information are sensitive; consider how it could be modified or
abused.

• Do not expose anything that is not absolutely necessary.

• Go back and look at the system from an attacker’s point of view...what could the attacker
learn? (See Red Team the Design.)

• Examine the information the user sees on several levels -- what does it reveal about the
technology used to implement the system, the location of files, the content of the system data,
etc., and consider how feasible it is to hide each of these.

All errors should be mapped to generic “unavailable” screens and the specific details logged to
an internal debugging log.

Remove debugging capabilities, and comments in generated code.

Hidden Implementation presents some challenges:

• It is difficult to imagine all the negative uses of information.

• It may be difficult to hide all the important aspects of an application.

• The platform or tools used to build the system may not allow you to hide some
implementation clues.

• It may require significantly more design and development time hide pertinent information.

Related Patterns

• Account Lockout – a related pattern; authentication failure screens can be made to reveal no
information about the security policy. For example, a failed login screen can give the same
generic message, regardless of whether the user ID was incorrect, the password was
incorrect, or the maximum number of failed attempts was exceeded.

• Authenticated Session – a related pattern; sessions can be used to prevent leaking important
information to clients, instead of telling the client what its username is you can instead assign
the client a session identifier that maps to the information which is stored locally.

• Minefield – a related pattern; the application of implementation hiding principles cause the
potential hacker to work much harder to understand the workings of the system. By making
the reconnaissance more difficult and time-consuming, the attacker is more likely to be set
off the well-tuned or customized intrusion detection system of a minefield.

Hidden Implementation Security Patterns Repository v1.0

- 46 -

• Red Team the Design – a related pattern in which red teams can examine the system from an
attacker’s point of view to look for parts of the design that reveal implementation details.

References

None.

Minefield Security Patterns Repository v1.0

- 47 -

Minefield
(a.k.a. Booby-Trap, Tripwire)

Abstract

The Minefield pattern will trick, detect, and block attackers during a break-in attempt. Attackers
often know more than the developers about the security aspects of standard components. This
pattern aggressively introduces variations that will counter this advantage and aid in detection of
an attacker.

Problem

Any server that is accessible from the Internet will be attacked. No matter how much effort you
expend in protecting it, the possibility exists that an attacker will penetrate the system. Once
inside, an attacker who is familiar with the operation of a system will be at a huge advantage
over one who has to perform lengthy, detectable reconnaissance activities.

Using standard Commercial-off-the-Shelf (COTS) software is an economic necessity. But
attackers have access to the same COTS software, and thus are likely to know the operation of a
system as well as its developers and administrator. Being intimately familiar with the internals of
a system allows an attacker to operate with confidence, carefully avoiding standard detection
mechanisms and covering his/her tracks afterwards. If a site is too cookie-cutter, attackers will
even be able to use existing scripted tools to automate this process.

Solution

The Minefield pattern involves making slight customizations to a system. These modifications
can have a number of different effects, depending on the attacker’s skill and risk aversion:

• They might break compatibility with existing scripted attack tools.

• They might alert the operator to the presence of an intruder without the intruder’s knowledge.

• They might cause the attacker to become uncomfortable enough with the prospect of being
caught to cease attacking.

There is no cookie-cutter approach to developing minefields, as that would defeat the purpose.
But there are a few basic approaches, including the following:

• Rename common, exclusively administrative commands on the server and replace them with
instrumented versions that alert the administrator to an intruder before executing the
requested command.

• Alter the file system structure.

Minefield Security Patterns Repository v1.0

- 48 -

• Introduce controlled variation using tools such as the Deception Toolkit.

• Add application-specific boobytraps that will recognize tampering with the site and prevent
the application from starting.

Taken together, these techniques provide higher assurance that an attacker will not be able to
attack the application server without being detected.

Issues

Customization

The single most significant security customization is to remove (or not install) the hundreds of
tools, sample files, and potentially dangerous utilities that are part of any default installation, but
not necessary for the server to execute. (See the Build the Server From the Ground Up pattern
for more details.)

Simply moving files from the default locations can be enough to break many automated attack
scripts. For example, many tools that probe for Web vulnerabilities are hard-coded to request
files in the cgi-bin directory. Creating an alternative directory and placing cgi-bin files in that
directory will cause many tools to fail. While something this simple will not deter a skilled
adversary, it can cause unskilled attackers to leave a system alone.

Another useful technique is to change the disk location of the Web server’s configuration and
document files. If the apache configuration file is always located in /etc/httpd/config, a scripted
attack could cause the file to be overwritten with a less secure version. Likewise, if the root Web
page is stored at /var/www/html/index.html, it will be easy for a scripted attack to deface the site
by replacing that page. Simply moving these files will thwart many tool-based attacks.

A more aggressive strategy is to use customization to make the server inhospitable to an attacker
who actually gains access to the system. An excellent example of this described by Marcus
Ranum is to rename all of the standard system utilities (“ls”, “cd”, etc.) to bizarre, non-standard
names, and replace them with boobytrapped versions that will shut the system down. If
legitimate administrators need access, they can load a secret alias file that maps all the names
back to their standard value. An attacker who attempts to do anything on the system will cause it
to be shut down almost immediately.

As noted in Security Assertion, it is also possible to develop application-specific tripwire-like
functionality that shuts the system down if application data fails internal consistency checks.

Any customizations should be fully documented as part of the Document the Server
Configuration pattern.

Detection

Custom boobytraps are most effective when carefully monitored for signs of an intrusion. Given
enough time, a good attacker will learn to avoid the various mines and boobytraps. But initially,

Minefield Security Patterns Repository v1.0

- 49 -

the attacker will stumble across some of these devices. It is at this point that discovery of the
attacker’s presence is most possible.

In the example of the renamed cgi-bin directory, the system administrator should be aware of any
attempts to access files in the original cgi-bin directory. Because no valid URL from the site will
reference that directory, this is an obvious sign of mischief. Such activities should immediately
result in an entry in a network address blacklist. If not blocked, they should be closely
monitored for further evidence of attempted misuse.

In the example of the relocated apache configuration and html files, the original file locations
should be carefully monitored. If these files change, the system administrator will know that a
potentially devastating vulnerability exists on the Web server. At that point, monitoring should
be increased in order to understand how these files were altered and to close the security
vulnerabilities before they are exploited further.

Likewise, in the example of the boobytrapped system, if a boobytrap is triggered, the system
administrator should perform a complete forensic analysis of the server in order to understand
the extent of the damage.

In all of these cases, the existence of customizations allows for early discovery of security
problems, but only if appropriate monitoring is present. A conventional intrusion detection
system will not uncover these problems, unless it is customized appropriately.

Manageability

The biggest weakness of this approach is the adverse affect that it can have on system
manageability. An unwary system administrator could easily set off the various boobytraps.

The extent of this problem will depend on the degree to which the server configuration is
controlled. When the Build the Server from the Ground Up and Use a Staging Server patterns
are properly employed, there should be no on-the-fly system administration performed on the
production server. In this case, the customizations have no real affect on manageability.
However, when the server must be actively administered, this pattern will be less appropriate.

Possible Attacks

Standard attack tools will cause a commercial intrusion detection systems to light up like a
Christmas tree. When the system administrator has no recourse but to ignore these attacks, they
represent a huge drain of personnel resources.

Distributed denial-of-service attacks against these systems can also limit the availability of the
system.

Examples

There are products that implement some of the concepts in this pattern, such as Tripwire,
Tripwire for Web Pages [2], and the Deception Toolkit [1].

Minefield Security Patterns Repository v1.0

- 50 -

Trade-Offs

Accountability No direct effect.

Availability
If implemented in a fail-secure manner, this will adversely affect
availability, by causing the system to halt when an intruder is detected.

Confidentiality No direct effect.

Integrity
This pattern improves system integrity by increasing confidence that
scripted attacks will fail and that human attackers will be detected
before they can cause damage.

Manageability

This pattern will increase the management overhead of the application
because it will require that log auditing be performed along with other
security tasks. If the various sensors are too finely tuned, a significant
administration burden will result. Customizations that are meant to
trip up an intruder or break compatibility with attack tools can also trip
up administrators and break compatibility with management and
development tools.

Usability
Usability will suffer if sensors are overly sensitive, causing users to be
denied access for too many legitimate mistakes.

Performance No direct effect.

Cost
Development and documentation of custom configuration and
monitoring mechanism is an additional one-time cost.

Related Patterns

• Build the Server from the Ground Up – a related pattern that provides more details about the
trade-offs between developing custom components and using standard parts.

• Network Address Blacklist – a related pattern that discusses a mechanism for blocking
network access to remote systems that have triggered numerous alerts.

References

[1] Cohen, F. and Associates. “The Deception Toolkit Home Page and Mailing List”.
http://all.net/dtk/dtk.html, 1998.

[2] Gillespie, G. “Saving face: Get Tripwire for Web Pages to protect your site against
vandalism”. http://www.computeruser.com/articles/daily/7,3,1,0620,01.html, June 2001.

Minefield Security Patterns Repository v1.0

- 51 -

[3] Ranum, M. “Intrusion Detection and Network Forensics”. USENIX '99, Monterey, CA,
June 1999.

[4] U.S. Department of Energy Computer Incident Advisory Capability (CIAC). “J-042: Web
Security”. http://ciac.llnl.gov/ciac/bulletins/j-042.shtml, May 1999.

Network Address Blacklist Security Patterns Repository v1.0

- 52 -

Network Address Blacklist
(a.k.a. Client Filtering, IP Lockout)

Abstract

A network address blacklist is used to keep track of network addresses (IP addresses) that are the
sources of hacking attempts and other mischief. Any requests originating from an address on the
blacklist are simply ignored. Ideally, breaking attempts should be investigated and prosecuted,
but there are simply too many such events to address them all. The Network Address Blacklist
pattern represents a pragmatic alternative.

Problem

In a Web-based environment, where anonymous access is possible, there can be little to prevent
an attacker from brazenly attacking a system. Even if their actions are detected, many attackers
will proceed with impunity, knowing that their victims have little or no recourse. Unless the site
is a commercial bank or a government agency, the FBI is too busy to investigate hacking
attempts. When deterrence fails, there must be some other means of defending a site against
anonymous attackers. It is not sufficient to simply rely on the strength of static defenses.
Attackers that probe a site and find no resistance are likely to become more brazen.

Locking out individual accounts that appear to be under attack is an important defensive
measure, but not sufficient to defend the site. Many hackers focus on network attacks and
canned scripts that know nothing about individual accounts. Furthermore, a remote attacker
could exploit the lockout mechanism, deliberately causing a large number of accounts to be
locked out. Alternately, an attacker could choose a single weak password and then conduct an
“account guessing attack” until an account using that password is discovered. The account
lockout mechanism would never detect such an attack.

Solution

A network address blacklist mechanism maintains a list of network addresses that have exhibited
inappropriate behavior. Once a given network address has exhibited enough such behavior to
have obviously malicious intent, the network address will be temporarily added to a blacklist.
When a request is received from a blacklisted address, it will simply be dropped on the floor.

All Web accesses are based upon TCP, which uses a handshake protocol to ensure that incoming
IP addresses are not spoofed. While simple network-level denial-of-service attacks can be
spoofed, more sophisticated HTTP-based malfeasance requires that the attacker be able to
receive responses at the originating address. As a result, most attackers will have only have a
handful of different IP addresses at their disposal. Blocking requests from a questionable IP
address can effectively throttle many automated attacks.

The Network Address Blacklist pattern contains the folowing major elements:

Network Address Blacklist Security Patterns Repository v1.0

- 53 -

• A client (with a network address) that is up to no good.

• The server, which is responsible for detecting and reporting misuse of the system.

• A blocking mechanism that is capable of intercepting client requests before they reach the
server and dropping requests from blacklisted addresses.

• A blacklist that controls the blocking mechanism and responds to server requests to blacklist
specific addresses.

• (Optionally) a human administrator that can manually remove addresses from the blacklist.

Server

Client

Blocking
Mechanism

Blacklist

It is important to recognize that in many systems, the application developer will not have access
to a fully automated blacklisting mechanism. In those instances, it is perfectly acceptable to
allow a human administrator to act as the blacklist. The server will alert the administrator to
possible misuse, and the administrator can choose to take manual measures, such as inserting a
firewall or Web server access control rule that blocks that address. This is actually the most
common form of network address blacklist – many application servers share either a single host,
or are collocated behind a single firewall. In these instances, it would be inappropriate to allow a
single application to block an address from accessing all the collocated applications.

In normal circumstances, a client that is not on the blacklist will make a benign request of the
server. The blocking mechanism will let the request pass, and the server will respond with
normal functionality.

When a non-blacklisted client makes a suspicious request, the server will keep a record of the
network address and the nature of the request. If the request is sufficiently egregious (or the last
in a sequence of requests that exceeds some predefined threshold of tolerance) the server will
request that the address be blacklisted. The blacklist will configure the blocking mechanism to
deny further requests from that address.

When a blacklisted client makes a request of any sort, the blocking mechanism will simply drop
the request on the floor. Optionally, it may log the request for administrator audit.

After a period of inactivity from a blacklisted address, the blacklist mechanism will remove the
address from the blacklist and configure the blocking mechanisms to allow further requests from

Network Address Blacklist Security Patterns Repository v1.0

- 54 -

that address. Alternately, this can occur because of manual administrator intervention, possibly
at a user’s request.

Issues

Where to Block

If at all possible, the blocking mechanism should be implemented at the network level, either on
a separate firewall or using host-based network filtering. This ensures that automated attack
tools will be completely blunted. It eliminates the ability of the attacker to consume resources on
the Web server. And keeping this component separate makes it easier to validate its proper
operation.

There are circumstances where it may be either desirable or necessary to implement the blocking
mechanism within the application itself. In such a case, the application would be structured
roughly similar to the figure above. When a request is received, it is first checked against the
blacklist before being dispatched to the appropriate page. This approach has the advantage of
being entirely self-contained, not requiring integration with other components. It has several
disadvantages: it adds complexity to the application, it allows blacklisted addresses to continue
to consume server resources, and it cannot prevent attacks that exploit vulnerabilities to bypass
the application.

When implementing a filtering mechanism it is generally a good idea to continue to log requests
by blacklisted addresses. These logs may be necessary if an attacker must be prosecuted, or
succeeds in compromising security. However, it is important that the logging mechanism not
place a significant burden on the system. If logging events slows the system, stops the system
when the logs fill up, or presents a significant auditing burden, an attacker can continue to cause
mischief even after being blacklisted.

Administration of the Mechanism

As noted above, many implementations of this pattern provide a relatively static blocking
mechanism, and rely on human intervention to make changes to the addresses being blocked.
This has the advantage of simplicity. More importantly, it maintains a human in the loop – a
fully automated system raises the danger of the mechanism failing, or being attacked, in a
manner that denies service to large numbers of legitimate users. If the system will be manned
around the clock, an approach that keeps the operator in the loop is preferable. However, if it
will need to be unattended for a significant amount of time, a fully automated response should be
considered.

When you block a network address, you run the risk of blocking access to an entire organization
behind a firewall providing network address translation. This should not dissuade you from
using this approach. If legitimate users within the organization complain about being unable to
reach the site, they may be in a position to track down the misbehaving party, and even punish
that individual.

Network Address Blacklist Security Patterns Repository v1.0

- 55 -

If the blacklist mechanism is designed to eventually time out and remove addresses from the
blacklist, this timeout period should be measured in days or even weeks. However, it will have
to be fine-tuned in order to ensure that the list doesn’t grow so large that it adversely affects
performance. As noted below, the lockout mechanism should be fairly conservative – there
should be no way that an honest mistake could result in lockout. This being the case, there is no
need from a usability perspective to keep the time out period low.

It may be necessary to provide an interface to manage the blacklist, so that an administrator can
remove addresses manually. However, this is not an interface that customer service
representatives will need to be able to use. Customers will generally not even know their IP
address and customer service representatives will not understand the security implications of de-
listing an address that has been detected trying to actively hack the system.

Causes for Blacklisting

Some of the sensors that can be used to determine misuse by a network address are:

• When a single network address generates a number of requests for non-existent pages, they
may be performing an automated search of the system.

• If a site does not use cgi-bin scripts, any attempt to request a cgi-bin script will not have
come from a legitimate user clicking on a link. Many such requests indicate that an off-the-
shelf Web vulnerability scan is being performed.

• If multiple invalid login attempts are received from the same network address, it may be a
user who is attempting to guess usernames and passwords. Likewise, if a reserved name such
as “guest”, “root”, or “administrator” is used, the client is likely up to no good. However, it is
possible that a legitimate user has simply forgotten their username. In this case, the threshold
for invalid attempts should be set quite high.

• If hidden fields or client cookies show clear evidence of tampering, the IP address should be
blacklisted. However, this should be tested with a wide variety of Web browsers in order to
avoid a large number of mistaken alerts.

• If the server receives requests containing invalid data that should have been filtered by client
side validity checks. This is often an indicator that the user is deliberately bypassing those
checks in hope that the server will act on the incorrect data. (See the Client Input Filters
pattern.) It is important to recognize that in some cases—such as when JavaScript is disabled
on the client or blocked by the client’s firewall—the client side checks may be disabled
through no fault of the user. If the site must be accessible to users who will not accept
JavaScript, this should not be considered as evidence of attempted misuse of the site.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Denial-of-Service Attack – an attacker may constantly hit a site after he/she has been
blocked, causing that site to eat up resources to verify their address, or the attacker may

Network Address Blacklist Security Patterns Repository v1.0

- 56 -

purposely block addresses so that legitimate clients sharing the same address cannot access
the site. This pattern might be ineffective against large-scale, distributed denial-of-service
attacks where many individual network addresses are used. Similarly, attackers may make it
appear that the attack is coming from critical infrastructure such as a router, database, or
firewall, causing you to block these servers, rendering the site in-operable.

• Resource consumption attack – attackers may grow the blacklist to a large size so that it is
inefficient to examine the blacklist, causing a general degradation in performance.

Examples

Manual implementations of this pattern are very common. Best practice in Web security is to
implement some sort of intrusion detection, even if it consists only of auditing the usage logs.
Administrators that observe repeated misuse originating from certain IP addresses generally
contact the ISP in question. If this fails to stop the behaviors in question, the administrator
generally has the capability to block further access via a firewall rule.

Commercial intrusion detection systems often incorporate some sort of blocking mechanism.
ISS RealSecure, for example, implements “firecell rules,” which allow known attacks to be
blocked in real time. This capability can be integrated with certain commercial firewalls, to
allow blocking rules to be inserted into the firewall in real time. It should be noted that these are
good at detecting network-level attacks, and even attacks on Web server vulnerabilities. But
they will not detect application level misuse out-of-the-box. Instead, they offer APIs that allow
application developers to report suspicious activities that are specific to the application.

We know of Web applications that track invalid login attempts by IP address. Once a certain
number of invalid login attempts have been observed originating from a specific IP addresses,
further login attempts are simply ignored. This ensures that the account lockout mechanism
cannot be misused to effect denial of service conditions on more than a handful of accounts.

A similar approach has been used to combat unsolicited junk e-mail. The Maps approach
maintains a large list of blacklisted IP addresses. As IP addresses are observed as the origination
point for SPAM, they are added to the blacklist. The blacklist is made available to servers across
the Internet, which discard mail from any blacklisted address. For more details, see http://mail-
abuse.org.

We are currently developing an example of a fully automated mechanism that lets Java servlets
insert NetFilter (“iptables”) rules on the system hosting the application. The source code will be
made available on-line upon completion.

Trade-Offs

Accountability

The network address blacklist is necessary when there is no other
recourse, and by definition no accountability. In some sense, denying
further access is a form of punishment and could be considered a
measure of accountability.

Network Address Blacklist Security Patterns Repository v1.0

- 57 -

Availability

A network address blacklist can have a negative effect on availability.
Specifically, the network address blacklist offers an interface whereby
specific network addresses can be blocked from further access: if this
interface is misused or implemented incorrectly, it could cause
legitimate users to be denied access. Also, all users whose requests
originate from behind the same firewall may appear as if coming from
the same network address. It is conceivable that one user could cause
an entire enterprise to become locked out of the Web site.

Confidentiality

When implemented effectively, a network address blacklist enhances
site confidentiality and integrity. This occurs because it will dissuade
or prevent attempts to misuse the Web application (since many forms
of misuse are intended to compromise those security characteristics).
Even if ineffective, it will not adversely affect these properties.

Integrity See Confidentiality.

Manageability

A network address blacklist can have a positive effect on the
administrative burden of the Web site. By eliminating many nuisance
attacks, the system administrators can be freed to investigate more
significant security concerns. However, if legitimate users are finding
themselves locked out on a routine basis, the management burden will
be raised, particularly if administrators have to intervene manually to
clear an address from the blacklist.

Usability

If the server is tuned too sensitively, it may cause legitimate behaviors
to be reported as suspicious. This could have a very negative effect on
usability. But if the server is fairly conservative, legitimate users
should never see any impact on usability. Those who attempt to
misuse the system will see a significant negative effect on their
usability of the system.

Performance

A network address blacklist has mixed effects on performance. On the
one hand, misbehaving users who might otherwise be consuming
considerable resources are prevented from gaining access to the site.
On the other hand, the lockout mechanism could itself incur significant
performance penalty on all users. If a network address blacklist is
implemented in a way that accesses a database for every Web request,
the performance will suffer. If the lockout depends on an in-memory
blacklist, it is important that the size of the list be bounded and that the
list does not itself become a bottleneck.

Cost
Manual administrator lockout adds little additional expense. If
automated lockout can be implemented using existing APIs, it can be
developed quite cheaply. If novel interfaces are required, it will be

Network Address Blacklist Security Patterns Repository v1.0

- 58 -

quite expensive to develop. In either case, quality assurance will be
non-trivial.

Related Patterns

• Account Lockout – a related pattern that supplements, and should be coordinated with, the
network address blacklist.

• Client Input Filters – a related pattern that provides a source of information about suspicious
activities.

• Log for Audit – a related pattern.

• Minefield – a related pattern that provides input to the network address blacklist mechanism.

References

[1] Brown University Computing and Information Services. “IP Address Filtering”. Web
Authorization/Authentication.
http://www.brown.edu/Facilities/CIS/ATGTest/Infrastructure/Web_Access_Control/Goals
Options-ver2.html#anchor136476, October 1997.

[2] Stein, L. and J. Stewart. “The World Wide Web Security FAQ – Version 3.1.2”.
http://www.w3.org/Security/Faq, February 2002.

Partitioned Application Security Patterns Repository v1.0

- 59 -

Partitioned Application
(a.k.a. Security Kernel, Insulation)

Abstract

The Partitioned Application pattern splits a large, complex application into two or more simpler
components. Any dangerous privilege is restricted to a single, small component. Each
component has tractable security concerns that are more easily verified than in a monolithic
application.

Problem

Complex applications often require dangerous privileges in order to perform some of their tasks.
These privileges are often only needed by a small part of the application, but the existence of
these privileges makes the entire application dangerous. If any part of the application can be
compromised, the dangerous privileges could be misused. As a result, it is very difficult to have
confidence that these privileges won’t be abused – the entire application must be free of
exploitable flaws.

There are many examples of this. The IIS Web server requires administrative privileges in order
to execute. It is a large, complex application in which mistakes are frequently found. Because it
executes with administrative privilege, every one of those mistakes could potentially lead to
remote compromise of the entire system. Similarly, the UNIX sendmail program is a large,
complex program that runs with administrator privilege in order to be able to write e-mail into
any user’s incoming mail files. For years, errors were found in sendmail that would allow
remote attackers to gain complete control over the system.

Even when this approach does not lead to compromises, it causes the quality assurance burden to
be significantly increased. Developers and quality assurance engineers are never really sure that
some minor change won't have some unanticipated effect on security. As a result, routine
maintenance activities are often inhibited by the need to perform full-blown security assessments
of even the smallest change.

Solution

The Partitioned Application pattern divides a complex application into smaller components that
minimize and isolate the elements that require dangerous privileges. Existing protection
mechanisms are used to assign privileges to each component and prevent the various components
from interacting with one another except through the published interfaces. The privileged
components each provide some single privileged service to the rest of the application.

Each privileged component publishes an interface that the remainder of the program can use to
perform privileged actions. For example, the postfix application (a more secure alternative to
sendmail) contains a “maildrop” component that is responsible only for writing mail to user
accounts. The maildrop component has administrative privileges, but it is a small component

Partitioned Application Security Patterns Repository v1.0

- 60 -

that thoroughly checks all inputs it receives and writes only valid data to valid mail user’s mail
queues. Because the maildrop component is so simple, it has been extensively analyzed for
possible security problems. The remainder of the application can be updated as necessary
without concern that the administrative privileges might somehow be misused.

There is no one-size-fits-all approach to developing a partitioned application. Much like the
problem of assigning functionality to specific objects, the problem of developing an appropriate
application partition is a craft. The models presented here are general suggestions; specific
examples provide far more concrete details.

By isolating the privileged elements into one or more relatively small components, significant
security issues can be restricted to just those components. The privileged components can be
subjected to rigorous quality assurance, and the functionality of the non-privileged components
can be updated with less worry about the security impact.

PrivilegedUnprivileged

Issues

Depending on the partition, it may be important that one component be able to have confidence
that it is talking to a specific component and not an impostor. This can generally be ensured
using queues in which only a specific object is able to read from the queue. If each object has
such a queue, mutual authentication can take place by using simple handshakes delivered
through the queues. The appropriate queue should be read from a controlled configuration file,
not accepted as provided by the caller.

A partitioned application can impact performance, as inter-process communication is introduced
and synchronization is required. Benchmark and understand any performance penalties before
committing to a partitioned design.

A partitioned application introduces logs and other intermediate message queues that can fill up;
appropriate responses to jammed queues should be specified, implemented, and tested.

Partitioned Application Security Patterns Repository v1.0

- 61 -

Installation / Configuration

This pattern also encompasses the installation and configuration scripts and files used to assign
privileges and allow components to locate one another at run-time. Using operating system
privileges, this could include the creation of user accounts, the establishment of privileges, and
the deployment of scripts that ensure that all the components will start correctly and be able to
find one another.

Installation of a partitioned application should address the following:

• The components need to be registered with the underlying protection mechanisms.
Typically, this means creating multiple user accounts for each of the major components.

• The components will each have a configuration file that identifies each of the other
components and interfaces. These names should be absolute, not relative. Specifically,
never rely on the PATH or other environment variables to locate a component – hardcode
the entire pathname into the configuration file.

• Create any resources needed by the privileged components. Changes the access rights on all
the resources and configuration files so that they can only be accessed by the owning
account.

• Configure the components so that they will run under the appropriate identities.

• Install a startup script that permits each of the privileged components to be brought up in the
appropriate order.

A partitioned application will often require that components are initialized in a particular
sequence. Determine the correct startup sequence and ensure that it is enforced. Depending on
the design, it may be necessary to stop the entire application if any one component fails to start.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Direct invocation of an internal interface – early versions of postfix contained an internal
interface that if manipulated directly would allow privileged commands to be invoked.

• Race condition problems – if an attacker can deliberately slow some component, it may be
possible to cause inconsistencies that never appeared in testing. Partitioned applications are
susceptible to race condition bugs. There is an entire class of security vulnerability called
“time of check, time of use” (TOCTOU) errors.

• Man-in-the-middle attack – numerous mistakes have been made in which applications invoke
other components by depending on an environment variable (or the path) to locate the
appropriate file. When this approach is used, it is possible to intercept the invocation request
and cause the invoking application to start an untrusted process. From this it is possible to
conduct a man-in-the-middle attack.

Partitioned Application Security Patterns Repository v1.0

- 62 -

• C++ language protections – when partitioned applications are built using the C++ language
protection mechanisms, it is possible to bypass these protections and access private functions
directly. A number of advanced C++ programming texts provide guidance for directly
manipulating C++ virtual function tables.

Examples

There are numerous examples of the Partitioned Application pattern. Interestingly, examples
can be found at different abstraction levels. This section presents examples at the code, system,
and network levels.

In addition, we will eventually include the code from our password management object from our
Web repository application as an example of a partitioned application. The Java object for
password management will be called by less trusted servlets and will be the only object able to
access the application password file.

Code Level

At the code level, many object-oriented programs are constructed as partitioned applications.
Most applications written in an object-oriented language use the Private keyword to hide
implementation details of an object. These features are useful in protecting against unintentional
errors. For example, a dangerous function call can be wrapped using an object that checks
consistency before invoking the function. These features can often be circumvented by a savvy
attacker though. In C++, for example, the application as a whole must have the privileges to
execute the dangerous instruction, and there is nothing preventing some other part of the code
from invoking the function.

Java, on the other hand, protects objects from one another and allows specific privileges to be
granted on a per-object basis [2]. Thus, Java can be used to develop partitioned applications if
object access modifiers are used appropriately. This makes Java less susceptible to the attacks
that C++ programs are.

System Level

Kernel-based operating systems are the archetypal system-level example of partitioned
applications. Operating systems must be able to execute privileged instructions and directly
manipulate the hardware resources of the machine. But operating systems also contain millions
of lines of code that perform no such privileged work. Operating system design has embraced
the notion of a kernel, in which only a very small subset of the system runs privileged code [5].
Functions such as direct manipulation of the system memory tables and swapping of running
processes are performed within the kernel. Other functions, such as managing the file system,
run as unprivileged code but are able to make carefully controlled requests of the kernel.

As a counterexample of this, Windows NT v.4 moved its entire graphics and user interface
subsystems into kernel mode code, where any bug is a potential breach of system security. The
rationale given was that performance was increased, and any bug in that code would eventually
lead to a system crash in either case [4].

Partitioned Application Security Patterns Repository v1.0

- 63 -

Another set of applications that are partitioned as described in this pattern are replacements for
sendmail. Sendmail is an extremely complex UNIX mail processing system that has been the
home of innumerable security-relevant bugs. As a result, several replacements to sendmail have
been developed, most notably qmail [3] and postfix [1]. Both of these programs are instances of
the Partitioned Application pattern. The “maildrop” elements of the program, which need access
to any user's e-mail queue, are carefully restricted to very small, separate executables that have
been subjected to intense scrutiny.

Network Level

By definition, most distributed network applications are partitioned applications. While they are
not usually partitioned for security reasons, security does impact their design. Most client-server
applications place all of the low-risk user interface activities on the client and ensure that the
server will only execute authenticated, validated transactions.

Web front ends to banking applications are very common examples of network-level partitioned
applications. Many Web systems isolate the application that performs electronic funds transfers
or credit-card transactions on a separate system. Access to this system is through a minimal
interface, often implemented using an internal firewall. While the rest of the banking application
must still be careful to ensure that only valid transactions are initiated, the partitioned model
guarantees that audit rules and certain safeguards cannot be circumvented. For example, charges
for negative values can be discarded, a shipping address can be validated against the billing
address, and the credit card number can be prevented from ever being disclosed to a client.

Trade-Offs

Accountability No direct effect.

Availability

In some cases, this pattern can increase availability. For example, the
sendmail replacements can continue to receive mail even if an internal
processing component has died. However, the interfaces between
components might also introduce new avenues for resource
consumption attacks that result in a denial of service. In addition, the
increased processing overhead can also affect availability adversely
under heavy load conditions.

Confidentiality
This pattern can increase confidentiality by simplifying the security-
critical aspects of the design and containing the damage that could be
caused by many bugs.

Integrity See Confidentiality.

Manageability

It is generally harder to deploy a partitioned application appropriately
than its monolithic cousin. Each of the interfaces between the
components must be understood by the administrator in order to debug
problems or avoid dangerous misconfiguration. It can be very difficult

Partitioned Application Security Patterns Repository v1.0

- 64 -

to ensure that elements are all started in the correct sequence. While
installation scripts can help ease this burden, they cannot eliminate it
entirely. The maintenance of a partitioned application can be easier
though, if the components and interfaces are well designed.
Monolithic applications can be exceedingly difficult to maintain and
enhance; a partitioned application could be easier to understand due to
its modular structure.

Usability No direct effect.

Performance

The primary drawback of this pattern is its impact on performance.
Each of the restricted interfaces introduces overhead and processing
delays. For example, the message queues used by sendmail
alternatives introduce significant processing overhead.

Cost

A partitioned application can have both negative and positive affects
on development costs. Structuring an application around security
requirements can have an adverse impact on other development
priorities. Complex installation scripts and documentation
requirements introduce further costs. But enforcing a discipline of
application decomposition can permit more focused testing and greatly
improve quality assurance.

Related Patterns

• Log for Audit – a related pattern alerting of the need to maintain consistent logs across
components.

• Password Propagation – a related pattern stating that, where possible, trust in any single
trusted proxy should be minimized.

• Server Sandbox – a related pattern advising that sandboxes be built around individual
components of a partitioned application, such as servers that should not be trusted.

• Trusted Proxy – a related pattern where components protecting critical resources are viewed
as trusted proxies.

References

[1] Blum, R. Postfix. Sams Publishing, 2001.

[2] Gong, L. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[3] Nelson, R. “The qmail home page”. http://www.qmail.org/top.html, June 2002.

[4] Solomon, D. Inside Windows NT Second Edition. Microsoft Press, 1998.

Partitioned Application Security Patterns Repository v1.0

- 65 -

[5] Tanenbaum, A. Operating Systems: Design and Implementation. Prentice-Hall, 1987.

Password Authentication Security Patterns Repository v1.0

- 66 -

Password Authentication
(a.k.a. Client Login)

Abstract

Passwords are the only approach to remote user authentication that has gained widespread user
acceptance. Any site that needs to reliably identify its users will almost certainly use passwords.
The Password Authentication pattern protects against weak passwords, automated password-
guessing attacks, and mishandling of passwords.

Problem

Many servers require that users be identified before using the system. Sometimes, this is for the
benefit of the user, protecting the user’s data from access by others. And sometimes it is for the
benefit of the system, ensuring accountability should the user misbehave or attempt to repudiate
transactions performed in his or her name. In either case, a password—a secret shared between
the user and the system—is the most practical form of authenticating a user’s identity. Other
authentication mechanisms are possible, but only passwords have gained widespread adoption.

Because passwords are so familiar, many system architects have developed their own password
authentication schemes. These schemes are often subtly flawed, failing to take into account the
dangers specific to remote Internet authentication. If improperly implemented, a password
scheme can fail in many different manners:

• It can allow users to access accounts to which they should have no access.

• It can leave cause users to lose faith in the security of the system.

• It can fail to provide accountability for disputed transactions.

• It can adversely affect usability of the site, frustrating users and losing business.

• It can cause a tremendous drain on system administrators or customer service.

Many development platforms and development environments provide password authentication
mechanisms. Often, the benefits of using a canned system outweigh the disadvantages. But
even when such a system is used, it is important to understand the possible ramifications.

Solution

The Password Authentication pattern identifies specific Web pages, documents, and transactions
as requiring user authentication. Any time a protected resource is requested, the server will
require that the user provide an identity, as well as proof that the claimed identity is valid. If the
user supplies the appropriate credentials, the requested page will be delivered. If not, the user

Password Authentication Security Patterns Repository v1.0

- 67 -

will be directed to a login screen at which time he/she will be prompted to provide his/her
username and password.

The Password Authentication pattern stores each password in encrypted form (“hashed”) on the
server. Each password is optionally hashed using additional randomly selected data (“salt”) that
is unique to the account. When the user provides their password, the hash is recomputed and
checked against the stored copy. By not retaining copies of the unencrypted passwords, the Web
site ensures that a compromise of site security will not result in a large-scale loss of passwords.

The Password Authentication pattern also encompasses the policy for the creation, storage, and
alteration of passwords, as well as the recovery of lost passwords.

This pattern focuses on the simplest form of password authentication: the authenticated
transaction. In an authenticated transaction, the user supplies his or her username and password
on the same form as other transaction data. There is no notion of “logging in” – each transaction
is validated individually. If the user provides an invalid username or password, he or she is
returned to the transaction screen with an error message.

An important variation is the Authenticated Session pattern, in which the user provides his/her
username and password once, then the appropriate credentials are cached and automatically
reused for further requests. See the Authenticated Session pattern for additional details that are
specific to that approach.

While the authenticated session is arguably more useful, there are many situations where session
semantics are not necessarily desirable. When authenticating high-value transactions, it is
sometimes appropriate to require the individual transaction to be authenticated. Specific
examples include:

• When submitting a bid on e-Bay, the system asks that the username and password be
supplied along with the bid amount.

• When initiating a funds transfer request at a banking site, the system generally asks for
specific approval for that transaction, even if the user has already logged into a valid session.

• When attempting to change a password, most systems require that the user provide the old
password, even if already logged into the system.

To protect the password in transit over the network, SSL or other application-level encryption
mechanisms should be employed. This is critical for any high-value transactions. Low-value
transactions, such as retrieving personal Web-based e-mail

To protect the account from automated password-guessing attacks, see the Account Lockout
pattern.

Password authentication only provides a user’s identity. In order to establish policies about
which users should have rights to which resources, see Access Control.

A password-authenticated transaction consists of the following steps:

Password Authentication Security Patterns Repository v1.0

- 68 -

• The client delivers a request to the server. The request includes the user’s identity and
password.

• The mediation component on the server receives the request

• The mediation component determines that the request is for a protected resource

• The mediation component checks the account name and retrieves the password hash and
optionally any password encoding data (“salt”) specific to that account.

• The mediation component hashes the password (using any salt) and compares the result to
the stored password hash

• If the result is a mismatch, the server redirects the user back to the transaction screen with a
message indicating that the username / password combination was in error.

• If the result is a match, the server delivers the request and associated transaction data to the
protected resource for processing.

 Database

Secure Channel

Transaction w/
Secret

ServerClient

User

Initial password selection. Depending on the enrollment pattern selected, the user may need to
enter an initial password. In this case, the system will provide the client with an enrollment form
that includes a text input box for the password. As a safeguard against typing errors, the page
should require that the user enter the password twice. When submitted the copies of the
password are checked against each other, and a new account created. The salt, if any, is selected
and stored with the account data. And the password is hashed and the hash stored in the account.
If password recovery options are used, the appropriate questions and answers should be included
in the enrollment form and stored with the account information.

Password change. This is actually just another password-protected transaction, in which the
transaction is the selection of a new password. Again, the user should provide two copies of the
new password. And even if a session mechanism is in place, the user should be forced to provide
the old password as part of the change request.

Forced password change. Depending on the enrollment pattern selected, it may be necessary to
provide the user with an initial password that should be changed on first usage. In such
situations, the user account can be marked as requiring a password change. Before any

Password Authentication Security Patterns Repository v1.0

- 69 -

authenticated transactions can take place, the user must first perform a password change
transaction, as described above.

Manual password reset. Users have a habit of forgetting their passwords. When a user contacts
customer/user support, the administrators much have processes for authenticating the user, and
mechanisms for either resetting the account to a standard password, or entering a randomly-
selected password that can be communicated to the user out of band (e.g. over the telephone). In
either case, the account should be marked to force a password change on first usage.

Password recovery. Some systems provide an alternative authentication mechanism. Typically,
when the user first enrolls, he/she must also provide a list of questions and answers that should
be private to the individual. Sometimes these are selected from a list (e.g. “what’s your favorite
sports team”, “what was the name of your first boy-/girlfriend”, “what is your hometown”). In
any case, if the user forgets his or her password, these questions can be used to implement an
automated password recovery scheme where a form prompts the user for each answer and allows
a new password to be chosen if each of the questions is answered correctly. Alternately, this sort
of information can also help administrators manually authenticate users who call in requesting a
password reset.

Issues

For issues relating to lockout from password-protected resources, see the Account Lockout
pattern.

Protecting password in transmission

For high valued transactions, passwords should always be communicated securely. Any page that
requests a user password should be encrypted using SSL. Furthermore, users should be informed
to always look for the lock/key indicating a secure channel. It is generally poor practice to
deliver a login page that is unencrypted with a submit button pointing to a SSL protected page,
because the user's browser will not provide the user with visual feedback that the submission will
be protected. Any site that does not encrypt all password submissions will have trouble claiming
accountability or defending itself against claims that it allowed user data to be
divulged/compromised.

Nevertheless, it is not an ideal world and SSL encryption can be very expensive to implement. If
the data being protected is not that valuable, it can be appropriate to use passwords without
encryption. For example, on-line fantasy baseball systems that offers no cash prizes, the
personalized HBO schedule, and even some ISP Web-based e-mail systems all use passwords
without SSL. But any system that collects sensitive data such as social security numbers, credit
card numbers, or bank account information should always use SSL to encrypt passwords in
transit.

There is an alternative approach to protecting passwords in transmission that does not rely on an
encrypted session. This alternative is to hash the password on the client, and transmit only the
hashed password. To prevent the hash from being captured and reused, the server should
challenge the client to with specific information that should be included as part of the hashing

Password Authentication Security Patterns Repository v1.0

- 70 -

operation. The http protocol actually includes this capability as part of the “digest
authentication” mechanism, but it failed to gain popularity because many early Web browsers
did not support it. Proprietary clients, such as Java applets, can use this approach to
communicate passwords securely between the client and the server. It should also be recognized
that this approach will protect the password, but cannot prevent a network eavesdropper from
capturing the hash and using that to tamper with the transaction in question.

Protecting passwords in storage

Passwords should not be stored in plaintext. Instead, when a user first enters a password, it
should be hashed with a one-way function and the hash stored in its place. On subsequent
authentication attempts, the hash should be recomputed and compared with the stored value. If
the user's password must be stored in the client browser (e.g., within a cookie), it should be
encrypted using a session key that will expire after some reasonable amount of time.

Hashed passwords should never be encoded as part of a URL. If a user bookmarks the page, any
subsequent user of the system will be able to circumvent authentication. If URLs must be used,
one possible implementation strategy is to encrypt the hashed password using a short-lived
session key (which is global to all users of the system) before being stored in the URL.

Choosing passwords

Best practice is to allow users to select their own passwords. Some systems provide the user with
a randomly generated password in order to protect against poorly chosen passwords. However,
this approach generally leads to a significant number of lost passwords, resulting in greater
management costs. It also has been found to have adverse effects on usability. In addition, users
tend to write these passwords down and leave them near the computer.

Users should be allowed to select passwords from the entire printable ASCII character set (codes
32-127). Reducing the character set to only letters and numbers provides no savings and
drastically reduces the number of possible password combinations. Users should be allowed to
select reasonably long passwords (12-15 characters) if they choose.

Users generally pick very weak passwords. This should be mitigated by (a) explaining to the user
the importance of picking a strong password (b) providing guidance on what makes a password
strong (c) forcing minimum length and variety on chosen passwords. Some system
administrators even go so far as to run automated cracking tools against their own users'
passwords. Unfortunately, the processing cost of running these tools is prohibitive in a Web
environment.

Generally, it is not good practice to require Web users to change their passwords. Many Web
sites are not visited regularly, and enforcing frequent password expiration would only increase
the management burden and decrease usability without appreciably increasing security.

User Education

Users must be educated about the importance of protecting their passwords. They must not
divulge passwords to others. They should not allow the browser to cache their password,

Password Authentication Security Patterns Repository v1.0

- 71 -

particularly if logged in from a public system. They should never reveal their password to
anyone: best practice is that customer service representatives will never ask a user for their
password. And they should always check that their communication is encrypted (and be aware
of the URL and alert to any browser security warnings) before entering their password.

When the user logs in successfully, it is a good idea to inform the user of the number of failed
login attempts since the last successful login. A user who mistyped his/her password will
recognize that the invalid attempts were legitimate. But the user whose account is under attack
will be alerted to the fact and may make the system administrators aware of the problem.

Session-Related Material

Do not rely on the HTTP basic authentication model for protection of a Web application. Basic
authentication provides no protection against password-guessing attacks. Furthermore, it allows
users to cache their passwords for the sake of convenience. This undermines the protection and
the accountability offered by passwords.

Possible Attacks

There are a number of possible attacks that could be perpetrated against passwords:

• Network sniffing – when SSL is not used, it is easy to capture passwords by sniffing the
network. For Web-based applications, the greatest risk comes from those on the same local
area network as a specific targeted user, or a compromised system at the Web site itself.
Protect against this attack by using SSL for any page where a password is entered.

• Keyboard sniffing – users can be fooled into running malicious code, such as viruses. A
keyboard sniffer captures all user keystrokes (including passwords) directly from the
keyboard and makes them available to the writer of the sniffer.

• Improper caching of passwords – if a password is stored in a permanent cookie, encoded in
URLs, or stored by the browser as a convenience to the user, it is possible for somebody else
to authenticate themselves as that user by merely gaining access to the computer. Even a
non-permanent cookie is a danger if the user does not close the browser after logging out of
the site.

• Password guessing – it is often possible to guess a user's password merely by trying some of
the most common passwords (e.g., “password” or “secret”). Alternately, if something is
known about the user, it can be easy to guess his/her password. For example, a child's or
spouse's name is a very common choice.

• Sticky notes – many users write their passwords on sticky notes and attach them to their
monitors. Looking around the user's desktop for login instructions is a very common attack.

• Social engineering against the user – attackers have been known to call users and pretend to
be customer service in need of the users' passwords.

• Social engineering against customer service – conversely, attackers often contact customer

Password Authentication Security Patterns Repository v1.0

- 72 -

service pretending to be a user who has lost his/her password.

• Compromise of password store – if a site is compromised, passwords that are stored in the
clear can be stolen in bulk. This incurs a massive management burden by forcing the site to
establish a new password with every user. And because users typically use the same
passwords at a number of sites, it can result in huge inconvenience to the whole user
community. (See the Encrypted Storage pattern to address this attack.)

• Trojan horse login screens – attackers have been known to mail phony URLs to users,
instructing them to login to that URL as a part of a site upgrade. The Trojan horse site then
collects account names and passwords for the real site.

Examples

Systems often use passwords to authenticate interactive user sessions. This pattern is focused
more on distributed applications. The Common Criteria [2] and FIPS 112 [3] provide detailed
instructions on using passwords in conventional (non-distributed) systems.

Every major Web site that authenticates users uses passwords. The vast majority of sites
protecting high-value items (e.g. banking) use passwords in a manner very similar to this pattern.

Trade-Offs

Accountability

Password authentication permits individual users to be held
accountable for their actions. However, passwords must be carefully
protected in order to maintain accountability. In addition, users should
not be able to claim ignorance—they must be informed of appropriate
password handling.

Availability

If an overly complex password scheme is used (e.g. exactly 12
characters, three of which must be punctuation marks), users will
likely find themselves forgetting their passwords on a regular basis,
making the site unavailable to them.

Confidentiality
Password authentication allows user data to be protected from
unauthorized disclosure.

Integrity
Password authentication allows user data to be protected from
unauthorized modification.

Manageability

The manageability impact of using passwords is significantly lower
than most other authentication technologies. However, the impact on
manageability will depend on choices made in the implementation of
the pattern. If customer service intervention is not required for either
lockout or lost passwords, the management burden is very low. If
either require manual intervention, manageability will be more

Password Authentication Security Patterns Repository v1.0

- 73 -

difficult depending on the complexity of the passwords and the
lockout threshold.

Usability

Passwords are a nuisance that users are willing to live with. Forcing
frequent re-authentication does have an adverse effect on usability.
Enforcing long, complex passwords also impacts usability.
Allowing the browser to cache passwords would seem to have a
positive effect, but it encourages users to not remember their
passwords and there are many circumstances where they may need the
password when away from the browser.
The impact on usability of using passwords is significantly lower than
most other authentication technologies.

Performance

Using SSL to protect passwords in transit will have a significant
impact on performance. Even with hardware acceleration, a server
using SSL can handle far fewer connections than a standard HTTP
server.

Cost

While the cost of using passwords is significantly lower than most
other authentication technologies, there can be significant costs
associated with passwords, such as the cost of SSL servers. Using
customer service to deal with lost passwords and locked out accounts
can be expensive. Also, the quality assurance burden associated with
protecting all sensitive pages can be significant.

Related Patterns

• Authenticated Session – a related pattern in which passwords are used to authenticate user
interaction with session semantics (as opposed to a single transaction in this pattern).

• Enroll without Validating – a related pattern that presents a procedure and circumstances for
when initial authentication credentials are not required.

• Enroll with a Pre-Existing Shared Secret – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Enroll by Validating Out of Band – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Enroll using Third-Party Validation – a related pattern that presents one procedure for
communicating the initial authentication credentials to a user.

• Network Address Blacklist – a related pattern describing a protection mechanism from
misbehaving clients that perpetrate password-guessing attacks on multiple accounts.

• Encrypted Storage – a related pattern that can protect against compromise of the password

Password Authentication Security Patterns Repository v1.0

- 74 -

store.

References

[1] Chun, M. “Authentication Mechanisms - Which is Best?”
http://rr.sans.org/authentic/mechanisms.php, April 2001.

[2] Common Criteria Project Sponsoring Organisations. Common Criteria for Information
Technology Security Evaluation Version 2.1. http://www.commoncriteria.org/cc/cc.html,
August 1999.

[3] National Computer Security Center. DoD 5200.28-STD, Trusted Computer System
Evaluation Criteria. December 1985.

[4] National Institute of Standards and Technology (NIST) Information Technology Library
(ITL). “Federal Information Processing Standards Publication 112: Password Usage”.
http://www.itl.nist.gov/fipspubs/fip112.htm, May 1985.

[5] Wheeler, D. “Secure Programming for Linux and Unix HOWTO – v2.965”.
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html, May 2002.

Password Propagation Security Patterns Repository v1.0

- 75 -

Password Propagation

Abstract

Many Web applications rely on a single database account to store and manage all user data. If
such an application is compromised, the attacker might have complete access to every user’s
data. The Password Propagation pattern provides an alternative by requiring that an individual
user’s authentication credentials be verified by the database before access is provided to that
user’s data.

Problem

Web applications generally require a user to provide a password in order to access his/her
account data. However, it is often impractical to create a separate user account on the database
for each Web user. Many database packages do not support a very large number of user
accounts. And there is no standard SQL interface for managing user accounts and privileges. As
a result, most Web applications do not rely on the database to maintain individual user accounts.

Most Web applications rely on a single database account to store all user account information.
The application server provides a hard-coded password to the database in order to gain full
access to all application data. The application server is responsible for authenticating the user
and restricting access to only the data associated with that user. This makes the application
server a trusted proxy: if it is compromised, every single user’s data is placed at risk.

A specific example of this is the Netscape electronic commerce server, ECXpert. ECXpert relies
on an Oracle database to store individual customer data. Every customer has an individual
username and password, which are stored in the accounts table in the database. But all customer
data (including the accounts table) is stored under a single Oracle username (“ECX”). If the
ECX account is compromised, an attacker will have full access to all user data.

This is a very common problem. A few years ago, it was discovered that adding a space to the
end of a ColdFusion URL would cause the ColdFusion server to reveal the page source instead
of executing the page on the server. Attackers who used this technique were delighted to
discover that many applications stored the database account name and password within the
ColdFusion source code. As a result, a great number of systems were compromised.

Solution

The Password Propagation pattern splits the application into a front end and a back end. The
front end is responsible for interacting with the user and presenting data in a formatted manner.
The back end performs transaction processing and manages individual user account data. The
front end has no direct access to user account data – it must go through the back end.

When the front end authenticates a user, it caches that user’s password as part of the session data
stored on the server. When the front end initiates a transaction or accesses user account data, it
presents the password to the back end. The back end validates the user’s password before

Password Propagation Security Patterns Repository v1.0

- 76 -

allowing any access to the user’s data or performing any transactions on the user’s behalf. When
a user logs out or his/her session expires, the password is flushed from server memory.

If the Web server front end is compromised, the attacker will not have the privileges to access or
alter individual user account data. Any requests of the back end will require that the appropriate
password be provided as part of the request. This ensures that the front-end cannot be tricked
into accessing other user's data because the back-end will reject requests that do not include the
appropriate password. If the front end is completely compromised, only the passwords of
currently logged-in users are at risk.

The Password Propagation pattern is a specific instance of the Partitioned Application pattern.
As such, the back end still represents a trusted proxy. If the back end is compromised, all user
data can be accessed, as before. However, a well-constructed back end will offer a constrained
interface that is easier to protect than an entire Web server.

Front End
Server

Client Back End
Server

Cached
Password

There are many ways in which this pattern can be implemented. Some of the more
straightforward are:

• When creating a Web front end to a legacy system, the legacy system may already enforce
password authentication of all transaction requests. In this case, the legacy system can be
used as the back end with very little modification.

• If the database system supports individual user authentication, the back end can be
constructed using the database’s native authentication and access controls. In this case, the
front end would still use a single global account to manage system-wide data, but user-
specific data would be stored user that user’s account name and protected by that user’s
password.

• If the database system supports it, stored procedures can be used to implement the back-end
processing on the database. The front end is given access to global system data, and the right
to invoke stored procedures on the back end. The stored procedures then require that the
user's password be provided as part of any transaction that manipulates that user's data.

Password Propagation Security Patterns Repository v1.0

- 77 -

Issues

It is possible to implement the Password Propagation pattern using either interactive user
sessions, or individually authenticated transactions. Some differences are:

• Individually Authenticated Transactions. This is the most straightforward case. Users must
provide their password as part of any significant transaction. The password is not cached,
but is delivered to the back-end as part of the transaction request.

• Interactive Sessions. In order to support sessions, the user’s password must be cached, either
on the server or on the client. In addition, the back end must offer a login transaction whose
sole purpose is to authenticate the user.

User login

• The user attempts to access a protected page on the Web server

• The Web server responds with an authentication challenge (login screen)

• The user provides the authentication credentials

• The application server invokes the login function on the database

• The database login function checks whether the authentication credentials are correct

• If the login is successful, the server caches the authenticated identity and the user's
credentials in the session data

User transactions that are not individually authenticated

• The user completes one or more Web forms containing transaction data and submits a
transaction request

• The application server retrieves the user's identity/credentials from the session data and
submits them to the database with any requests to retrieve or change information or invoke a
stored procedure.

• The database validates the user authentication information before delivering or altering that
user's account data or invoking a stored procedure on that user's behalf.

User transactions that are individually authenticated

• The user completes one or more Web forms containing transaction data and submits a
transaction request. The submission must include the user's authentication credentials (e.g.
password)

• The application server retrieves the user's identity from the session data and submits it along
with the form data to the database with any requests to retrieve or change information or

Password Propagation Security Patterns Repository v1.0

- 78 -

invoke a stored procedure.

• The database validates the user authentication information before delivering or altering that
user’s account data or invoking a stored procedure on that user’s behalf.

• The application server does not cache the password presented by the user unless the user has
specifically selected an option to “remember my password”.

Password changes

• The user completes a Web form containing the old password and the new password.

• The application server retrieves the user id from the session data.

• The application server submits the user identity and the password values submitted in the
form to the database.

• The database checks that the old password matches before accepting the new password.

• If it does not match, the application server flushes the session data and logs the user out

• If it does match, the application server caches the new password as the user's authentication
credentials

Examples

This pattern often appears when legacy applications are Web-enabled. The legacy transaction
server typically already requires that a user's password be provided with each transaction. For
example, a Web based interface to an e-mail server. The user logs in. The application server
stores the password and attempts to retrieve the user's inbox summary from the database. The
database transaction checks the password and returns the information if valid.

This pattern also appears in Web front ends to existing banking systems. Most banking systems
already use PINs to authenticate users. But PINs are not strong enough to withstand automated
guessing attacks. Therefore, a Web enabled banking application will use a password to
authenticate the user to the Web application, but require that the user provide a PIN in order to
authenticate the user to the legacy banking system. If the Web application is compromised, the
attacker will still need to mount a PIN guessing attack against the back-end system, which will
generally be detected or cause the account to be locked out.

Trade-Offs

Accountability No direct effect.

Availability No direct effect.

Password Propagation Security Patterns Repository v1.0

- 79 -

Confidentiality
Confidentiality is improved because a compromised Web server will
not have permission to access arbitrary user account data.

Integrity
Integrity is improved because a compromised Web server will not
have permission to alter arbitrary user account data.

Manageability
Manageability will be impacted adversely because of the additional
complexity. If database access control features are used, they will
impose a management burden on the administrators.

Usability No effect.

Performance
Depending on the implementation, this pattern may exact a small
performance penalty.

Cost

Development costs will be increased due to the additional complexity
introduced in the interface between the application server and the
database. Additional maintenance costs might be incurred by the
reliance on proprietary database features (either access controls or
stored procedures). If a switch of database systems is necessitated, the
costs of making that switch could be very high.

Related Patterns

• Account Lockout – a related pattern describing a protection mechanism against password-
guessing attacks.

• Authenticated Session – a related pattern describing a session mechanism that uses passwords
for authentication.

References

None.

Secure Assertion Security Patterns Repository v1.0

- 80 -

Secure Assertion
(a.k.a. Application Logging, Application-Level Tripwire, Sanity Checks,

Custom Intrusion Detection)

Abstract

The Secure Assertion pattern sprinkles application-specific sanity checks throughout the system.
These take the form of assertions – a popular technique for checking programmer assumptions
about the environment and proper program behavior. A secure assert maps conventional
assertions to a system-wide intrusion detection system (IDS). This allows the IDS to detect and
correlate application-level problems that often reveal attempts to misuse the system.

Problem

Any server that is accessible from the Internet will be attacked. No matter how much effort you
expend in protecting it, the possibility exists that an attacker will penetrate the system. The most
difficult attacks to detect are those that exploit vulnerabilities in the application itself. These
attacks are generally not visible to intrusion detection systems because they are unique to the
application and not widely known attack on standard COTS component.

Application-level attacks cannot be defended at the system level. The firewall, the operating
systems, the intrusion detection system, and even the application server may view all such traffic
as legitimate application requests. For example, if a banking application fails to adequately
validate electronic funds transfer requests, an attacker might use the system to cause a victim’s
bank account to become overdrawn. To the system, these requests look to be legitimate. In this
case, the application provides the attacker with a user-friendly graphical user interface for
remotely causing mischief.

An attacker that discovers an application-level problem may go completely undetected by the
intrusion detection system and the system administrators monitoring the event logs. As noted
above, all of the system-level protection mechanisms will view the attacker’s requests as valid
user transactions. Unless the application author has taken care to log application-level events,
the administrators will have no visibility into the problems within the application itself.

Solution

The Secure Assertion pattern transparently re-links all the application-level sanity checks (assert
statements) with a mechanism that integrates into the system-wide intrusion detection or event
reporting system. Any failed assertions encountered by the application are automatically
reported to the system-wide monitoring console as a possible security-relevant event.

In languages that include exception handling mechanisms, the Secure Assertion pattern replaces
the Exception base class with a custom alternative that reports any generated exceptions to the
system-wide event reporting system.

Secure Assertion Security Patterns Repository v1.0

- 81 -

The Secure Assertion pattern also offers developers an interface for reporting detected problems
that are discovered and recovered from. For example, a function that scans user input and
replaces illegal and dangerous characters should report any such replacements via the provided
reporting interface.

The Secure Assertion pattern transparently reports events that developers already detect and
recover from. It requires no security-specific coding to be useful. However, it provides
developers who are security-aware a set of interfaces for communicating the state of the
application to systems administrators at run-time. The developer best understands what events
are extraordinary. This pattern provides a mechanism for sharing that understanding with the
systems administrators at run-time.

Issues

The Secure Assertion pattern provides developers with a reporting framework that allows system
administrators to be aware of potentially security-relevant events occurring within the
application. In order for the pattern to provide value, the developers must use these mechanisms.

Each application will have its own specific appropriate checks. Some useful generic approaches
are:

• Whenever client-side form validation is employed, double-check the client form validation
on the server. If any mismatches occur, this may be evidence that an attacker is tampering
with the forms.

• After any complex calculation that involves client input, perform sanity checks on the result.
For example, many Web servers compute which local files to serve based on the client’s
URL. Before serving the page, it can’t hurt to make sure that the file in question isn’t in a
critical system directory.

• Objects within an application should check that function arguments comply with stated
restrictions. For example, before transferring funds, it can’t hurt to ensure that the amount to
be transferred isn’t negative.

These checks are relatively inexpensive to perform, pay for themselves during system
debugging, and could alert a system administrator before the system is remotely exploited.

Intrusion Detection Systems

Many sites use standard intrusion detection system (IDS) packages to detect attacks on the
system. While the use of an IDS is a valuable security practice, it is important to realize that the
value of the IDS is greatly enhanced by site-specific customization. Commercial intrusion
detection systems use comparison against a library of known attack signatures to detect attacks
on COTS products. They are generally incapable of detecting attacks on the Web application
itself. Any attempt to misuse the application itself, such as disabling client-side form validation,
password guessing, or hidden fields, or performing a resource consumption attack, will go
undetected by even the best IDS.

Secure Assertion Security Patterns Repository v1.0

- 82 -

If a commercial IDS is not employed, deliver these assertions via the system’s error logging
facilities (syslog or NT event logs). These logs should be reviewed routinely. In addition, other
security-relevant events, such as failed logins, should be reported via the same mechanism.

The knowledge of the application should be used in tuning any commercial intrusion detection
system. For example, many standard intrusion detection systems are capable of alerting on
specific URL patterns. If the application does not use cgi-bin scripts or .asp files, it is a good
idea to tune the IDS to alert on any requests for these types of resources, since they are obviously
not legitimate client requests.

The efficacy of an IDS depends on the fact that it is unknown to the attacker. Don't let the
attacker know, through messages or any other means, about the details of the IDS system. If any
warning messages are communicated to the attacker, they should be generic in nature.

Integrity Checking

Integrity checks alert the system administrator to the fact that the application has been tampered
with. Depending on site policy, they may prevent the Web server from starting up if it appears
that the site may have been penetrated.

As with Intrusion Detection Systems, there are commercial integrity checking packages, most
notably Tripwire. However, as with IDS, custom integrity checks can greatly increase the
efficiency of a commercial package.

For example, an application can be designed to maintain a tripwire-like checksums file for the
key application components. Those checksums are stored in some obscure, application-unique
location. Whenever the application starts, it checks that the files in question have not been
tampered with. When a legitimate system upgrade it installed, the administrator will know to
update the checksum file. But any attempts by an attacker to alter the system will result in the
administrator being notified.

Monitoring Concerns

The best logging system in the world will serve no useful purpose if it is not actively monitored.
(See the Log for Audit pattern for advice on auditing issues that will affect the type and amount
of log data being collected.)

A little customization can go a long way. Often just a few application-aware checks are
necessary. Don't overwhelm the system administrators responsible for monitoring the logs.
Overly sensitive sensors that constantly fire have a tendency to inure the reader and could cause
legitimate attacks to go unnoticed.

The Account Lockout and Network Address Blacklist patterns should be used by the system
administrator monitoring these events. If the application is clearly under distress, an IP blocking
rule should be inserted until the problems can be further investigated.

Secure Assertion Security Patterns Repository v1.0

- 83 -

This pattern does not encompass any form of automated response. It is possible to add such a
response, although developing the intelligence to respond appropriately to arbitrary text
messages is extremely challenging.

Examples

A number of application servers (including BEA WebLogic, Netscape Application Server, and
Apache Tomcat) provide developers with a logging function that will append alerts to a system
log. The Extended Log Format defines specific classes of log events, including security events.
These logging mechanisms can be integrated directly into Intrusion Detection Systems such as
ISS RealSecure. These systems allow logged events to be securely forwarded to a remote
monitoring console.

Trade-Offs

Accountability
This pattern might improve accountability indirectly by preventing
exploits that would circumvent authentication.

Availability
This pattern could impact availability adversely if local policy dictates
a fail-secure approach, in which case detected violations will cause the
system to become unavailable.

Confidentiality See Accountability.

Integrity
This pattern improves integrity by removing opportunities for
compromise of the application and helps ensure that exploitation of
remaining weaknesses will not go undetected.

Manageability

This pattern will increase the management overhead of the application
because it will require that log auditing be performed along with other
security tasks. If the various sensors are too finely tuned, a significant
administration burden will result.

Usability No effect.

Performance
Properly implemented secure assertions should not significantly
impact performance.

Cost
Assertions require that developers spend additional time and effort
inserting checks. However, they usually pay for themselves in
reduced debugging effort.

Related Patterns

• Choose the Right Stuff – a related pattern that provides more details about the trade-offs

Secure Assertion Security Patterns Repository v1.0

- 84 -

between developing custom components and using standard parts.

• Client Input Filters – a related pattern that describes filters to detect or fix problems with
client input; these filters are an important class of application Tripwire and must report those
events.

• Network Address Blacklist – a related pattern that discusses a mechanism for blocking
network access to remote systems that have triggered numerous alerts.

References

[1] Cohen, F. and Associates. “The Deception Toolkit Home Page and Mailing List”.
http://all.net/dtk/dtk.html, 1998.

[2] Ranum, M. “Intrusion Detection and Network Forensics”. USENIX '99, Monterey, CA,
June 1999.

Server Sandbox Security Patterns Repository v1.0

- 85 -

Server Sandbox
(a.k.a. Privilege Drop, Untrusted Server, Constrained Execution Environment,
Unprivileged/Restricted User Account, Run as Nobody, Demilitarized Zone)

Abstract

Many site defacements and major security breaches occur when a new vulnerability is
discovered in the Web server software. Yet most Web servers run with far greater privileges
than are necessary. The Server Sandbox pattern builds a wall around the Web server in order to
contain the damage that could result from an undiscovered bug in the server software.

Problem

A server-based application is typically exposed to a huge number of potentially malicious users.
Any application that processes user input could potentially be tricked into performing actions
that it was never intended to perform. For example, many Web servers contain logic errors that
can be exploited to allow private files to be served over the Internet. Other servers contain
undiscovered buffer overflow errors that can allow client-provided malicious code to be executed
on the server.

While every attempt should be made to prevent these types of errors, it is impossible to
anticipate every possible attack beforehand. Therefore, it is prudent to deploy a server
application in a manner that minimizes the damage that can occur if the server is compromised
by a hacker.

Web applications generally require little in the way of privileges once they are started. But by
default, many servers and applications install in a manner that gives them unnecessary and
dangerous privileges, that if compromised could lead to significant security breach.

For instance, Web servers running on the UNIX operating system must be started with
administrative privileges in order to listen on port 80 – the standard HTTP port – which is a
privileged port. Likewise, the Microsoft IIS default installation executes the Web server using
the privileged SYSTEM user. If a Web server running with administrative privileges is
compromised, an attacker will have complete access to the entire system. This is widely
considered the single greatest threat to Web site security [1].

Solution

The Server Sandbox pattern strictly limits the privileges that Web application components
possess at run time. This is most often accomplished by creating a user account that is to be used
only by the server. Operating system access control mechanisms are then used to limit the
privileges of that account to those that are needed to execute, but not administer or otherwise
alter, the server.

Server Sandbox Security Patterns Repository v1.0

- 86 -

This approach accommodates systems that require administrative privileges to start the
application, but do not need those privileges during normal operation. The most common
example of this is a UNIX server application that must listen on a privileged port. The
application can start with additional privileges, but once those privileges are no longer needed, it
executes a privilege drop, from which it cannot return, into the less privileged operating mode.

There are a number of different operating system specific privilege drop mechanisms. Some of
the more common are:

• An application can switch the user account under which it is executing at run-time. For
example, a UNIX application can switch from running with administrator privileges to a
specific server account or even the nobody account.

• An application can inform the operating system that it wishes to drop certain privileges
dynamically. This is common in capability-based systems, where the operating system
dynamically maintains a list of application capabilities. In Linux, an application can ask the
operating system to make entire APIs invisible for the remainder of the lifetime of that
process.

• An application can instruct the operating system to no longer accept any changes that it
requests. For example, once a Linux system has fully booted, it can instruct the operating
system to no longer allow kernel modules to be dynamically loaded, even by the
administrative account.

• An application can be executed within a virtualized file system. The UNIX chroot option
allows the application to think it can see the actual file system, when in fact it only sees a
small branch set aside for that application. Any changes to the system files it sees will not
affect the actual system files.

The Server Sandbox pattern also requires that the remainder of the system hosting the server be
hardened. Many operating systems allow all user accounts to access certain global resources. A
server sandbox should remove any global privileges that are not essential and replace them
specific user and group privileges. A compromised Web server will allow an external hacker to
gain access to all global resources. Eliminating the global privileges will ensure that the hacker
will not have access to useful (and potentially vulnerable) utilities and operating system features.

The Server Sandbox pattern partitions the privileges required by the server between those needed
at server startup and those needed during normal operation. For example, UNIX systems require
administrative privileges to create a server listening on port 80, the standard HTTP port.
However, the server should not possess administrative privileges at run-time. A server sandbox
allows dangerous privileges to be used to create the server but then revoked before the server is
exposed to client input.

While the most common implementation of the Server Sandbox pattern relies on a restricted user
account, other (additional) implementations are possible, including:

• Creating a virtual file system and restricting the server so that it cannot see files outside of

Server Sandbox Security Patterns Repository v1.0

- 87 -

this space (chroot).

• Putting wrappers around dangerous components that limit the application’s ability to access
resources and operating system APIs

• Using operating system network filtering to prevent the server from initiating connections to
other machines

ServerClient

Other
Components

Constrained
Environment

Issues

It is critical that the application be developed within the envisioned constrained environment.
Attempting to add the constrained environment after the fact generally breaks the application and
often results in the constrained environment being unnecessarily relaxed in order to resolve the
problem. For example, most IIS applications are developed using the standard, insecure
configuration, in which IIS executes as SYSTEM. If an individual administrator attempts to
configure his or her server more securely and run IIS using a less privileged account, many of
these applications will fail to execute properly.

Building the application within the constrained environment also ensures that any performance
or resource usage impact will be uncovered early in development.

It is important to document the security configuration in which the system is expected to execute.
If the application requires specific privileges to specific files and services, this information must
be provided to the administrator configuring the system. It is not sufficient to merely provide an
installation script that sets all the appropriate options, because many administrators need to fine-
tune the installation afterwards or install other applications that may alter the security
configuration of the system. If the administrator is not aware of the minimum required
privileges, he or she may give the application unneeded – and potentially dangerous – privileges.
This often translates to executing the application with full administrative privilege.

Many operating systems install in an insecure state. Employ general hardening techniques to
eliminate weaknesses. On many systems, the Operating System access control model can be
bypassed. If an outsider is able gain control over a general user account, it can be fairly
straightforward to exploit a weakness in a system application to gain root/administrator
privileges. If possible, the restricted user account should be limited to executing only those
programs that it requires.

Server Sandbox Security Patterns Repository v1.0

- 88 -

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Buffer overflow attacks – buffer overflow attacks on the server are the most common
approach to remote compromise of the server. The sandbox is intended to contain the
damage of such an attack.

• Privilege escalation – if an attacker is able to compromise a Web server, even one running as
nobody, they will be able to execute code on the system. Attackers typically attempt to break
out of the sandbox by exploiting vulnerabilities in other privileged applications, such as
sendmail. If a vulnerable, privileged application is accessible to the restricted user account, a
privilege escalation attack is possible.

• Breaking out of the sandbox – if the sandbox mechanism contains bugs, an attacker may be
able to exploit them to break out of the sandbox. If the attacker can somehow gain root
privilege, many sandbox features (such as chroot) are reversible.

• Snooping – if an attacker is able to exploit a server vulnerability and gain a toehold on the
system, they may have enough privilege to monitor further server operations. They could
capture passwords or other sensitive data. If the server has privileges to access a back-end
database, the attacker will have those same privileges.

• Application level exploits – even if the server is perfectly sandboxed, it may still suffer from
application-level vulnerabilities. The remote attacker may not have to compromise the server
in order to misuse its services.

Examples

At the code level, Java provides the most widely known implementation of a sandbox. It
prevents the user from using features and functions that are outside of the Java security
policy [2], [3].

At the system level, the canonical example of this pattern is the Apache Web server, which by
default runs as user nobody. Although root privileges are required to start the server on port 80,
the server drops into the nobody account after initialization.

The nobody account is able to read (but not write) all of the public html files on the server. But a
well-configured server will disallow the nobody account from executing any commands or
reading any other files.

Similarly, the Netscape Enterprise Server (iPlanet Web server) for UNIX uses the nobody
account. If it is instructed to listen on a privileged (<1024) port, it must be started as root.
However, once the port is established, it switches to the nobody account before accepting client
connections.

Server Sandbox Security Patterns Repository v1.0

- 89 -

At the network level, it is common practice to place a Web server outside the corporate firewall,
or in a Demilitarized Zone (DMZ) between the Internet and the internal network. In either case, a
firewall separates the Web server from the rest of the internal network. This is an example of a
network-level server sandbox: the Web server is only allowed to connect to a handful of specific
ports on one or more specific trusted machines on the internal network. In some configurations,
the connections must be initiated from the internal network—in this case, the DMZ represents a
sandbox in the purest sense.

Trade-Offs

Accountability No direct effect.

Availability No direct effect.

Confidentiality No direct effect.

Integrity
This pattern will greatly enhance integrity by preventing component
vulnerabilities from causing the entire server to be compromised.

Manageability
This pattern will affect the manageability of the software in question
because constrained execution environments often incur overhead to
setup and maintain.

Usability No effect.

Performance

This pattern will often have a negative effect on performance, but this
will depend on the specific techniques used. Using chroot or
unprivileged user accounts do not affect performance. Other
techniques that impose additional runtime validity checks will incur a
performance penalty.

Cost
This pattern will increase development costs somewhat. This can be
minimized if the application is developed with the constraints already
in place. Retrofitting an existing application is much more difficult.

Related Patterns

• Minefield – a related pattern; any atypical behavior by the restricted user account should be a
source of intrusion information.

• Partitioned Application – a related pattern; a complex application may require some
dangerous privileges throughout its execution time. In that case, the application should be
partitioned so that only a minimal component has the dangerous privileges. The other

Server Sandbox Security Patterns Repository v1.0

- 90 -

component(s) should run using restricted user account(s). Components that communicate
directly with clients should have the bare minimum privileges. Components with dangerous
privileges should be buffered from client requests by other components.

References

[1] Stein, L. and J. Stewart. “The World Wide Web Security FAQ – Version 3.1.2”.
http://www.w3.org/Security/Faq, February 2002.

[2] Sun Microsystems. “Secure Computing with Java: Now and the Future”.
http://java.sun.com/marketing/collateral/security.html, 1998.

[3] Venners, B. “Java’s security architecture: An overview of the JVM's security model and a
look at its built-in safety features”. http://www.javaworld.com/javaworld/jw-08-1997/jw-
08-hood.html, August 1997.

Trusted Proxy Security Patterns Repository v1.0

- 91 -

Trusted Proxy
(a.k.a. Rights Amplifier, Limited View, Restricted Channel,

Integrity Preserving Function, Safe Protocol)

Abstract

A trusted proxy acts on behalf of the user to perform specific actions requiring more privileges
than the user possesses. It provides a safe interface by constraining access to the protected
resources, limiting the operations that can be performed, or limiting the user’s view to a subset of
the data.

Problem

It is often necessary to expose components that are not adequately protected to an audience of
untrusted users. These components are identifiable by one or more of the following
characteristics:

• The component offers protection mechanisms at too great a level of granularity. In order to
accomplish necessary tasks, the user must be granted privileges that could be misused. For
example, in UNIX, the right to append data to a file brings with it the right to overwrite that
file.

• The component is designed for a “safe” environment, and does not offer protection
mechanisms. Many products are designed for a LAN environment and cannot be safely
exposed to the Internet.

• The component is very complex, and contains many features that could be misused, or many
bugs that could be exploited. Many commercial general-purpose operating systems, utilities,
and applications fall into this category.

• The component is subject to frequent change, and it is not possible to adequately assess the
security of every change. Many major Web sites are continually revised. There simply isn't
time to perform a full security assessment of every change.

Exposing these components to anonymous access in an untrusted environment can be dangerous.
Many components can be misused to negatively effect accountability, availability, integrity and
confidentiality. Worse, some vulnerabilities can result in total system compromise.

Solution

A trusted proxy acts as a buffer between inadequately protected components and an audience of
untrusted users. It intercepts and filters all communication between the users and the
component(s) in question. By preventing direct access, it can compensate for weaknesses in the
protected component(s) and ensure that the appropriate policy is consistently enforced.

Trusted Proxy Security Patterns Repository v1.0

- 92 -

Trusted proxies allow custom, finely tuned security policies to be developed and enforced. The
Trusted Proxy pattern can be used to add protection to components that do not offer any
protection mechanisms. Or it can augment the protection mechanisms of existing components to
enforce more restrictive policies.

Trusted proxies also allow integrity constraints to be enforced. For example, many systems
require transactional models where multiple data files must be kept synchronized. For example,
accounting systems require integrity constraints on the contents of multiple files. Inventory
systems allow changes to the inventory, but record the identity of the individual making the
change. And database systems require that any change to the database obey the integrity rules
defined for that database.

When building a trusted proxy to protect an existing component, there are two basic approaches
to filtering the data. You can either search the data for known bad characteristics, or you can
create the new request to be delivered to the target from scratch and only copy certain parts from
the original client-provided request. Scanning the original data is generally faster and allows new
features to be added without breaking the proxy. But rebuilding the data is generally more likely
to defuse new attacks. For example, when new vulnerabilities in the TCP/IP stack are found,
proxies that simply send the packets provide little defense. Proxies that rebuild every packet
usually prevent the malformed packets from being delivered to the target.

Proxies generally do not keep up with the latest and greatest features in the components that they
are protecting. Whether the proxies are developed in house or commercially available, the
developers of the proxy need additional time to update and perform quality assurance on the
proxy. As a result, the proxy can be seen as an impediment to achieving other non-security goals.
In an environment where such changes are likely to be required, a scanning approach to filtering
is generally preferred.

Client

Trusted
Proxy

Protected
Component

Issues

Types of Proxies

Trusted proxies can be either transparent or opaque. A transparent proxy is one that requires no
modification to the original system. It can be inserted between existing components without
breaking compatibility. Often, the components in question will not even be aware of the

Trusted Proxy Security Patterns Repository v1.0

- 93 -

existence of the proxy. Transparent proxies are useful for filtering out known attacks, or
providing a limiting view of the protected resources. Many network-level filters act as
transparent proxies, allowing benign traffic to flow through undisturbed, but intercepting traffic
that is known to be dangerous.

An opaque proxy is one that offers a different interface from that offered by the protected
resources. An opaque proxy requires that clients program directly to the proxy – if inserted
between existing components, it will generally require modification to the client. Opaque
proxies sometimes augment the existing interfaces with additional security features, such as
authentication. Opaque proxies often define higher-level functions and then map these to the
low-level functions offered by the protected resources.

For the sake of efficiency, it may be possible to have the target respond directly to the client
instead of proxying the response as well as the request. When the proxy is used to enforce a
conventional access control model, the security generally is applied only to the request and it is
safe to have the response be unproxied.

If possible, proxies should be designed to be layered. A composite solution of simple, layered
proxies is generally easier to maintain and secure than a single blob that enforces multiple
policies and goals. Many proxies are developed for non-security purposes. In particular, load-
balancing and fail-over mechanisms often require the ability to redirect requests from the
original target to a stand-in. Make sure to test these facilities to understand how they interact
with the proposed security proxies.

Defending the Proxy

Realize that the proxy itself will be the target of any attacks launched at the original. If the proxy
is more vulnerable than the original, the result is a net minus. In particular, never use variable-
sized buffers of unbounded string manipulation functions, as these are often compromised using
buffer-overflow attacks. If possible, use an existing product or technology instead of developing
one from scratch. Of course, any mechanism that defends an unprotected component is by
definition stronger than the original.

Proxies should be developed with Implementation Hiding in mind. For example, when
malformed or invalid data is encountered, the proxy should not provide a possible attacker with
specific information that could aid in identifying or circumventing the proxy. The error should
be logged, so that administrators can debug the problem, but the client should only be given a
generic failure response.

A trusted proxy should filter all input from untrusted clients, as the components being protected
may not perform such filtering. See the Client Input Filters pattern for specific strategies.

Designing Around the Proxy

The trusted proxy must be non-circumventable. Attackers generally prefer to attack the weakest
part of a system. Often, that means looking for a way to circumvent the proxy rather than
attacking the proxy itself. Don't fall into the trap of imagining that the attacker will focus all
his/her efforts against the proxy. (See the Red Team the Design pattern.)

Trusted Proxy Security Patterns Repository v1.0

- 94 -

Do not give the proxy any privileges that it does not absolutely require. A vulnerable proxy
running with administrative privileges may be a bigger security flaw than the components it was
intended to defend. If at all possible, use the operating system or language access control
mechanisms to restrict the privileges of the proxy to the minimum possible.

A proxy cannot fully eliminate the security implications on the systems that it defends. If an
attacker figures out a way to misuse legitimate services, the proxy may simply forward the
seemingly legitimate request through to the target. (See the Share Responsibility for Security
pattern.)

Provide logging interfaces that allow invalid attempts to be monitored and stored. Many
attackers will systematically probe the components in a system. A system administrator who is
alerted to attacks on the proxy may be better able to distinguish attacks on other components.
(See the Log for Audit and Network Address Blacklist patterns.)

Examples

At the code level, any object that contains private data is a form of trusted proxy. It ensures that
the integrity constraints within the object are enforced by disallowing direct access to that data.
It exports integrity preserving functions so that users who are not trusted to directly manipulate
the data can be allowed to access the data via certain controlled interfaces. However, most
programming languages (including C++), cannot guarantee that other components will not
bypass these protections. Java is a notable exception: in most cases, objects will not be able to
circumvent the language’s protection mechanisms.

J2EE Enterprise JavaBeans (EJBs) can provide access to a database with only the specific
limited functionality required by the application.

At the system level, the UNIX Mail delivery program has the privilege to write into any user’s
files. The mail delivery program is trusted to only append incoming mail to the appropriate
mailbox file, and not touch any other files.

All database programs allow users to modify files in a constrained manner but generally disallow
direct access to those files. Oracle, for example, does not give users permissions to open
database files directly. They can invoke Oracle to open the file on their behalf, subject to
Oracle’s access control rules. Many databases also allow restricted views of tables to be
established. A restricted view permits each user to see only that subset of a table that he or she
has privilege to.

At the network level, a firewall is a classic trusted proxy. It provides a constrained interface to
systems that are not trusted to be directly accessible from the Internet. Many firewalls also proxy
outgoing connections, in order to prevent untrusted users from bringing dangerous materials into
the protected network.

A Web/ftp server that accesses local files and serves them to remote users who have no
privileges on the local system(s) in another example of a trusted proxy.

Trusted Proxy Security Patterns Repository v1.0

- 95 -

Many Web applications provide users with restricted access to a private database. Users are only
allowed to see their own account data (and often only a subset of that). For example,
Amazon.com will let you view your order history, but it will not show you the profile data that it
has compiled about your activities at that site.

Trade-Offs

Accountability
Trusted proxies are often used to enhance accountability by enforcing
authenticated access to protected resources and adding logging rules to
those resources.

Availability

A trusted proxy adds another possible point of failure. If either the
proxy or the proxy’s target fail, the system will be unavailable. A
proxy that is significantly less reliable than the protected resource, or
vulnerable to overloading attacks, will drastically reduce the overall
availability.

Confidentiality This pattern can be used to protect important data or subsystems.

Integrity
Trusted proxies have a huge impact on integrity: they prevent misuse
of important subsystems.

Manageability

Configuration of the trusted proxy can be extremely difficult,
especially if the individual configuring the trusted proxy does not fully
understand the types of data and the consequences of data flowing
through the trusted proxy.

Usability

Trusted proxies generally do not affect usability, particularly if they
are transparent to the user. However, firewalls are an example where a
trusted proxy has been observed to reduce usability dramatically.
Many users find that their on-line activities are thwarted by an overly
restrictive firewall policy. One unfortunate result is that end users
often attempt to circumvent firewalls when the firewall prevents them
from conducting their desired activities.

Performance

A trusted proxy represents an additional level of indirection between
the user and the protected resource and as such has a negative impact
on performance. This impact can be quite severe and should be
investigated using prototypes early in the development cycle.

Cost

A trusted proxy is a textbook example of information hiding, in the
classic software engineering sense. A well-designed trusted proxy can
greatly reduce inter-object coupling. However, if the object interfaces
are not chosen well, the result can be a maintenance headache. The
traditional object-oriented approach to maintenance (re-factoring of

Trusted Proxy Security Patterns Repository v1.0

- 96 -

the object design) can run into problems if organizational security
policies are defined in terms of those object interfaces.

Related Patterns

• Red Team the Design – a related pattern.

• Share Responsibility for Security – a related pattern.

• Log for Audit – a related pattern.

• Network Address Blacklist – a related pattern.

References

[1] Balestracci, S. “PC Week Hack of 1999”.
http://www.sans.org/infosecFAQ/threats/PC_week.htm, February 2001.

[2] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[3] Zwicky, E., S. Cooper, and D. Chapman. Building Internet Firewalls 2nd Edition. O’Reilly
& Associates, 2000.

Validated Transaction Security Patterns Repository v1.0

- 97 -

Validated Transaction
(Mini-Pattern)

Abstract

The Validated Transaction pattern puts all of the security-relevant validation for a specific
transaction into one page request. A developer can create any number of supporting pages
without having to worry about attackers using them to circumvent security. And users can
navigate freely among the pages, filling in different sections in whatever order they choose. The
transaction itself will ensure the integrity of all information submitted.

Problem

Web applications often have to collect a great deal of data from a user in order to complete a
single transaction. E-commerce purchases, for example, require that a user to select items for
purchase, provide contact information and a shipping address, choose shipping options, and
submit credit card information. Rather than simply present the user with a huge form with a
bewildering array of options, most sites prefer to guide the user through the process, validating
each piece of data as it is provided.

This approach can be vulnerable to attacks. An attacker can use known URLs to jump between
the different pages, in attempt to bypass some of the data validation checks. For example, if the
application developer is not extremely careful, it may be possible for the attacker to add items to
the order after having paid.

Solution

The Validated Transaction pattern solves this problem by establishing a single point at which the
transaction is committed. At that point, any data validation checks are duplicated in order to
ensure that data tampering will be discovered. Furthermore, data consistency checks are also
implemented at that point.

This pattern can be used to retrofit an application that was not designed with security in mind.
Alternately, it allows developers of the application to make changes to the application, safe in the
knowledge that the Validated Transaction pattern offers a safety net against security problems.

Related Patterns

• Client Input Filters – a related pattern that can use this validated transaction mechanism to
enforce that client input is validated.

• Directed Session – a complementary pattern that exposes a single URL to the user and
enforces form validation by storing the actual URL in session data.

Validated Transaction Security Patterns Repository v1.0

- 98 -

References

None.

Security Patterns Repository v1.0

- 99 -

C. Procedural Patterns
The following procedural patterns are presented in this section:

• Build the Server from the Ground Up

• Choose the Right Stuff

• Document the Security Goals

• Document the Server Configuration

• Enroll by Validating Out of Band

• Enroll using Third-party Validation

• Enroll with a Pre-Existing Shared Secret

• Enroll without Validating

• Log for Audit

• Patch Proactively

• Red Team the Design

• Share Responsibility for Security

• Test on a Staging Server

Build the Server from the Ground Up Security Patterns Repository v1.0

- 100 -

Build the Server from the Ground Up
(a.k.a. Know Thyself and Configure Appropriately, Keep It Simple Stupid)

Abstract

Many Web compromises and defacements occur because of unnecessary and potentially
vulnerable services present on the Web server. Default installations of operating systems and
applications are the source of many of these services. This pattern advocates building the server
from the ground up: understanding the default installation of the operating system and
applications, simplifying the configuration as much as possible, removing any unnecessary
services, and investigating the vulnerable services that are a part of the Web server configuration.

Problem

Web servers, their underlying operating systems, and application server environments are
extremely complex. Most developers (and even many administrators) generally do not
understand this complexity—they depend on pre-existing installation programs to configure the
system correctly. When things don't work, developers and administrators tweak and patch until
the problems appear to be resolved.

While this approach might be appropriate for administration of desktop systems, it is not at all
suitable for Internet-accessible servers. Operating system installations tend to include large
numbers of unnecessary and dangerous tools and utilities. Server installations contain a vast
number of extraneous sample files, tools, and a wealth of different programming options, all
enabled. Powerful development tools left on a Web server provide a sophisticated attacker with
tools that can be turned against the server and even the organization. Installations of Web tools
often include poorly designed sample scripts that reveal information about the server and might
be vulnerable to attack.

These extraneous and unnecessary services and tools are the source of many Web site security
breaches. There are many examples of security vulnerabilities resulting from insecure default
installations:

• The Microsoft IIS Web server installs with a large number of programming options and APIs
enabled. Most developers use a tiny fraction of these. However, hackers and worm authors
have taken advantage of the default configuration, finding innovative ways to exploit these
generally unused capabilities. Recent examples include Nimda and Code Red.

• Many application environments and operating systems have provided guest user accounts
and/or default administrative accounts with well-known passwords. Hackers often exploit
these accounts during intrusions. For example, Oracle creates a “system” account with the
password “manager” and a “dba” account with the password “change_on_install.”
Microsoft SQL Server creates an administrator account named “sa” with a blank password.

• Default file permissions for many operating systems are geared to general purpose computing

Build the Server from the Ground Up Security Patterns Repository v1.0

- 101 -

environments in which users are expected to collaborate. User accounts are given a great
deal of access to system data and other users’ data. This is not appropriate for a server,
where and attacker may compromise a single user account and thereby gain access to a great
deal of additional data.

Furthermore, due to the complexity of these configurations, system administrators often do not
understand enough about the workings of their system to even realize when an attacker has
penetrated and installed backdoor software.

Solution

Instead of relying on default installation programs, the system administrator should attempt to
build the server by copying individual files and packages. This will ensure that only the
absolutely necessary components are installed on the server. It will also ensure that the
administrator knows the function of every component installed on the server and will be able to
detect tampering with the server.

When a component cannot be installed without an installation program, the administrator should
always choose a custom installation option when it is available. The administrator should install
only the bare minimum functionality. If the bare minimum installation does not offer the needed
services, the administrator should install additional components one at a time, until the absolute
minimum installation is uncovered.

When default installation programs absolutely cannot be avoided, the system administrator
should perform installation experiments using two machines. The installer should be run on the
first machine, and files manually copied to the second. Files that look extraneous should initially
be omitted and only added if the system requires them in order to run. On systems such as
Windows NT, which use a global registry, the administrator should track changes to the registry
and manually copy the entries to the second machine.

In some circumstances, copy protection schemes may require that an installation program
execute on the actual system that will be used in production. In these cases, all changes made by
the installer should be tracked. The system administrator can then experiment with the removal
of extraneous files and configuration settings.

Under no circumstances should standard examples be installed on a production system. Under
no circumstances should development tools or system source code be installed on a production
system.

Issues

There is an obvious trade-off between using a default server configuration and configuring a
server oneself. The trade-off involves the level of security provided by the default configuration
versus the level of security resulting from configuring complex software from scratch. Some
systems provide very reasonable and secure default configurations, and the level of effort
required to derive a more secure custom configuration might be very high. Other systems,

Build the Server from the Ground Up Security Patterns Repository v1.0

- 102 -

however, have well-documented insecure default configurations, and building those servers from
the ground up is absolutely necessary.

When vendor installation programs and scripts must be used, it is important to understand the
complete impact of the installation process. Unfortunately, vendor installation programs usually
alter many parts of the system (user accounts, startup scripts, system registry, device drivers,
etc.) and give little indication of what was done or why. The use of these scripts is often
unavoidable, but system developers should take the time to assess the end results. For example,
on a UNIX system you can use “ls –alr” or other file system checking tools to determine the files
changed by an automated installation process. On Microsoft systems, before and after snapshots
of the registry can be used to track changes.

When installation scripts are unavoidable, general hardening procedures should be followed.
There are a number of guides available providing both general guidance [1] and specific details
about locking down particular systems [3].

Programs on UNIX operating systems that run with SUID privileges especially should be left off
Web servers except when absolutely necessary. Because these programs have superuser
privileges, when they are misused or compromised the consequences are especially
disastrous [2]. Many SUID programs can be subverted to perform different actions than
originally intended; their presence on Web servers should be minimized as much as possible.
Similarly, SUID shell scripts should never be left on Web servers [2].

Examples

System Level

The Red Hat Linux installation program represents a good example of the difference between an
automatic installation and a manual installation. It offers a default “server installation” which
proceeds to install over a gigabyte of services. However it is possible to choose packages
individually. Using this model, one can select only those Redhat Packages (RPMs) that are
absolutely necessary. This produces a much simpler configuration.

The Red Hat installation program also includes the ability to select (and even customize) a
firewall rule set. It provides a graphical tool that allows the administrator to select which ports
on the system should be left open and which protocols should be allowed. This is a very useful
tool in that it automates much of the security configuration process, but offers enough flexibility
to be useful for non-standard systems.

It is also possible to build a Linux server entirely from scratch. The Linux from Scratch Project
(www.linuxfromscratch.org) gives step by step instructions for building a Linux system without
installation scripts. Part of the rationale is:

Another advantage of a custom built Linux system is added security. You will compile the entire
system from source, thus allowing you to audit everything, if you wish to do so, and apply all the
security patches you want or need to apply. You don't have to wait for somebody else to provide
a new binary package that fixes a security hole. Besides, you have no guarantee that the new

Build the Server from the Ground Up Security Patterns Repository v1.0

- 103 -

package actually fixes the problem (adequately). You never truly know whether a security hole is
fixed or not unless you do it yourself.

Trade-Offs

Accountability No direct effect.

Availability
This pattern facilitates restoration or reconstruction of a Web site in the event
of site compromise, minimizing downtime.

Confidentiality No direct effect.

Integrity This pattern enhances integrity by helping prevent site compromise.

Manageability
This pattern significantly enhances manageability by reducing the complexity
of the servers, and providing the administrator with a better understanding of
the remaining complexity.

Usability No direct effect.

Performance
This pattern may improve performance if it results in the elimination of
extraneous services that would otherwise consume resources.

Cost
This pattern will incur significant additional cost during system development
and deployment.

Related Patterns

• Document the Server Configuration – a related procedure for documenting the configuration
of Web and application servers, enabling reproduction of the server configuration(s).

• Test on a Staging Server – a related procedure for development and testing of Web
applications that explores the impact of changes on a separate installation before committing
them to the final system.

• Patch Proactively – a related procedure for administering servers.

References

[1] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

[2] Garfinkel, S. and G. Spafford. Practical UNIX & Internet Security. O’Reilly &
Associates, 1996.

Build the Server from the Ground Up Security Patterns Repository v1.0

- 104 -

[3] Naval Information Systems Security Office. Secure Windows NT Installation and
Configuration Guide. Windows NT for Navy IT-21 Version 1.5, December 2000.

Choose the Right Stuff Security Patterns Repository v1.0

- 105 -

Choose the Right Stuff
(a.k.a. Select Components for Security, Using Standard or Custom Parts)

Abstract

Many security problems can be avoided during system design if components, languages, and
tools are selected with security in mind. This is not to say that security is the only criterion of
concern – merely that it should not be ignored while making these decisions. This pattern
provides guidance in selecting appropriate Commercial-Off-the-Shelf components and in
deciding whether to use build custom components.

Problem

Modern systems are built using a collection of products, tools, language libraries, and custom
code. These components can all impact system security. Some components lack the functions
needed to support a secure application. Others have the necessary features but are crippled by
recurring bugs. Some products are completely proprietary, ensuring that both defenders and
attackers don't fully understand the product, and are dependent on the vendor to address security
issues that come up. And custom components, while appealing, often suffer from the same
problems that plague commercial components.

If the major functional components of a system are selected without a consideration of security
issues, it is highly likely that the system will suffer from significant security problems. The
primary criteria in selecting tools and languages will generally not be security. However, it is a
mistake to ignore security completely. Even the best products have known weaknesses that
developers must work around. Many components that are perfectly adequate for LAN usage are
inappropriate for an untrusted environment such as the Internet. And there are other components
and tools with such miserable track records for security that they should simply be avoided.

Solution

During system design, carefully evaluate the security all candidate components, languages, and
tools. In a fully rational process, this would involve choosing multiple candidate products and
performing a rigorous security and functionality analysis of each. In a more pragmatic process,
the collection of appropriate components may be predetermined by other factors. Whatever the
case, investigate the security implications of each component before development starts.

When investigating Commercial-Off-the-Shelf (COTS) products, it is often the case that no one
product meets all the functional and non-functional requirements of the system. It is appealing to
think that a custom-built solution can meet all of the needs. However, before developing a
custom component, make absolutely sure that an alternative is not available. In comparing
alternatives, do not assume that the custom solution will be a panacea—it is entirely likely that
the custom approach will have as many security flaws as any commercial alternative.

Choose the Right Stuff Security Patterns Repository v1.0

- 106 -

Issues

The software engineering literature provides a great deal of guidance in selecting components,
languages, and tools that minimize development risk and meet the needs of the project. This
pattern provides some additional security-specific guidance that should supplement other
understanding.

Past History of Vulnerabilities

When choosing any COTS component, the most significant security question to investigate is
how frequently major security vulnerabilities have been discovered in the product. Web sites
such as securityfocus.com provide historical information about security advisories, organized by
product. If a product has a track record of major vulnerabilities, it is safe to assume that record
will continue.

When investigating past vulnerabilities, it is instructive to examine the vendor’s response. Did
the vendor act proactively, issuing a response at the same time the vulnerability was released, or
did they have to be prodded into action by the security community? How quickly did they
respond? Did they issue patches, or did they simply offer workarounds? Were major elements
of functionality disabled as part of any of these workarounds?

It is also important to consider any application in context. A highly popular application is going
to be attacked more often than an unpopular one. And a feature-rich, complex application is
going to have more security problems than a much simpler alternative. If you do not need the
additional features, then the simpler alternative is usually a better choice. And if the more
obscure application is less vulnerable on account of its lack of popularity, that works in its favor.

When looking into past vulnerabilities, pay close attention to the workarounds suggested by
vendors. On many occasions, a vendor has simply required that a feature be disabled if the
system is to be secure. Understand which features may have to be disabled, and do not build an
application to rely on those features.

Security Features

Some vendors pay greater attention to security than others. The simplest discriminator is to look
at the evaluated products list maintained by the National Institute of Standards and Technology
(NIST) and the National Security Agency (NSA). If a product has been successfully evaluated,
it means that the vendor has gone through a rigorous process of adding security features,
documenting those features, and convincing an independent laboratory that the product behaves
as described.

Unfortunately, too few products have been evaluated, and many that have are one or two
versions behind the vendor’s currently shipping products. In these cases, there are other things
to look for that will help assess the vendor’s commitment to security.

• Read the product documentation. How many security features are described? How well are
they explained? Does the documentation include guidance on securely configuring the

Choose the Right Stuff Security Patterns Repository v1.0

- 107 -

product?

• There are many mailing lists, Web sites, and product support forums that discuss security.
Search the archives for information about security features for the product in question

• When looking at tools and languages, how rich are the security configuration options? How
extensive are the logging capabilities? Do they allow you to define security policies that
meet your needs?

• Has anyone published any experiences describing a system largely similar to the one you
envision?

Safe Programming Environments

The wrong language or tool could be a huge detriment to the security of the system. Some
languages and tools are better suited for some tasks than others, and some are easier to program
securely than others. For instance, C is very efficient, system-level language that is good for
programming many lower-level applications. However, if C is used incorrectly without
understanding the security implications, it is easy to produce code with latent vulnerabilities.
Java, on the other hand, is not as efficient, but it is in many ways easier to understand and
provides a much more robust security model.

In general, you want to use the safest environment that offers adequate performance, scalability,
and reliability. Perform some rudimentary prototypes using a safe language such as Java in order
to assess the performance. Recognize that Java will never be as fast as C, but it may well be fast
enough. It may be cheaper to use several servers than to recover from a major security breach.

If you must use a language that stresses performance over security, there are many references
that provide low-level details about writing code that is less likely to have major security
vulnerabilities [7]. Every developer should be familiar with this material.

Other Considerations

Some other security-relevant considerations are:

• Is the programming model an industry standard or will the system be locked into a single
vendor solution? If the vendor’s commitment to security wanes, will it be possible to replace
the component with a more secure alternative?

• What are your developers familiar with? Developers are less likely to make mistakes with
languages and tools that they are familiar with. Forcing them into a new programming
environment will involve a learning curve that could introduce security problems.

• Is source code available to the system builders? To potential attackers? There is open debate
about whether open source is less secure or more secure than closed source COTS
components. But nobody contests the fact that open source systems are less dependent on a
single vendor’s response to a security vulnerability.

Choose the Right Stuff Security Patterns Repository v1.0

- 108 -

Examples

At the code level, the C language is very fast, but requires skilled developers who understand the
security implications of their programs. It is very easy to make a mistake that will allow an
attacker to gain the same level of privilege as the application. Here are just a few of the major
mistakes commonly made with C: incorrect usage of string functions (e.g., using “strcpy” when
“strncpy” should be used), poor signal handling, incorrect pointer arithmetic, and incorrect
function usage.

A number of different sources recommend the use of Java for Web applications. While Java is
not as fast as C, it provides significantly more security out of the box. When an error occurs there
is less chance for an attacker to gain any privileges because Java is a type-safe language, and
runs within a constrained security model that protects the rest of the system. Many common
mistakes in C, such as those leading to buffer overflow vulnerabilities, cannot be made in Java.
However, it is important to understand that logical errors can still be made in Java. For instance,
if the Web application does not properly check client-supplied data, even a Java program can be
tricked into behaving inappropriately.

At the system level, the choice of server operating system is extremely important. In general,
servers should not use the very latest desktop operating system. Because these systems are
constantly updated to include support for the latest and greatest hardware, the bugs have
generally not been worked out. A recent example is the FBI’s warning about the use of
Universal Plug and Play on Windows XP. This is a feature that has been added to Windows in
order to support hardware that is not yet available. The feature is enabled by default and allows
remote compromise of any system on which it is running.

A security consultant friend may have put it best when he explained, “I always put the servers on
UNIX because people are scared of the UNIX box and will leave it alone. If I put them on
Windows, somebody always installs Word on the box.”

At the network level, many banks and financial institutions have opted to use the Hewlett-
Packard Virtual Vault as their Web server. The Virtual Vault has a reputation of being the
world’s most secure Web server [5]. The Virtual Vault is built atop a military-grade multi-level
security system. While management of the server is considerably more difficult than some other
platforms, the vendor the vendor has established service level agreements for providing fixes to
identified vulnerabilities. Furthermore, because the product uses non-standard hardware and the
vendor tracks all sales of the software, hackers generally do not have access to a system on
which to experiment. Finally, HP has offered a one million dollar reward to anyone who
manages to compromise a properly configured Virtual Vault.

Trade-Offs

Accountability No direct effect.

Availability
By helping minimize security flaws, this pattern will help minimize
downtime.

Choose the Right Stuff Security Patterns Repository v1.0

- 109 -

Confidentiality No direct effect.

Integrity This pattern helps ensure the integrity of the system.

Manageability
This pattern will help identify and avoid potential manageability
problems that might otherwise have been undiscovered.

Usability No direct effect.

Performance
Choosing the most secure products will generally have an adverse
effect on performance.

Cost

This pattern will have an impact on cost. Researching product
capabilities will introduce delays into the development cycle. And
sometimes the products selected will have higher costs than those that
might otherwise have been chosen.

Related Patterns

• Document Security Goals – a related pattern that establishes the security policy, which guides
and informs the process of choosing the right stuff.

• Patch Proactively – a related pattern that is applicable when standard or COTS components
are selected; this pattern establishes the process of checking regularly and often for
vulnerabilities and patches applicable to standard parts.

References

[1] Desal, G., J. Fenner, J. Patel, and M. Schenecker. “Web Application Servers are Here To
Stay”. http://www.informationweek.com/726/app.htm, March 1999.

[2] Dyck, T. “Four scripting languages speed development”.
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2646052,00.html, November
2000.

[3] Kamath, M. “Choosing a scripting language for ASP”.
http://www.kamath.com/columns/my3cents/mtc002_scripting.asp, October 1999.

[4] Pountain, D. and J. Montgomery. “Web Components: Components and the Web are a
match made in developer heaven”. http://www.byte.com/art/9708/sec5/art1.htm, August
1997.

[5] Stein, L. and J. Stewart. “The World Wide Web Security FAQ – Version 3.1.2”.
http://www.w3.org/Security/Faq, February 2002.

Choose the Right Stuff Security Patterns Repository v1.0

- 110 -

[6] Strom, D. “More on ActiveX Versus Java Security: Are you safe?”
http://www.webdeveloper.com/security/security_java_activex.html, 1999

[7] Viega, J. and G. McGraw. Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, 2001.

Document the Security Goals Security Patterns Repository v1.0

- 111 -

Document the Security Goals

Abstract

In order for developers to make consistent, intelligent development choices regarding security,
they have to understand the overall system goals and the business case behind them. If the
security goals are not documented and disseminated, individual interpretation could lead to
inconsistent policies and inappropriate mechanisms.

Problem

There are a variety of different processes used for software development. An important early
activity in most development processes involves requirements gathering and definition.
Generally, the core functional requirements are defined explicitly early in the development
effort. Non-functional requirements, including those regarding security, are often left vague, or
not considered at all. There are a variety of problems that can arise when security goals are not
documented and disseminated properly.

When security requirements are not documented and/or disseminated to the development team,
developers of individual parts have little chance of making consistent security decisions across
the system and throughout the system lifecycle. When security requirements are left vague, they
might target the wrong threats or even build measures of inappropriate strength. In either case,
the system’s overall security suffers because the system is only as strong as its weakest link [8].
Overly weak components will compromise system security. Overly strong components will not
enhance security because attackers will not target these defenses; at the same time, these overly
strong components might penalize other requirements (such as usability or performance) and are
certainly not cost effective.

Perhaps the worst possible circumstance is that developers might not address security at all
throughout the development process. It is often stated that security must be built into a system
from the start; it cannot be added effectively, or cost effectively, after the fact [4]. If developers
are not aware of security goals and then ignore security, the process of retrofitting security
mechanisms into an already developed system will most likely be expensive, painful, and
ultimately unsuccessful.

Without a clear understanding of the security goals of the organization and application, it is
impossible for developers to build the right thing. If too little, too much, or even the wrong type
of security is built into the system, the result can be an expensive rewrite.

Solution

Document the security goals early in the project, as part of requirements gathering and definition.

Regardless of the particular development process employed on a project, documentation of
security requirements should be addressed early on. While it is often not possible to document
all the security goals in the beginning stages of development, an attempt to document the greatest

Document the Security Goals Security Patterns Repository v1.0

- 112 -

risks to security is important. In a spiral development model, each iteration of development
should identify and address the most significant remaining security risks [1].

Ideally, documentation of the security goals will not result in an overly large document. This
documentation must be readable by its target audience: the developers of the system.

At a high level, a security requirements document should do the following:

• Identify classes of users and the actions each class is permitted to perform

• Specify the relative importance of confidentiality, integrity, availability, and management
costs for major elements of functionality.

• State any legal or regulatory constraints (such as accessibility, privacy, and cryptographic
export restrictions).

• Include a risk analysis that documents what sort of losses are tolerable and what sort are not.

Once the security goals are documented, they must be disseminated to the entire development
team. Developers cannot make localized trade-off decisions that reflect the relative goals of the
project unless they understand what those goals are. It is crucial that everyone—not just
“security people”—understand these goals. This will ensure that conflicts between security and
other goals are identified and resolved early in the development lifecycle.

As the project progresses, the security goals (and all other functional and non-functional
requirements) will be refined as details emerge and conflicts are ironed out. The documentation
of the security goals should be maintained as these inevitable changes occur.

Issues

Documentation of security goals involves understanding security in the context of the entire
system.

• In developing the security goals, it is instructive to identify different classes of stakeholder
(e.g. end users, administrators, etc.) Each group of stakeholders should have input into the
process. This input can clarify overall objectives and assist in trade-off analysis between
security and other important goals.

• Avoid the temptation to require inappropriate degrees of security. The goals document
should be supported by rationale that demonstrates why security measures in excess of best
industry practice are necessary, and cost-effective.

• Explicitly describe the operational requirements (and associated costs) that security measures
will require. For example, using the Account Lockout pattern to protect against password
guessing might require an operator to be available to reset locked accounts.

• Consider your security policy and procedures when picking your goals. A secure account

Document the Security Goals Security Patterns Repository v1.0

- 113 -

management system does little good if the policies and procedures behind its use are never
enforced.

Determining security goals requires an understanding of business issues, including legal and
regulatory issues.

• User-provided data may have some liability associated with its misuse. For instance, credit
card numbers need to be protected according to the credit card company’s requirements and
automated use of bank account information is subject to NACHA regulations [3].
Government sites are restricted in their use of social security numbers. And sites are
forbidden to collect most information about minors. The security goals document should
reflect these requirements.

• If your site offers services, the services could be misused in a manner that introduces
liability. File storage could result in trafficking of illegal software or child pornography.
Public forms could result in libel charges. Anonymous e-mail accounts could be used for
illegal activities. Understand the relevant legal and regulatory constraints and document
them.

• Understand that you can be subpoenaed for anything you log. The security goals document
should explain to developers the hidden costs are associated with any additional data that
they log.

• Recognize that often the best defense against liability claims is adherence to best practice. Be
aware of standard industry practices, and cite them whenever possible in the security goals
document.

• While it is important not to goldplate the security of an Internet portal, it is important to
recognize that Internet access makes this interface far more vulnerable and subject to attack
then other, weaker, interfaces. It is true that even the strongest Web site can be undermined
by a dumpster diving attack. But the Web site can be attacked from halfway around the
world, while the dumpster is protected from all but the most determined attackers by physical
distance.

Examples

There are many software processes designed to document system requirements, including
security goals. Specific examples of their usage are sometimes difficult to cite because these
experiences are not often documented.

One published example of a security goals document exists for the Grex, a public-access
computer conferencing system [9]. Rationale for the various policy decisions is explained in this
document.

Another example of a high-level security goals document can be found for K-Meleon, a
derivative of the Mozilla Web browser [2]. This document is very short and really represents
only a first attempt at a security goals document. More details must be incorporated in order for

Document the Security Goals Security Patterns Repository v1.0

- 114 -

users of the document to be able to assess the trade-offs between specific security goals and other
requirements.

Examples of even more high-level security goals can be found for the San Diego Supercomputer
Center [5], a scalable and secure e-commerce hub [7], and Open Financial Exchange security [6].
Again, the few slides in each of these presentations regarding security policy must be expanded
into a full document with more specific requirements.

Trade-Offs

Accountability
This pattern will help ensure that appropriate trade-offs are made
between accountability goals and other requirements.

Availability See Accountability.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability
This pattern will often enhance manageability, because appropriate
security measures designed in from the start are usually easier to
manage than solutions added at a later date.

Usability See Accountability.

Performance See Accountability.

Cost

Usage of this pattern will probably increase cost in the short run, but
should reduce overall cost in the long run. By designing the system
with security goals in mind, developers are betting that the cost now is
significantly less than the cost of security problems that could be
experienced later.

Related Patterns

• Share Responsibility for Security – a related pattern that distributes security concerns
amongst the entire development team; the security goals documented in this pattern must be
communicated to all team members.

References

[1] Abrams, M. “Security Engineering in an Evolutionary Acquisition Environment”. New
Security Paradigms Workshop 1998, Charlottesville, VA, September 1998.

Document the Security Goals Security Patterns Repository v1.0

- 115 -

[2] Mutch, A. “Mozilla Security Goals”,
http://tln.lib.mi.us/~amutch/pro/mozilla/secgoals.htm, April 2002.

[3] NACHA Internet Council. Understanding Internet-Initiated ACH Debits.
http://internetcouncil.nacha.org, 2002.

[4] Open Web Application Security Project (OWASP). “A Guide to Building Secure Web
Applications and Web Services – Draft 0.2”. http://www.owasp.org, May 2002.

[5] Perrine, T. “NPACI/SDSC Security Activities”,
http://www.edcenter.sdsu.edu/training/workshop99/june29_ppt/tep1999/sld008.htm, July
1999.

[6] Rodriguez, C. “Electronic Bill Presentment and Payment (EBPP) and Open Financial
Exchange (OFX) Security”, http://cs1.cs.nyu.edu/rodr7076/ebpp/sld013.htm, December
1998.

[7] Ryan, S. “A Scalable and Secure E-Commerce Hub for Electronics Recycling”,
http://www.ses.imse.iastate.edu/Presentation.htm, 2000.

[8] Viega, J. and G. McGraw. Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, 2001.

[9] Wolter, J. “Grex Staff Notes: Security Goals”.
http://www.cyberspace.org/staffnote/goals.html, March 1998.

Document the Server Configuration Security Patterns Repository v1.0

- 116 -

Document the Server Configuration

Abstract

Web servers and application servers are extremely complex, and complexity is a major
impediment to security. In order to help manage the complexity of Web server and application
configurations, developers and administrators must document the initial configuration and all
modifications to Web servers and applications.

Problem

Web servers, their underlying operating systems, and Web applications have complicated and
dynamic configurations.

The complexity arises from the multitude of options available within the general-purpose
operating systems on which Web and application servers run. The wide range of functional and
non-functional requirements that Web applications must satisfy also complicates the
configuration. In addition, the many possible interactions, compatibility concerns, and
interoperability issues between various operating systems and applications complicate
configuration control.

The dynamism arises from user feedback, evolving requirements, changing threats and
vulnerabilities, and updates in underlying system software. Web applications must continuously
solicit user feedback and respond to usability issues. This input, in addition to normal, planned
enhancements to functionality, contributes to the evolution of system and application
requirements. All these changes can impact the server configuration. In addition, the threats to
Web servers and associated vulnerabilities are always changing, and this requires frequent
updates to server configurations.

Without a process for managing the complexity and dynamism of server configurations,
developers and administrators can quickly lose intellectual control and cease to understand the
systems they must maintain. Perhaps most importantly, in the event of catastrophic failure or
security breach, it might be impossible to reconstruct the precise configuration of Web and
application servers because administrators cannot remember the exact series of changes and
upgrades over time.

Solution

Developers and administrators should create and maintain a Server Configuration Document
with the following characteristics:

• It provides step-by-step instructions for recreating the server from scratch.

• It includes only the minimum functionality needed to execute the application.

• It is subjected to rigorous, independent quality assurance on staging servers before being

Document the Server Configuration Security Patterns Repository v1.0

- 117 -

rolled out on production servers.

• It explains the why behind the server configuration.

• It is maintained under a version control system.

When creating a Server Configuration Document, developers and administrators must first
understand the configuration options selected for deployed systems, whether using a default
configuration or custom settings. This understanding of the configuration should be captured in
the Server Configuration Document, so that later maintainers of the Web and application servers
can understand the rationale behind configuration decisions.

As the Web and application servers are maintained and their configurations evolve, all changes
should be recorded, in the same order that they should be applied, in the Server Configuration
Document. Specific version numbers for each piece of software and patch should also be
recorded. As upgrades to system software are made, the version numbers in the Server
Configuration Document should be updated.

As part of disaster recovery and contingency planning, the Server Configuration Document can
be tested periodically on staging servers to ensure that it faithfully reflects and reproduces the
current production server environment.

Issues

There are issues associated with including rationale information in the Server Configuration
Document. Developers and administrators do not enjoy writing documentation in general.
Writing anything beyond the basic description of configuration steps could be a challenge, even
when the value of the rationale information is explained. Similarly, some administrators will
prefer to not read long documents, so the rationale information must be structured in such a way
that it is not distracting to those who do not require it.

Another issue with documenting the server configuration involves the trade-off between
experimentation and documentation effort. Often times, especially early in the development
effort, the server configuration is unstable as developers and administrators experiment in search
of a stable configuration. It might seem like a waste of time to document all of the server
configuration experiments before the initial configuration is discovered. Documenting all
experimental configurations can be useful in managing the process though. In addition,
documenting throughout the experimentation process avoids the situation in which a stable
configuration is finally discovered, but the steps that took place cannot be remembered and
consequently reproduced.

In addition to documenting the server configuration, it might be prudent to maintain a repository
of system software and patches applied to the Web server. If the Web server is reliant on
specific versions of software that might not be maintained or might become unavailable, saving
versions of specific software in a repository could be the difference between success and failure
in reconstructing a Web site from scratch.

Document the Server Configuration Security Patterns Repository v1.0

- 118 -

Examples

We have first-hand knowledge of at least two substantial federal Web systems that employ this
pattern in practice: the complete configuration of each system is fully documented. As a part of
quality assurance for the documentation, administrators are challenged to rebuild the system
using only that documentation. The resulting systems are then subjected to thorough usability
and security testing. Any changes to the system are performed on staging server and subjected to
quality assurance before being deployed to the production systems.

We utilized this pattern in the development of our Web repository application, producing the
resultant example Server Configuration Document.

Trade-Offs

Accountability No effect.

Availability

This pattern increases availability by providing developers and
administrators with a document describing Web and application
servers’ baseline configurations. This will facilitate restoration or
reconstruction of a Web site in the event of site compromise, thus
minimizing downtime.

Confidentiality No effect.

Integrity
This pattern contributes to integrity by providing a baseline by which
integrity can be accurately assessed in the event of site compromise.

Manageability

This pattern enhances manageability in a variety of important ways.
The process of documenting helps manage the complexity of the
server configurations. It also provides insurance against the loss of the
only employee(s) with the knowledge required to keep the Web site
running. In the most extreme situations where the entire Web site
must be rebuilt, this pattern enables manageability of the entire
recovery process.

Usability No effect.

Performance No effect.

Cost

The process of documenting server configurations will incur some
additional up-front cost in terms of administrator time and effort. The
long-term maintenance cost, especially in circumstances requiring
Web site recovery, should be reduced significantly though

Document the Server Configuration Security Patterns Repository v1.0

- 119 -

Related Patterns

• Build the Server from the Ground Up – a related procedure for understanding and
configuring Web and application servers properly; the process of configuring servers
described in this related pattern is orthogonal to the documentation process described in this
pattern.

• Test on a Staging Server – a related procedure for development and testing of Web
applications that explores the impact of changes on a separate installation before committing
them to the production system; this related pattern describes how quality assurance of the
documentation produced in this pattern should occur.

• Patch Proactively – a related procedure for administering servers; any patches applied to the
system as recommended in this related pattern should be documented continuously as part of
the Server Configuration Document in this pattern.

References

[1] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 120 -

Enroll by Validating Out of Band
(a.k.a. Round-Trip Authentication)

Abstract

When enrolling users for a Web site or service, sometimes it is necessary to validate identity
using an out-of-band channel, such as postal mail, telephone, or even face-to-face authentication.
The out-of-band channel can be used to establish a shared secret, which can then be used to
establish identity during enrollment.

Problem

Web sites are accessible to a vast audience of potential users. While some sites will simply offer
data for anonymous retrieval, many will find greater value in establishing relationships with
regular users. Some Web sites are even designed primarily to service an existing customer base,
offering a convenient interface that supplements more traditional customer service.

Enrollment is the problem of establishing long-lived user accounts. The primary purpose of this
(and other) enrollment patterns is to establish authentication credentials (usually a password) so
that the Web site can reliably authenticate the user on return visits. Once the authentication
credentials are established, the site will be able to maintain sensitive user data and offer services
that require the approval of the customer.

Sites that offer transactions of high value must be very careful to validate a user’s identity at
enrollment. These sites cannot depend on authentication over the network because there are too
many ways in which an attacker might be able to impersonate some other person. Furthermore,
there is currently no accepted universal authentication model.

Solution

Out-of-band validation falls back on conventional methods of authenticating a user’s identity.
Under this pattern, enrollment is a two-step process. First, the user initiates the enrollment
process via the Web site. Any necessary data is provided via a Web form. This ensures that the
user will be able to enter the data directly, reducing costs and improving accuracy.

Once the data is collected, the account is created and marked as enrollment pending. During this
time, the user may be able to access some low-value services on the site. But any high-value
transactions will be disallowed until the enrollment is completed. Typically, this will mean read-
only access to the customer’s data. But if the data is sensitive it may preclude any access to
account-specific data.

Enrollment is completed using an out-of-band process. There are many different ways in which
this can take place. Some examples are:

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 121 -

The user may be asked to present him- or herself at a local office (e.g. a bank branch) in order to
validate his/her identity and receive an initial password. The user must then login and change
the password in order to complete enrollment.

The system may mail out an initial password to the user’s address on record. This is not an
address that the user enters at enrollment, but an existing address that the system already
associates with the user’s claimed identity. The user must then login and change the password in
order to complete enrollment.

The user may be asked to telephone a customer service representative and be able to authenticate
him- or herself using some pre-existing shared secrets (e.g. a PIN or social security number and
mother’s maiden name).

If enrollment is not completed in a relatively short time period (2-3 days plus time for mail
delivery when required) the account should be disabled or locked out (see Account Lockout).

One slight variation to this pattern eliminates the initial data collection step. Instead of waiting
for users to enroll, some systems actually enroll their users a priori and then mail an initial
password to each new user. This is common in systems where an existing user base is to be
migrated from conventional (e.g. telephone) customer service systems to a new Web-based
system.

New User

Out-of-Band Channel

Server

Password

Database

Issues

The weakest link in many enrollment systems is the human customer service representative.
First-line customer service representatives should follow scripted instructions when
authenticating users. They should have little or no discretion in interpreting user input. They
should be terse and businesslike. Many attackers have persuaded customer service
representatives to divulge information or accept incorrect responses.

The most secure out-of-band communication is initiated by the system requesting enrollment, not
the user. If the user initiates contact, the details of the event should be recorded. Face-to-face
authentication can be videotaped. Caller ID can be used to record telephone numbers. Even the
network address associated with the original request should be recorded as part of the enrollment
record.

When the system initiates out-of-band contact, it should always be directed to an address that is
already on record or received from a reputable third party. If the contact uses an address that is

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 122 -

provided as part of the enrollment, that represents a validation of the address, not the user’s
identity. See E-mail Validation for a discussion of that approach.

Enrollment requests should be carefully monitored. In particular, administrators should look for
patterns that might indicate potential misuse. If a number of enrollment requests originate from
the same address or contain largely similar data, they should be flagged for manual review before
enrollment can be completed.

Web Banking Systems

This pattern is particularly applicable to banking systems, and should be considered standard
practice in the banking industry. In particular, best practice is to require users to “opt in” for
Internet access. No account should be made Internet accessible without explicit approval of the
user. An out-of-band enrollment solution would have the user contact their bank and (a)
explicitly authorize Internet access and (b) retrieve or choose an initial password.

Most banks already share secrets with their users, however those secrets are often 4-digit PINS,
which cannot be safely exposed to the Internet. It is simply too easy to exhaustively search the
10,000 possible combinations using automated attack scripts. However, PINs are perfectly
acceptable for automated telephone-based systems. A telephone based system can use a PIN to
authenticate a user and then either provide an Internet password directly, or cause a password to
be mailed to the user’s address of record.

Variation: Out of Band Notification

A variation to this pattern uses an out-of-band notification rather than out-of-band password
delivery. Under this approach, a customer that wishes to sign up for Web-based account service
will be asked to provide weak authentication data (e.g. an existing account number) and will be
allowed immediate system access.

At this point, a postcard or letter is mailed to the address of record for that customer. The
purpose of this mailing is to alert the user to the fact that an account was registered in his/her
name. If the user did not initiate this enrollment he/she is instructed to contact customer service
(at which time the account would be disabled). This approach allows the site to be immediately
available, but also ensures that misuse will be detected. It also provides legitimate users with a
strong sense of security.

This approach is appropriate for relatively low-risk activities. A banking system should not use
it. But it would be appropriate for on-line interfaces to conventional billing systems (e.g. a cable
TV company). However, even the cable TV company should disallow requests to cancel service
from the Web site.

Variation: E-mail Validation

(Editor’s note: This may warrant an entire pattern to itself. It is a variant of out-of-band
validation, but it is applicable to a completely different problem. Most importantly, it is possibly
the most popular enrollment mechanism on the Internet.)

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 123 -

Many Web systems use e-mail to perform out of band validation of an e-mail address. When a
user enrolls, he/she is asked to provide an e-mail address. Before the system will establish the
account, the user is e-mailed a secret (typically a URL that contains a lengthy unique address or
parameter). The user must enter that secret to complete the enrollment process.

E-mail validation does not authenticate the user’s identity. It merely ensures that the e-mail
provided to the system is one that can be received by the user. There are a number of uses for
this approach:

• Many sites wish to be able to contact users. The e-mail customer list is a valuable asset, and
the first step in developing long-lived customer relationships.

• Verisign class 1 certificates, which are used to encrypt e-mail, guarantee only that the holder
of the certificate is able to receive e-mail at the address in the certificate. E-mail validation
proves that the enrolling user can receive e-mail at that address.

• Many sites offer mailing list services. Before they will add a user’s address to the mailing
list, as a courtesy they check that the user owning the e-mail address really wanted to be
subscribed to the list. This protects the mailing list server from misuse, in which an attacker
signs up other accounts to receive mail it does not want.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Eavesdropping – attackers will try to capture information on the out-of-band channel. This
may thwart many attackers because it can be very difficult to eaves drop on certain out of
band channels.

• Social engineering – since this policy may require human interaction it may be the subject of
social engineering attacks. The attacker may try to impersonate the user or manipulate
personnel at an organization.

• Race condition – attackers may either have the secret or be attempting to enroll with the
captured secret before the user has a chance to.

Examples

There are many examples of this pattern in practice:

• Certificate authorities. Verisign requires that applicants for Class 2 and 3 certificates present
themselves in person. Requests for corporate certificates require that an officer of the
company present documents validating the claimed corporate affiliation.

• Local system administrators. University campuses and corporations that offer intranet
services often require users to present themselves in person.

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 124 -

• Web banking. As noted above, most banks require a telephone communication before they
will allow any account access via an Internet portal. They also typically use out of band
notification to the address of record.

• Utilities. Many utilities have developed on-line bill payment systems. They typically use
out-of-band notification to alert users when Web access to their accounts have been enabled.

• The Internal Revenue Service. In past years, the IRS made mass-mailings of e-file PINs to
taxpayers that have not previously filed electronically.

• Lost passwords. Many sites use out-of-band delivery mechanisms to respond to lost
password requests. Once a user has provided a mailing address, mailing a new password to
that address is a safe way to ensure that the same user receives the new password.

Trade-Offs

Accountability
This pattern provides a great deal of accountability by ensuring with a
high degree of confidence that actual individuals can be associated
with on-line identities.

Availability
This pattern negatively impacts availability to new users. Until the
enrollment information is received on the out-of-band channel, the
system cannot be fully utilized.

Confidentiality
This pattern helps ensure that attackers will not be able to enroll for
Web access to existing customer accounts.

Integrity
This pattern helps ensure that attackers will not be able to enroll for
Web access to existing customer accounts.

Manageability
This pattern complicates manageability because the out-of-band
channel must be incorporated into the management of the system.

Usability
This pattern lessens usability because users cannot enroll prior to
receiving their information.

Performance N/A

Cost

This pattern increases cost because an out-of-band channel must be
used to communicate enrollment information; this out-of-band channel
can have costs associated with its usage (e.g., postage) or with its
procedural implementation (e.g., customer service staff).

Enroll by Validating Out of Band Security Patterns Repository v1.0

- 125 -

Related Patterns

• Enroll using Third-party Validation – an alternative pattern describing another enrollment
procedure.

• Enroll with a Pre-Existing Shared Secret – an alternative pattern describing another
enrollment procedure.

• Enroll without Validating – an alternative pattern describing another enrollment procedure.

• Password Authentication – a related pattern that relies on an enrollment pattern for
establishment of a user password.

References

None.

Enroll using Third-Party Validation Security Patterns Repository v1.0

- 126 -

Enroll using Third-Party Validation

Abstract

When enrolling users for a Web site or service, it is always easier to allow some other party to
take on the difficult task of authenticating user identity. When a third-party service is available
and sufficiently reliable, the Web application can offload this task on the third party. This
approach is becoming more common as third-party services become available. The most
common form of transaction authentication—credit card authentication—is a form of third-party
validation.

Problem

Web sites are accessible to a vast audience of potential users. While some sites will simply offer
data for anonymous retrieval, many will find greater value in establishing relationships with
regular users. Some Web sites are even designed primarily to service an existing customer base,
offering a convenient interface that supplements more traditional customer service.

Enrollment is the problem of establishing long-lived user accounts. The primary purpose of this
(and other) enrollment patterns is to establish authentication credentials (usually a password) so
that the Web site can reliably authenticate the user on return visits. Once the authentication
credentials are established, the site will be able to maintain sensitive user data and offer services
that require the approval of the customer.

For some Web sites, it may be practical to outsource the problem of validating the identities of
end users, or other critical data provided by those users.

Solution

Third-party validation off-loads the burden of establishing identity to a third party. When a user
wishes to enroll with the site, they are directed to the third party service. Once they have
enrolled with that service, they can authenticate themselves to the site. If the site wishes to
perform additional enrollment tasks, those can be performed the first time the user authenticates
himself/herself to the site.

There are many different mechanisms for performing third-party validation. Some significant
approaches are:

• The site offers a login screen that submits login requests directly to the third party. On
successful login, the third party returns a ticket to the client. The ticket is encoded with
secrets shared between the site and the third-party service. The site validates the ticket and
allows the user access without having to communicate with the third party. However, if the
client has never enrolled with the site, the site may have to request additional identity
information from the third party.

• The site collects authentication information directly from the user and submits it to the third

Enroll using Third-Party Validation Security Patterns Repository v1.0

- 127 -

party for validation. On successful login, the third party provides the client with any needed
enrollment information.

• The third party provides the client with signed credentials. The client presents these
credentials to the site and the site can validate them against the public key of the third party.
The site should check the credentials against a list of revoked credentials, distributed
periodically by the third party. If the client has never enrolled with the site, the site may have
to request additional identity information from the third party.

Note that this pattern has many applications beyond enrollment. It can be used to authenticate
one-time transactions as well. This allows an anonymous site to offer services to the general
public without the overhead of maintaining accounts for every user who has ever used the site.

New User

Credentials

Server

Global Account
Data

Local Account
Data

Third Party

Issues

When implementing third-party validation, it is crucial that you follow the instructions and
guidance provided by the third party. The third part will have experience in the use of their
service and will have learned many of the more subtle problems through experience. Don’t
relearn the lessons they already know. More significantly, failure to adhere to the third party’s
processes may absolve the third party of any liability should a failure occur.

Before depending on a third party, you must understand the liability they assume, if any. Credit
card companies generally absolve the site of risk if certain basic, well-documented procedures
are followed. Certificate Authorities on the other hand generally disclaim any sort of
responsibility for any damages caused by mistakes on their part. Because the case law regarding
certificate authentication is virtually non-existent, relying on a third-party digital ID is very
risky.

Consider how trustworthy the third party is, how easily are they subverted? Historically, have
there been incidents reported that indicate flawed procedures? Trust in the identity of the client
is only as strong as the trust in the third-party authentication.

Ideally, the third party should do the actual validation of authentication information. This
prevents an application from needing to be the middleman, lessening the chance of a mistake or
bug.

Enroll using Third-Party Validation Security Patterns Repository v1.0

- 128 -

Issues affecting the third-party system will also affect your system. For instance if the third-party
system is unavailable your system may also be unavailable.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Vulnerabilities in the third-party system will also affect yours.

• If the third party requires on-line validation, denial-of-service attacks launched at the third
party will effectively deny service to all sites depending on that service for access decisions.

Examples

There are many examples of this pattern in practice:

• Microsoft Passport/Sun Liberty: Microsoft has popularized the idea of third-party validation
through their passport service. Initially, only Microsoft sites such as hotmail and msn use
passport – they offer no other authentication options. Other sites, such as e-Bay have made
passport authentication an option. We know of no non-Microsoft site that depends
exclusively on passport for authentication. The Liberty Alliance, led by Sun, will eventually
offer a similar service.

• Credit Card Validation: Many Web sites allows users to browse or shop without enrollment
or authentication; however, when the user attempts to purchase an item, the Web site will
require that the user provide a credit card number, a name, and a billing address. Before the
transaction is processed, these items are submitted to an electronic validation service. The
service provides a response that indicates the degree of validation. The site can decide what
level of validation is acceptable, depending on the risk associated with the transaction.

• Bank Account Validation: Any site that offers electronic funds transfers must follow
NACHA’s regulations governing the use of the Automated Clearinghouse Network [1].
Before initiating any electronic funds transfers, the site must issue a prenote, which validates
the name and address provided by the user against the account number. The Automated
Clearinghouse Network acts as a proxy – each bank receives and responds to queries
associated with its accounts. Because the prenote process can take several days, the
enrollment must be divided into two steps, as with Out of Band Validation.

• Certificate Authorities: Certificate authorities such as Thawte and Verisign issue end user
certificates that identify a user by name to an SSL-protected server. The Thawte certificates
depend on a Web of trust, where individuals authenticate other individuals that have already
been authenticated to Thawte. Verisign class 2 and 3 certificates use face-to-face
authentication to ensure that the certificate accurately identifies the user. Note that Verisign
class 1 certificates contain the claimed name of the user, but the certificate only vouches for
the e-mail address, not the name.

• National ID services: At present, there are no public key infrastructures that can reliably

Enroll using Third-Party Validation Security Patterns Repository v1.0

- 129 -

authenticate the general public. The US Post Office has long talked about creating a public
key infrastructure, but proposed designs have never been implemented. At present, only
certain government and military user bases have access to PKI services. If a site caters to
those communities, it may be able to take advantage of one of those services.

Trade-Offs

Accountability
The effect this pattern has on accountability depends on whether the
third-party mechanism is stronger than the alternative.

Availability
This pattern can reduce the availability of the system if the third party
suffers from availability problems and the mechanism requires on-line
access.

Confidentiality
The effect this pattern has on confidentiality depends on whether the
third-party mechanism is stronger than the alternative.

Integrity
The effect this pattern has on integrity depends on whether the third-
party mechanism is stronger than the alternative.

Manageability
This pattern could either enhance or reduce manageability, depending
on the interface with the third party.

Usability
This pattern often increases usability because the third-party validation
is often implemented such that users do not have enter authentication
credentials multiple times.

Performance
This pattern can impact the performance of the system if the third
party is slow to respond to validation requests.

Cost

This pattern could reduce costs because enrollment and authentication
procedures do not have to be implemented in house. However, the
costs of certificates are not insubstantial. If the site depends on a third
party, the possibility exists that the third party may charge (additional)
fees for the service without warning.

Related Patterns

• Enroll by Validating Out of Band – an alternative pattern describing another enrollment
procedure.

• Enroll with a Pre-Existing Shared Secret – an alternative pattern describing another
enrollment procedure.

• Enroll without Validating – an alternative pattern describing another enrollment procedure.

Enroll using Third-Party Validation Security Patterns Repository v1.0

- 130 -

• Password Authentication – a related pattern that relies on an enrollment pattern for
establishment of a user password.

References

[1] NACHA Internet Council. Understanding Internet-Initiated ACH Debits.
http://internetcouncil.nacha.org, 2002.

Enroll with a Pre-Existing Shared Secret Security Patterns Repository v1.0

- 131 -

Enroll with a Pre-Existing Shared Secret

Abstract

When enrolling users for a Web site or service, sometimes it is sufficient to validate identity
using a pre-existing shared secret, such as a social security number or birthday. The use of a pre-
existing shared secret enables enrollment without prior communication specific to setting up an
account.

Problem

Web sites are accessible to a vast audience of potential users. While some sites will simply offer
data for anonymous retrieval, many will find greater value in establishing relationships with
regular users. Some Web sites are even designed primarily to service an existing customer base,
offering a convenient interface that supplements more traditional customer service.

Enrollment is the problem of establishing long-lived user accounts. The primary purpose of this
(and other) enrollment patterns is to establish authentication credentials (usually a password) so
that the Web site can reliably authenticate the user on return visits. Once the authentication
credentials are established, the site will be able to maintain sensitive user data and offer services
that require the approval of the customer.

Some Web sites are developed to serve an existing community. The Web site administrators
know personalized information about the prospective user base. In addition, the site may not be
able to justify incurring the costs associated with out-of-band authentication of each individual
user.

Solution

Enrollment Using a Shared Secret takes advantage of pre-existing knowledge of eligible users.
The site database is pre-loaded with enrollment information specific to each user. The
enrollment form requests that users provide that data. The user base is then informed of the site
via some form of broadcast medium. Users who enroll at the site are required to provide
personal information that the site can validated, but that most other people would not know.

For example, a university course registration system can use student names, social security
numbers, and birthdays to enroll new users. The University can publish instructions for all
students that don’t have to be individually tailored to the student. On enrolling, the system can
validate the student’s identity using these pieces of data, already known to the university.

After users successfully authenticate themselves using the pre-arranged shared secret, they will
be redirected to an initial password selection screen. At this point, the user will be prompted to
supply two identical copies of their chosen password, in order to complete the enrollment
process. Once enrollment is complete, the account it marked as enrolled.

Enroll with a Pre-Existing Shared Secret Security Patterns Repository v1.0

- 132 -

After a relatively small number of incorrect guesses, the account should be locked and require
manual (out-of-band) authentication. This provides protection against social engineering attacks,
but still ensures that only a fraction of the users will incur the costs of out-of-band
authentication.

If an attacker successfully enrolls a user account, the legitimate user will not be able to enroll
later. This places the burden of discovery on the shoulders of the user, who presumably has an
interest in protecting his/her account. Alternatively, if an attempt is made to enroll an already
enrolled account, the system administrator could be alerted and the account locked.

New User Server

Password

Database

Shared Secret

Issues

This pattern relies heavily on the fact that most users will want to enroll. Even a weak shared
secret can be appropriate, if all users will attempt to enroll in short order. If a secret is guessed,
the user whose account was enrolled will be unable to enroll again, and will bring this to the
attention of the system administrators. But if large numbers of users never bother to enroll, their
potential accounts will be vulnerable to an imposter who is able to figure out the shared secrets.

Make sure to educate users about how to validate that the server they are speaking to really is the
correct server and not an impostor. If the value of the data warrants encryption in transit, the
enrollment forms should be similarly protected. Consider sending out https based URLs (and
call attention to the ‘s’).

This approach can be combined with out-of-band authentication. For example, a secret
personalized URL can be e-mailed to users. The users are then instructed to validate their
account using a user-specific shared secret.

Some systems actually use the shared secret as an initial password. This allows the login screen
to double as an enrollment screen. If this approach is used, the password must be flagged as
expired, forcing the user to change the password before other access is possible. This is critical
to the pattern because it ensures that an attacker cannot compromise the account without causing
changes that would alert the legitimate user when he/she attempts to first login.

Lock out enrollment of a user account after a relatively small number of failed attempts. Instead
of directing the user to customer service, it is more secure (and possibly less expensive) to have
customer service contact the user through their known address.

Enroll with a Pre-Existing Shared Secret Security Patterns Repository v1.0

- 133 -

Selecting Secrets

Carefully consider the strength of the pre-existing shared secret. Many pre-existing secrets are
not completely secure, because the information can be discovered using other means. For
example, when the secret is a birthday or social security number, an attacker might be able to use
open sources to collect this information. Instead of using a single piece of information consider
using multiple pieces and validating them all to authenticate the user.

Shared secrets may have to be more tolerant of errors than passwords. Words that are prone to
alternative spelling, capitalization, etc. can cause problems.

Be extremely specific when describing the shared secret. Instructions that seem obvious to you
(“the amount of your third estimated tax payment from last year”) can be very confusing to users
(“original or amended?”, “calendar year or fiscal year?”)

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Social engineering – many corporations outsource employee benefits servicing to managed
Web sites, providing those sites with a database of employee data from which to derive
shared secrets (e.g. “hire date”). If an attacker determines what sort of information is used,
they could easily gather the information using social engineering techniques. Users may be
less hesitant to divulge their hire date than they would a password.

• Eavesdropping – attackers will try to discover the shared secret by eaves dropping on
connections.

• Man-in-the-middle attack – if an attacker can trick a user or redirect their browser to an
alternative site, they can challenge legitimate users for the shared secrets. They can then use
those shared secrets to authenticate themselves as the user. Alternatively, they may simple
forward the enrollment request and observe the password selected by the user.

• Brute-force account and shared secret guessing – attackers develop automated guessing tools
that will try many different common shared secrets and accounts.

Examples

There are many examples of this pattern in practice:

• Internal Revenue Service: The IRS is charged with increasing the number of taxpayers using
electronic interfaces to existing tax services. They have developed a variety of systems that
provide service for both businesses and individual taxpayers. Most of these systems use pre-
arranged shared secrets. For example, when initially enrolling for electronic submission of
tax forms, individuals are asked to supply detailed information from past years’ tax returns.

• University Course Student Information Systems: Many universities use this type of system.

Enroll with a Pre-Existing Shared Secret Security Patterns Repository v1.0

- 134 -

For example, when a student first logs on to the Integrated Student Information System at the
University of Virginia, the student’s user name is his/her social security number and the
password is his/her birthday.

• www.benefitaccess.com: This site is used to administer benefits for employees, it allows
employees to enroll by using a pre-existing shared secret. Each employer selects the
appropriate shared secrets.

Trade-Offs

Accountability

This pattern offers limited accountability, depending on the strength of
the shared secrets. When social security numbers or birthdays are
used, the result is not a particularly insecure enrollment process. As a
result, users can disclaim actions performed on their account.

Availability
This pattern helps make full functionality of the Web site available to
users immediately (see Usability).

Confidentiality
This pattern can effect the confidentiality of the Web-site if the pre-
existing shared secret is chosen poorly; allowing illegitimate users to
login to the site.

Integrity Same as confidentiality

Manageability

This pattern can simplify management because it eliminates manual
authentication of users. However, if the instructions are unclear or the
secret too impractical, it could create a significant management
burden.

Usability

This approach to enrollment has positive impact on usability because it
allows users to immediately access the Web site without waiting for
out-of-band authentication. However, if the shared secret is too obtuse
(e.g., the processing number from your last tax return) it can be a
hassle for users to discover.

Performance N/A

Cost
This pattern is significantly cheaper than out-of-band authentication,
because most user accounts will be enrolled without requiring manual
intervention.

Related Patterns

• Enroll by Validating Out of Band – an alternative pattern describing another enrollment
procedure.

Enroll with a Pre-Existing Shared Secret Security Patterns Repository v1.0

- 135 -

• Enroll using Third-party Validation – an alternative pattern describing another enrollment
procedure.

• Enroll without Validating – an alternative pattern describing another enrollment procedure.

• Password Authentication – a related pattern that relies on an enrollment pattern for
establishment of a user password.

References

None.

Enroll without Validating Security Patterns Repository v1.0

- 136 -

Enroll without Validating
(a.k.a. Bootstrap Trust, Grow Credibility)

Abstract

When enrolling users for a Web site or service, sometimes it is not necessary to validate the
identity of the enrolling user. When there is no initial value involved in the Web site or service
for which enrollment is occurring, validation is an unnecessary procedure and can be eliminated.

Problem

Web sites are accessible to a vast audience of potential users. While some sites will simply offer
data for anonymous retrieval, many will find greater value in establishing relationships with
regular users. Some Web sites are even designed primarily to service an existing customer base,
offering a convenient interface that supplements more traditional customer service.

Enrollment is the problem of establishing long-lived user accounts. The primary purpose of this
(and other) enrollment patterns is to establish authentication credentials (usually a password) so
that the Web site can reliably authenticate the user on return visits. Once the authentication
credentials are established, the site will be able to maintain sensitive user data and offer services
that require the approval of the customer.

There are some Web sites and services in which there is no need to associate accounts with
actual individuals. It is only necessary to ensure that on subsequent visits, the account is only
accessible to the user who created the account. In these cases, the account has no value prior to
enrollment – any value is created over time by the user.

For example, there are a number of sites that offer free Web-based e-mail accounts. These sites
have no need to initially validate a user’s identity. Once the account is in use, however, the site
must protect it from others who may wish to eavesdrop on or impersonate the original account
holder.

Solution

In situations where there are no initial items of value to protect and no need to associate accounts
with specific individuals, the system can allow users to enroll without validating their identities.
When a user wishes to create an account, the site allows the user to select a username. The site
then creates initial authentication credentials. For password-based authentication, the user
typically supplies both their chosen username and initial password on the same form. These
credentials now represent a shared secret that can be used to authenticate the user on subsequent
visits.

At the time of enrollment, the site should prompt the user to supply other identifying information
(shared secrets) that can be used to later re-authenticate the user in the event that the credentials

Enroll without Validating Security Patterns Repository v1.0

- 137 -

are lost. This is necessary because the site cannot rely on traditional user validation – it doesn't
reliably know the identity of the user.

If the site uses encryption to protect password submissions, it should also use encryption to
protect the initial password submission screen. The question of when encryption is warranted is
addressed in Password Authentication.

The password enrollment screen should contain the user’s chosen account name and two copies
of the initial password. On the server, the username should be checked and the enrollment
rejected if the name is already in use. The two passwords should be checked and accepted only
if they are identical.

When authentication technologies other than passwords are used, the situation is only slightly
different. Either the client or the server generates the keys that will be used by the client. The
client stores the keys and the server stores whatever data is needed to authenticate the keys.

New User
Server

Password Database

Issues

Anonymous Users

This pattern allows anonymous users to enroll with a site and be authenticated again later. Since
users are anonymous there is often little value in a new account, instead value grows over time.
For instance a new e-mail account is worth less to a user than an e-mail account that has been
established for some length of time. Since accounts are anonymous it is possible for a single user
to register many accounts with out being able to verify that the users are unique. This means that
one user could be responsible for a large number of accounts.

There may be legal ramifications if you provide anonymous users with e-mail, open forums, file
storage, or other services. Users may slander, defile, issue death threats, conspire to break the
law, traffic in child pornography, or use a server to distribute stolen intellectual property.
Research the relevant case law before providing the unwashed masses of the Internet any
anonymous services.

Consider tracking logins/logouts and source IP address of the user if it may later be needed. But
be careful about how much information you collect from the user. Anything you collect can be
something you are later subpoenaed for. Log only that which you need to protect yourself from
litigation.

Enroll without Validating Security Patterns Repository v1.0

- 138 -

Although the user may be asked to provide other identifying information (name, address, phone,
etc.) it is important to realize that these entries are not being validated and are really no more
than a convenience. The site should be careful not to give other users any indications that these
values have been authenticated. For example, e-bay refers to its users only by their account
names, not their given names. The latter were provided by the users and never authenticated.
However, see Client Input Filters for information about sanity checking the data provided.

Account Management

Be wary of the possibility of some sort of automated enrollment attack. If patterns of enrollments
(or even multiple enrollments from a single IP appear), it may be necessary to alert the system
administrators or rely on a Network Address Blacklist.

If accounts have no value to anyone other than the user, it is natural for many accounts to be
created and then lie dormant. In order to constrain usage, the system should include a policy on
how long accounts will be allowed to remain dormant before they are expired and their resources
reclaimed. However even after an account expires, it may be unwise to allow new users to
choose an account name that was recently in service.

It is generally necessary to make extra provisions against the loss of a password. When the
password is initially submitted, it should be submitted in duplicate. Current best practice is to
present users with a series of questions and collect personalized answers. In the event that the
password is lost, these questions should help customer service manually re-authenticate the user
and reset the account password. See Password Authentication.

This pattern is often combined with round-trip validation using e-mail. E-mail is a good way to
build relations with customers, and it is simply good form to ensure that an address actually
belongs to the user in question before deluging it with commercial messages. Do not fall into the
trap of thinking that a unique e-mail address identifies a unique individual. There are many ways
that a single user can create an arbitrarily large number of unique e-mail addresses.

Possible Attacks

There are a number of possible attacks that could be perpetrated against this pattern:

• Resource consumption attacks – an attacker may create many accounts and consume an
extreme amount of resources

• Abuse of services – since there is virtually no way to verify the identity of the user, there is
no accountability associated with the user so abuse of services is more likely.

• Site spoofing (man-in-the-middle) – a malicious site can use references and redirections to
copy present all the content from a legitimate site. To the unwary user, the site would be
virtually indistinguishable from the original. To the original site, the malicious site would
appear to be a normal user. But the malicious site can ensure that critical user interactions
(such as picking a password) go through its servers where they can be monitored, recorded,
or tampered with.

Enroll without Validating Security Patterns Repository v1.0

- 139 -

Examples

There are many examples of this pattern in practice:

• Yahoo mail, Hotmail, IRC, etc.: Free Web services, such as e-mail and chat rooms, do not
require validation during enrollment because there is nothing of value involved initially. For
example, when signing up for an free e-mail account with Hotmail, a new user creates a user
name and password during enrollment, but the user name (the identity of the new user) does
not need to be validated because the new user name has no value. The user enrolling that user
name will build value through the usage of the account.

• Usenet, Open Source Community, etc.: Certain communities of users do not require
validation of identity during enrollment because new users will build an identity through
interaction over time. For example, users posting to Usenet groups build a reputation through
repeated postings; initially, no validation of identity is performed on the user name or PGP
key attached to Usenet postings, but the community as a whole associates an identity with a
particular user name or PGP key over time.

Trade-Offs

Accountability

This pattern sacrifices accountability for reduced cost because a user is
allowed to enroll with any identity he or she chooses. Depending upon
the type of services depends upon the accountability that the user will
have. For instance, sites like Ebay where users build a reputation
require that the user have some accountability, where as a site that
offers little value requires little more accountability.

Availability
This pattern could compromise availability because if a Web site or
service allows users to enroll without any validation, a denial-of-
service attack could be performed against the enrollment mechanism.

Confidentiality
This pattern should not affect confidentiality because it should only be
applied in circumstances where there is no data to protect, or where the
effected data is only valuable to the user.

Integrity
This pattern should not affect integrity because it should only be
applied in circumstances where there is no data to protect, or where the
effected data is only valuable to the user.

Manageability
This pattern should facilitate manageability because no enrollment
mechanism must be designed and maintained.

Usability
This pattern should enhance usability because no extraneous
registration steps are imposed on the user.

Enroll without Validating Security Patterns Repository v1.0

- 140 -

Performance
This pattern should improve performance because no enrollment
procedures are implemented.

Cost

This pattern could reduce cost because no enrollment steps are
implemented. If the users require customer support the cost could be
high because users have no reason to be strict about remembering their
authentication information. In addition, the costs of maintaining an
unbounded number of accounts could get very high.

Related Patterns

• Client Input Filters – a related pattern for validating client data, which is especially important
when enrolling users without validating authentication credentials.

• Enroll by Validating Out of Band – an alternative pattern describing another enrollment
procedure.

• Enroll using Third-party Validation – an alternative pattern describing another enrollment
procedure.

• Enroll with a Pre-Existing Shared Secret – an alternative pattern describing another
enrollment procedure.

• Password Authentication – a related pattern that relies on an enrollment pattern for
establishment of a user password.

• Network Address Blacklist – a related pattern describing a protection mechanism to be used
in cases of particular client misbehavior.

References

None.

Log for Audit Security Patterns Repository v1.0

- 141 -

Log for Audit
(a.k.a. Audit the Logs, Unified Logging)

Abstract

Applications and components offer a variety of capabilities to log events that are of interest to
administrators and other users. If used properly, these logs can help ensure user accountability
and provide warning of possible security violations. The Log for Audit pattern ties logging to
auditing, to ensure that logging is configured with audit in mind and that auditing is understood
to be integral to effective logging.

Problem

As events occur during the life cycle of a system, some events are of particular interest to
administrators and other users. Recording specific information about events that have occurred
creates records that allow the system to be debugged, monitored for security events, and
measured for performance. The term logging means the actual act of writing information about
events to some type of permanent storage. The term auditing means actually examining this
information and ensuring that all is as expected.

There are a number of important problems that logging and auditing solve. They provide
evidence of accountability, reliability, performance, and security. Logs provide accountability
by enabling verification of an event’s occurrence and any users associated with that event.
Reliability comes from the logging of errors. Performance analysis can occur when performance
data is logged. There are many relevant types of event that must be logged to address security.

However, all of these benefits are only achieved if the logs are audited and appropriate
information is logged to make the logs useful. If too much unnecessary information is logged,
effective auditing will be more difficult; if essential information is not logged, it will be
impossible.

Solution

Every major component is responsible for logging events that it considers noteworthy. Some of
these will be tagged as security-relevant events, others will not. Each system will typically
deliver these events in some non-standard format to permanent storage, using one or more
predefined log files.

Whenever possible, these log files should be collected centrally and handled consistently. When
applications allow the log format to be modified, these features should be used to make logs
more consistent. All logs should be directed to a single disk partition, so that disk space can be
managed and resource consumption attacks cannot be used to deny disk space to other critical
components. A log rotating program monitors disk usage to ensure that the log partition has
adequate space – periodically, old logs are moved to off-line storage in order to free disk space.

Log for Audit Security Patterns Repository v1.0

- 142 -

The most critical component of the Log for Audit pattern is the human that audits the logs. A
regular schedule should be established for examining the logs. The auditor’s concern is to
uncover any interesting or unusual events. The data that is collected cannot be so voluminous
that the auditor will not be able to spot the unusual events. Should the data become too large,
more frequent audits should be scheduled.

Responsibility for auditing the logs should be distributed to those parties in the best position to
recognize suspicious events, rather than having system administrators audit all logs by
themselves. For example, database administrators should examine database logs while Web
application administrators can examine application-specific logs.

If possible, log information should be propagated to a single location and stored in a unified log
record at the back end. If this is not possible, a unique identifier should be generated for each
request and that identifier should be a part of every log event. Unified log files will enable better
diagnosis of related events, such as a single intrusion that affects multiple applications.

Issues

One of the most important issues regarding logging and auditing is what and how much
information to log. Minimally, log data should include the time of the event, the source, and the
application or object that generated the event. The logs should contain enough information so
that someone reading the logs can locate the specific cause of the logged event in a timely
fashion.

Applications should be configured for different logging streams (security, debugging,
performance) so that administrators can configure where and how much of each type of log to
store.

Consider using the default or system supplied logging system. Administrators will have tools to
work with this system and will know where to look for the logs.

Plan how to react if logs fill before the log rotation interval. Do you stop the system or drop
older/less important logs? This involves a trade-off between availability and accountability.

The storage of logs must be done in a secure fashion: there must be high assurance that the logs
have not been modified. Consider controls against misuse. Admissibility as evidence requires
that you be able to demonstrate that the logs could not have been manufactured. Sending logs to
a separate system represents greater assurance that they cannot be tampered with. However the
channel to the logging server must be suitably restricted (e.g. a serial line or one way flow).

It is important to recognize that there are two distinct classes of remote event that might be
logged: those that can be associated with a specific user account, and those that can only be
associated with a network address. In the former case, an accountability relationship exists – you
known who the user is and presumably you have some business relationship with them. In the
latter case, the user is truly anonymous, and you may have no recourse, no matter how badly they
misbehave.

Log for Audit Security Patterns Repository v1.0

- 143 -

Understand the accountability relationship and log only what you need. Logging too many events
will cause administrators and users to scrutinize the logs less carefully. Understand that you can
be subpoenaed for anything you log. Speak to a lawyer about the rules of evidence for collecting
and handling logs.

Unified Logging

A Web site will contain numerous components, all of which generate their own log files. The
Web server, application server, application, firewall, and database all log data. It can be
extremely difficult to correlate these logs. Where multiple logs are unavoidable, make sure that
technical or procedural measures are in place to ensure that clocks do not drift significantly. If
systems in different parts of the country will need to be correlated, set their clocks to a single
unified time.

Though passing through log information to a single log makes auditing easier and more
effective, it may significantly impact performance. If simple errant requests place a load on the
back end, a denial-of-service attack is much easier to effect. Firewalls will also have logs that
need to be correlated. However, the firewall generally is not permitted to alter or amend the
incoming requests.

Possible Attacks

The logging system itself can be the target of misuse by an attacker that is trying to prevent
detection. If logs are not protected from tampering, an attacker might attempt to modify the logs
after the fact to cover his/her tracks. If tampering is not possible, an attacker might generate a
large number of events around the time of an attack to obfuscate important indications of the
actual attack. Similarly, an attacker might perpetrate a resource consumption attack by filling the
log storage system with meaningless events so that more important events do not get logged
later. Finally, a patient adversary might create a pattern of false alarms in order to condition the
auditors to ignore a subsequent attack.

Examples

At the system level, UNIX offers a variety of standard log files, all of which are directed to the
/var partition. The UNIX cron program is predefined to perform daily and weekly housekeeping
tasks, including the rotation of log files. Old logs are compressed in order to save space and
renamed with a unique suffix. UNIX also offers a syslog facility, which allows individual
programs to generate events that will be inserted into the UNIX system log file. The syslog
feature can also be redirected to another machine on the network, allowing a single centralized
log file to be created using system log events from a number of different machines.

At the network level, Micromuse produces a unified logging system called NetCool. NetCool
offers a number of different “probes” that can be used to collect data from a variety of sources,
including conventional text log files, UNIX syslog streams, PIX firewall events, and Oracle table
insertions. Micromuse’s list of case studies all represent examples of this pattern.

Log for Audit Security Patterns Repository v1.0

- 144 -

Trade-Offs

Accountability
Suitable logging and auditing can have a very positive effect on
accountability. Poor controls can weaken accountability.

Availability
If full logs cause a denial of service, this can have a negative impact
on availability.

Confidentiality None.

Integrity
Suitable logging can help recover from failures and prevent system
misuse.

Manageability
Controls on logs can hamper system administrators’ freedom to
operate.

Usability
Excessively detailed logging can impact performance adversely, but
normal-case logging generally is negligible.

Performance No effect.

Cost

This pattern could affect costs either positively or negatively. Human
auditing of logs is very expensive, so if this pattern results in more
logging and auditing than was previously being done, then costs will
be significantly higher. The overall point of this pattern though is to
log only what will be audited, so the end result of this pattern should
be more cost-effective logging and auditing. The short-term costs of
auditing can be recouped by more effective use of logs in the long
term.

Related Patterns

• Document Security Goals – a related pattern that ensures the security goals are understood by
all parties during system development. Some of the security goals that must be documented
address the planned audit procedures and use of logs for accountability.

• Share Responsibility for Security – a related pattern that advocates distributing responsibility
for security amongst the entire project team; similarly, this pattern recommends distributing
auditing duties to those parties with a vested interest in that which is being protected, rather
than having just system administrators audit all logs.

References

[1] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

Patch Proactively Security Patterns Repository v1.0

- 145 -

Patch Proactively

Abstract

During the lifetime of a software system, bugs and vulnerabilities are discovered in third-party
software, and patches are provided to address those issues. Rather than waiting for the system to
be compromised before applying patches (“patching reactively”), administrators of software
systems should monitor for patches often and apply them proactively.

Problem

All software systems contain bugs and vulnerabilities. The longer a software system is deployed
and the more it is in use, the higher the probability that those bugs and vulnerabilities will be
discovered. Patches are released to fix the bugs and vulnerabilities, and these patches must be
applied in order to protect the system from exploits and compromises. During the window of
time between when a vulnerability is announced to the public and when its corresponding patch
is applied, the system is wide open to attack.

Unfortunately, many system administrators wait until a system is attacked and compromised
before checking the lists of known vulnerabilities and applying patches. Often times,
overburdened administrators choose to attend to daily tasks that arise, forcing them to patch
reactively: waiting until after their systems are attacked and compromised to find and apply the
appropriate patches.

The SANS (System Administration Network Society) Institute cites “failing to update systems
when security holes are found” as one of The Ten Worst Security Mistakes Information
Technology People Make [5]. Similarly, “failing to install security patches” is rated as one of
The Five Worst Security Mistakes End Users Make [5]. Clearly both problems relate to system
administrators maintaining Web systems and applications.

Solution

Administrators of software systems must minimize the window of time between announcement
of a vulnerability and application of its patch by patching proactively. That is, administrators
must monitor for vulnerability and patch announcements often and on a regular basis, patching
their systems before they are compromised by the latest vulnerabilities.

There are automated mechanisms for patch distribution and application that facilitate patching
proactively. These can be used when appropriate; however, many production Web sites require
significant testing whenever changes are made, and automated mechanisms must be integrated
with quality assurance procedures.

Patching proactively is a straightforward process:

• The Administrator monitors the Vulnerability Database(s) for announcements regarding the
System(s) of concern.

Patch Proactively Security Patterns Repository v1.0

- 146 -

• When a vulnerability is discovered and a software Patch provided, the Administrator obtains
the Patch from the appropriate vendor Patch Database.

• The Administrator tests the Patch on a Staging Server to ensure that the Patch performs
correctly with the existing configuration on the System to Be Patched.

• The Administrator backs up existing configuration and data files on the System to Be
Patched.

• The Administrator applies the Patch to the System to Be Patched.

Issues

The patch must come from a trusted source. It is important to download patches from vendor
Web sites rather than from any other random location on the Internet. It is conceivable that an
attacker could subvert the patch and provide a rogue patch instead, though this attack would
require a great deal of sophistication. (An example of this occurred with TCP wrappers, causing
many administrators to download and install a Trojan horse patch.) It is also conceivable that an
attacker could corrupt a patch. Whenever possible, one should obtain a checksum for the patch
and verify that it has not been tampered with. Unless digitally signed, the checksum could be
tampered with as well, so it is best to obtain the checksum from a different source than the patch
itself.

Patches might break existing functionality. It is important to be able to back out of a patch
installation in the case that the patch is incompatible with existing, required functionality. This
trade-off between running with or without the most current patch must be considered carefully,
however: while running without current patches is a short-term solution for incompatibility
problems, there is an increased chance of compromise when known vulnerabilities are not
addressed.

Some patches might overwrite or erase existing configuration data. For this reason, it is
important to backup essential data, including configuration data, before applying a patch.

Furthermore, it is important to keep a log of what patches are applied, when, and by whom. If
the server needs to be rebuilt, a log of its last known status is available. (See the Document the
Server Configuration pattern.)

Examples

There are a number of third-party mailing lists and Web sites that will advise of the latest
security vulnerabilities. Vulnerabilities are listed by product, their effects are explained, and
workarounds or vendor patches are offered. Some sites offer alerting services that send e-mail
notifications when vulnerabilities are discovered in specific products enrollees express interest
in. CERT (www.cert.org), Security Focus (www.securityfocus.com) and Bugtraq are three
primary resources.

Patch Proactively Security Patterns Repository v1.0

- 147 -

Many server platforms also have e-mail lists for security alerts, separate from other e-mail sent to
users.

Trade-Offs

Accountability
This pattern improves accountability indirectly because a proactively
patched system is less likely to be compromised and subverted.

Availability See Accountability.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability

This pattern complicates manageability because additional effort must
be expended to keep up with vulnerabilities and patches as they are
announced and released. Furthermore, there is no guarantee that some
patch will not break compatibility with other applications and features.
Subjecting each new patch to rigorous quality assurance is a very
labor-intensive activity.

Usability No effect.

Performance No effect.

Cost

This pattern increases the up-front cost of maintaining a system,
because resources must be devoted to monitoring vulnerability and
patch announcements for the systems being administered. However,
this up-front investment could cost less in the long term because the
patched system will be less vulnerable to attacks, which are inherently
expensive to detect and recover from. In addition, it makes costs more
predictable, because an ongoing program of testing and applying
patches is a steady cost, whereas recovery from an attack is a high cost
that can occur without warning.

Related Patterns

• Document the Server Configuration – a related pattern that advocates understanding and
documenting the system configuration; this would include the patches that are applied as a
result of this pattern.

References

[1] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

Patch Proactively Security Patterns Repository v1.0

- 148 -

[2] Anonymous. “Patches, We need those steeking patches to fix my steeking software”.
http://bofh.ucs.ualberta.ca/patches.html, unknown date.

[3] Microsoft Corporation. “Microsoft Strategic Technology Protection Program”.
www.microsoft.com/security/mstpp.asp, March 2002.

[4] Rosato, R. “Best Practices for Applying Service Packs, Hotfixes and Security Patches”.
http://www.microsoft.com/technet/security/bestprac/bpsp.asp, 2002.

[5] SANS Institute. “Mistakes People Make that Lead to Security Breaches”.
http://www.sans.org/mistakes.htm, October 2001.

[6] Scambray, J. “Ask Us About...Security, August 2000”.
http://www.microsoft.com/technet/columns/security/askus/au072400.asp, August 2000.

[7] Stein, L. Web Security: A Step-by-Step Reference Guide. Addison-Wesley, 1998.

Red Team the Design Security Patterns Repository v1.0

- 149 -

Red Team the Design
(a.k.a. Use a Red Team to Attack the Design,

Assess Security Throughout the Development Life Cycle)

Abstract

Red teams, which examine a system from the perspective of an attacker, are commonly used to
assess the security of a finished system. However, the earlier in development that a problem is
found, the easier it is to fix. The Red Team the Design pattern effects a security evaluation of the
application at the stage when it is most possible to fix any problems identified.

Problem

Current best practice demands that a system be “red teamed” before deployment. Typically, this
means that the completed system is subjected to intense scrutiny by security experts, either
internal to the organization or independent. However, leaving security validation to the end of
the development process can result in the discovery of significant issues at a point where they are
very expensive to resolve.

Solution

Instead of waiting until the system is completed, perform security red teaming of intermediate
work products. In addition to uncovering mistakes, the red teaming process ensures that security
issues will not be simply put off until late in the development process.

In a conventional waterfall approach to software development, this pattern translates to red
teaming the design before it is implemented. Problems uncovered could then be addressed at a
much lower cost than would be incurred if the same problems had been discovered after the
implementation had been completed. Conducting a security review of the design ensures that
designers do not ignore security at the design level.

In an iterative software development process, the security red teaming should take place against
the earliest prototype. If the prototype does not adequately address the security requirements,
those weaknesses can be addressed in the next iteration. Again, conducting security reviews of
the earliest prototypes ensures that security is not simply put off indefinitely.

Ideally, the review should be conducted by independent security experts who were not involved
with the development or design of the system. If this is not possible, the review team should at
least consist of knowledgeable developers who are not part of the design team.

Issues

There are methodologies available for red teaming a system. The IDART methodology from
Sandia National Labs provides a great deal of specific guidance on locating potential weak spots.
A less heavyweight process is the Attack Trees approach developed at NSA.

Red Team the Design Security Patterns Repository v1.0

- 150 -

Selecting a Red Team

Many people passing themselves off as security red teams have histories of criminal behavior.
While there is a certain cachet to hiring “real hackers” this practice should be avoided. These
individuals have demonstrated that they have questionable ethics and are not above behaving
criminally. They should not be trusted with complete details of the security elements of your
system. You can have no confidence that they will not turn around and sell those details to some
other interested party.

Red teaming should be performed by people who are not invested in the system design. As is the
case with code debugging and design inspections, the developer of a system will be blind to
certain problems that appear obvious to external reviewers. The developer approaches the system
with certain assumptions in mind—an effective red teamer will not have his/her thinking
constrained by those same assumptions.

The red team is often well positioned to suggest adjustments to the design to deal with identified
problems. However, be aware that this changes the role of the red team. They are no longer a
disinterested party, but are now invested in the new design. As a result, it may be necessary to
enlist additional eyes to look at the amended system. The need for strict independence is part of
the rationale for not introducing a red team until the system is complete. However, an argument
can be made that having the most security knowledgeable people contributing to the design is
more likely to result in a secure system than arbitrarily restricting their involvement until that
point where they can no longer contribute to the success, but only note the failures.

Areas of Investigation for Red Teams

If possible, skilled security practitioners should be employed for red teaming. If such individuals
(or budget for hiring them) are not available, the following hints will help non-security experts
uncover many potential problems.

The most important considerations are what specific targets must be protected, what the threats
to those targets are, and what the consequences of a successful attack are. For example, how
important is Web site defacement, disclosure of customer data, destruction of customer data, or
extended system downtime? What would be the consequences of numerous spurious orders or
special orders for products that can't be sold to anyone else? It is important to remember denial-
of-service and other resource consumption attacks. There are many net denizens who enjoy
crippling a site for no other reason than they are able to.

A primary source of errors is the automation of existing manual processes without understanding
the environmental differences that may make those processes vulnerable. Many Web sites
automate processes that were adequate when performed by humans, or conducted using paper
forms or even telephone access. Because of the speed, inherent parallelism, and anonymity of the
Internet, these processes may not be adequately secure.

It is common practice to provide the red team with full details of the implementation. This helps
ensure that they will be able to locate problems that may not be apparent from outside the
system. However, recognize that real attackers will not have this advantage. It is permissible to
have some residual risk, but every effort should be made to prevent attackers from knowing what

Red Team the Design Security Patterns Repository v1.0

- 151 -

those risks are. As an example, an attacker who is fully knowledgeable about the lockout
mechanism could misuse it to disable customer accounts. But attackers who aren’t aware of that
mechanism would not be able to tell that their subsequent requests were being ignored by the
system.

Understand environmental assets. Often people forget that other things affect how their system
will perform, for instance the system hardware, the network leading to the system, etc. These
things can also be subjected to attack. Consider what resources could affect the system. Consider
how an outage in any component of the system can be used by an attacker. Consider how an
attacker might be able to effect an outage in a specific component.

Break the system down level by level looking for potential points of attack. For instance consider
attacks at the network, server, system, database, page, object and form level.
Research common vulnerabilities of existing applications that are similar to the one being built.
Many application designers introduce similar bugs into their applications when designing similar
functionality; understanding these can help locate vulnerabilities in the current design. Similarly,
research the security problems of existing components and technologies that are used in the
system and consider how those problems may impact the overall system.

Remember that just as the goal of quality assurance is to find bugs and not to “prove the system
works,” the goal of red teaming is to find any security issues, not to prove that the system is
secure. No system is completely secure; success is defined as finding the remaining security
problems and assessing the remaining risks. Keeping this in mind can help make red teaming
more effective, especially when it is done internally by members of the same design team.

Examples

Code reviews are a common approach to identifying security problems. The TCSEC [2] and
Common Criteria both rely on independent code and design reviews by external evaluation labs.
While those evaluations are theoretically restricted to assessment of finished products, in practice
the independent review team often is involved for several iterations of problem identification and
resolution.

The red teams from Sandia National Labs have stated publicly that they prefer to be brought in
during the design phase so that appropriate security measures can be built into the systems they
are evaluating.

On one system with which we are familiar, the developers of a Web interface to a legacy system
assumed that it was safe to develop a straightforward automation of existing processes.
Unfortunately, the existing processes were flawed and vulnerable to a mass enrollment attack.
The existing processes had not been attacked because enrollment used mail-in paper forms,
which made a mass enrollment expensive and likely to be detected. Over the Internet, however,
the attack would have been trivial to mount and would have permitted a massive corruption of
the accounts on the legacy system. Fortunately, we were brought in to examine the design. We
identified the problem and suggested a relatively inexpensive workaround that mitigated the risk.
However, had the red teaming not occurred until the system was complete, it would have
required major code modifications at a much higher cost.

Red Team the Design Security Patterns Repository v1.0

- 152 -

Trade-Offs

Accountability
Using a red team (at any point in the lifecycle) should help identify
problems that might undermine accountability.

Availability See Accountability.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability No direct effect.

Usability No direct effect.

Performance No direct effect.

Cost

Red teaming the design introduces additional development costs. If the
team locates problems that would otherwise have gone undetected
until the system was complete (or worse in production), the costs will
be likely be recouped.

Related Patterns

• Document Security Goals – a related pattern that establishes the security policy, which the
red team could use to focus attacks.

References

[1] Salter, C., S. Saydjari, B. Schneier, and J. Wallner. “Toward a Secure System Engineering
Methodology”. New Security Paradigms Workshop 1998, September 1998.

[2] National Computer Security Center. DoD 5200.28-STD, Trusted Computer System
Evaluation Criteria. December 1985.

[3] Sandia National Laboratories. “Information Design Assurance Red Team (IDART) Home
Page.” http://www.sandia.gov/idart, August 2000.

[4] Schneier, B. “Attack Trees”. Dr. Dobb's Journal, December 1999.

Share Responsibility for Security Security Patterns Repository v1.0

- 153 -

Share Responsibility for Security
(a.k.a. Non-Separation of Duty)

Abstract

The Share Responsibility for Security pattern makes all developers building an application
responsible for the security of the system. Security consists of more than just encryption, anti-
virus software, and firewalls. Any element of a system can have security concerns, and system
developers have to understand and address those concerns. Use of this pattern avoids the
common problem of “the security guy” or security team being pitted against the rest of the
development team.

Problem

When security is addressed on a project, the development effort often designates a separate
person or team as responsible for the security of the system: “the security guy” or the security
team. Under these circumstances, the persons responsible for security do not always have the
power to effect any actual change. They can make recommendations, but they are only
responsible for the development of a few critical components, if anything at all. Developers of
the system implement their components without having to take ownership of the security
implications; many times this results in security being sacrificed at the expense of other
functional and non-functional requirements for which developers are held accountable.

In addition, the creation of a specialized security guy or group can create an unnecessarily
adversarial relationship between a development team and security team. When responsibility for
security requirements and all other functional and non-functional requirements is divided
between the security team and development team, both groups are left incapable of properly
conducting trade-off analysis of requirements. The development team will make decisions
independent of the security ramifications because they are not responsible for those
requirements. The security team, on the other hand, might over-engineer the security of the
system because they are not taking into account the other functional and non-functional
requirements that must be balanced. (The latter occurred in one development effort where a
separate security team over-engineered a secure network without understanding the full business
impact. Lack of a clear process for management decision making resulted in long project delays
and considerable wasted effort.)

Solution

The Share Responsibility for Security pattern distributes responsibility for the security of a
system amongst all developers. No single person or team should be solely responsible for
security.

One reason for distributing security responsibility is to balance security appropriately with other
functional and non-functional requirements. All developers must understand the security

Share Responsibility for Security Security Patterns Repository v1.0

- 154 -

implications of their components in order to make appropriate trade-off decisions between
security and other requirements.

Another reason to share responsibility for security is to encourage the development of secure
systems from the start, rather than trying to bolt security as an add-on to the system after the fact.
By making the entire development team—architects, designers, and developers—consider
possible threats and vulnerabilities, security is addressed throughout the software life cycle.
Many potential problems can be addressed earlier in the process, when changes are easier to
make and problems less expensive to fix [3].

Part of the rationale for this pattern is that security is typically only as strong as the weakest
link [5]. When developers of some system components are more concerned about security than
others, the effort expended addressing security concerns in some parts of the system is often
wasted. Vulnerabilities arising in less protected components many times result in system
compromise. Therefore, all developers must identify the security ramifications of their code
components and address their security requirements to ensure an appropriate and similar level of
security throughout the system.

Finally, this pattern improves security simply by involving more people in analysis and
discussion of the problem. Security often benefits just from having more eyes examining a
system for vulnerabilities. Different people will bring different perspectives and make different
assumptions about a system, and the process of sharing responsibility amongst a larger number
of people for vulnerability analysis and threat mitigation should improve the overall security of
the system.

This pattern does not recommend against the inclusion of security experts in a development
effort, however. It is critical that certain team members have a deep understanding of relevant
threats, vulnerabilities, and the solution technologies for addressing them. Security experts
should be utilized as a resource by the entire development team though, and not dumped upon to
solve the entire security problem.

Issues

In all but the most routine development efforts, the development of some functionality will
precede the inclusion of security mechanisms. It is impossible to understand the security
implications until important functional requirements are understood. But it is critical that
security mechanisms be included as soon as possible.

For example, in an iterative process, it might be necessary to omit security from the first
iteration, but it should absolutely be included in the second iteration. Leaving the security
mechanisms until the last phase always introduces problems. One very common, specific
example of this is developing an application and then attempting to deploy it behind a firewall,
only to discover that critical services will not work with the firewall.

Operators, administrators, and end users must also share responsibility for security. System
development should recognize this and provide the necessary education, mechanisms, and

Share Responsibility for Security Security Patterns Repository v1.0

- 155 -

safeguards to allow these groups to actively and effectively participate in maintaining security.
(See the Password Authentication pattern for specific examples of this.)

Maintenance programmers are another group that must be considered as contributing to overall
system security. Developers must keep the needs of future maintenance programmers in mind as
they develop security-critical elements. Developers should provide meaningful comments about
the security ramifications of specific code and the assumptions on which it depends.

Finally, there is a delicate balance between robust code and inefficient code. If every developer
checks the same assumptions and filters the same inputs, the result will be code that is
exceptionally robust but very inefficient. Simple, inexpensive checks can be repeated wherever
desired, but more expensive checks should be performed once and documented as part of the
overall design.

Examples

Microsoft recently announced a company-wide initiative (indicated in a memo from Bill Gates)
that makes security the responsibility of everyone [2]. They have since subjected every
developer in the company to a month long security training program. They have publicly
acknowledged that their previous security tiger team approach was not sufficient.

The security policy for the University of Michigan references the shared responsibility for
security [4].

Sharing responsibility for security must also occur at the organizational level when corporations
form collaborative partnerships [1].

Trade-Offs

Accountability
This pattern can improve accountability, because it enables
developers, designers, and others to understand better and improve the
overall security of the application.

Availability See Accountability.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability
This pattern will have an effect on manageability, either positive or
negative, because developers, designers, and others will explicitly
assess the trade-offs between security and manageability.

Usability See Manageability.

Share Responsibility for Security Security Patterns Repository v1.0

- 156 -

Performance See Manageability.

Cost

This pattern will increase short-term costs because developers must be
trained in security in order to share in the responsibility. However, it
can also reduce development time and cost by eliminating excess
security designed by security teams that don’t understand the business
decision-making process. Also, the short-term investment in security
training ideally reduces long-term costs by producing a more secure
system.

Related Patterns

• Document Security Goals – a related pattern that establishes the security policy; documenting
security goals is a precursor activity to this pattern, or one that should be conducted in
parallel. All those involved must understand the documented security goals of the system.

• Red Team the Design – a related pattern that advocates red team procedures throughout the
development cycle; red teaming can be a shared responsibility, as it will foster a better
understanding of the security and possibly improve the red teaming effort.

References

[1] Cale, D. and T. McGinnis. “Partners Share Responsibility for Marketplace Security”.
http://www.informationweek.com/813/prmarketplace.htm, November 2000.

[2] Gates, B. “Trustworthy Computing”. Internal Microsoft memo (available at
http://www.informationweek.com/story/IWK20020118S0093), January 2002.

[3] Pressman, R. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1992.

[4] University of Michigan-Dearborn Information Technology Services. “Network Security
Policies and Standards”. http://www.its.umd.umich.edu/policies/security.html, 2000

[5] Viega, J. and G. McGraw. Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, 2001.

Test on a Staging Server Security Patterns Repository v1.0

- 157 -

Test on a Staging Server

Abstract

Web site development requires extensive testing to enable availability, protect confidentiality,
and ensure integrity. While unit testing can be done on development machines, system and
integration testing should take place on machines as similar to the production servers as possible.
The use of a staging server enables necessary testing while preventing the outages that often
occur when developers and administrators experiment with the live production system on the fly.

Problem

Web servers, their underlying operating systems, and Web applications are extremely complex.
The development process for a Web site requires extensive testing in order to ensure that
evolving Web applications achieve both security requirements and non-security requirements.
Similarly, the maintenance process for a Web site requires extensive testing to ensure that Web
applications continue to execute as desired even as the operating system and other services are
patched or upgraded.

As developers implement and upgrade Web site functionality, they typically unit test on their
development machines. System and integration testing cannot be done effectively on those same
machines though, because the production environment must be replicated as much as possible to
uncover and address all issues related to that context. However, when developers use the
production servers for any amount of testing, the system could become unavailable, usability
suffers, and vulnerabilities are introduced by the use of untested, possibly unstable code.

As administrators maintain a Web site, they run into similar testing issues with the production
servers. System administrators must apply relevant patches to address vulnerabilities and
upgrade system services in support of the Web application. The introduction of new software
patches and versions sometimes breaks compatibility with existing application and system
software. If system administrators are experimenting on the actual production machines, this can
cause the same problems as developers using those machines for testing.

Solution

The use of a staging server enables developers and administrators to test Web site changes in a
production-like environment without compromising the security of the actual production Web
site servers.

The Test on a Staging Server pattern recommends a development, testing, and deployment
procedure as follows:

• Development of a Web site occurs on the Development Machines.

• Testing of the Web site occurs on the Staging Servers.

Test on a Staging Server Security Patterns Repository v1.0

- 158 -

• The initial version of the Web application is deployed on the Production Servers.

• The developers and/or administrators configure all Web site machines (e.g., Web Server,
Application Server, Database Server) appropriately and consistently across the Development
Machines, Staging Servers, and Production Servers.

• As development of the Web site continues on the Development Machines, testing takes place
on the Staging Servers prior to update deployments on the Production Servers.

Issues

A reliable mechanism must be utilized for transferring the tested configuration from the staging
servers to the production machines. Manually copying over only the files that have changed
might work for small sites or very incremental updates, but that solution strategy does not scale
to production sites and is not amenable to configuration control. Most production Web site
building packages contain facilities for replicating or transferring entire Web site updates to
machines.

Examples

[HELP]

Trade-Offs

Accountability
This pattern enhances accountability indirectly by helping prevent site
compromises that could occur if testing were performed on production
machines.

Availability
This pattern increases availability by helping to prevent the outages
that often occur when administrators attempt to tweak the production
system on the fly.

Confidentiality See Accountability.

Integrity See Accountability.

Manageability
This pattern enhances manageability by separating testing and
production machines, thus ensuring that small changes need not be
made directly to the production machines without previous testing.

Usability
This pattern improves usability by ensuring that testing is not
performed on the production machines with which users interact.

Performance No effect.

Test on a Staging Server Security Patterns Repository v1.0

- 159 -

Cost

This pattern will incur additional cost due to the duplicate hardware
and software required for the staging servers, though additional
licenses for staging servers will generally be cheaper than licenses for
production server software.

Related Patterns

• Build the Server from the Ground Up – a related procedure for understanding and
configuring Web and application servers properly; the configurations developed in this
related pattern should be tested on the staging servers of this pattern.

• Patch Proactively – a related procedure for administering servers; any patches applied to the
system as recommended in this related pattern should be tested on the staging servers of this
pattern before being applied to the production servers.

References

[1] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

Security Patterns Repository v1.0

- 160 -

D. Bibliography
This bibliography collects the references from all of the security patterns and supplements those
references with additional informational material. The numbers in this bibliography do not map
to the reference numbers used in each pattern: each pattern contains its own independent
reference numbers.

[1] Abrams, M. “Security Engineering in an Evolutionary Acquisition Environment”. New
Security Paradigms Workshop 1998, Charlottesville, VA, September 1998.

[2] Advosys Consulting, Inc. “Writing Secure Web Applications”.
http://advosys.ca/papers/web-security.html, February 2002.

[3] AG Communication Systems. “Pattern Template”.
http://www.agcs.com/supportv2/techpapers/patterns/template.htm, 2001.

[4] Allen, J. The CERT Guide to System and Network Security Practices. Addison-Wesley,
2001.

[5] Anonymous. “Patches, We need those steeking patches to fix my steeking software”.
http://bofh.ucs.ualberta.ca/patches.html, unknown date.

[6] Balestracci, S. “PC Week Hack of 1999”.
http://www.sans.org/infosecFAQ/threats/PC_week.htm, February 2001.

[7] Bishop, M. “How Attackers Break Programs, and How to Write Programs Securely”. 8th

USENIX Security Symposium, Washington, D.C., 1999.

[8] Blum, R. Postfix. Sams Publishing, 2001.

[9] Bobbitt, M. “Web Security: Bulletproof”. Information Security Magazine,
http://www.infosecuritymag.com/2002/may/bulletproof.shtml, May 2002.

[10] Bobbitt, M. and A. Briney. “Different Approaches, Same Goal”. Information Security
Magazine, http://www.infosecuritymag.com/2002/may/samegoal.shtml, May 2002.

[11] Braga, A., C. Rubira, and R. Dahab. “Tropyc: A Pattern Language for Cryptographic
Software”. Pattern Languages of Programs 1998, Monticello, IL, 1998.

[12] Brown, F., J. DiVietri, G. Villegas, and E. Fernandez. “The Authenticator Pattern”.
Pattern Languages of Programs 1999, Monticello, IL, 1999.

[13] Brown, W., R Malveau, H. McCormick, and T. Mowbray. AntiPatterns: Refactoring
Software, Architectures, and Projects in Crisis. John Wiley & Sons, 1998.

[14] Brown University Computing and Information Services. “IP Address Filtering”. Web
Authorization/Authentication.

Security Patterns Repository v1.0

- 161 -

http://www.brown.edu/Facilities/CIS/ATGTest/Infrastructure/Web_Access_Control/Goals
Options-ver2.html#anchor136476, October 1997.

[15] Cale, D. and T. McGinnis. “Partners Share Responsibility for Marketplace Security”.
http://www.informationweek.com/813/prmarketplace.htm, November 2000.

[16] Chun, M. “Authentication Mechanisms - Which is Best?”
http://rr.sans.org/authentic/mechanisms.php, April 2001.

[17] Coggeshall, J. “Session Authentication”.
http://www.zend.com/zend/spotlight/sessionauth7may.php, May 2001.

[18] Cohen, F. and Associates. “The Deception Toolkit Home Page and Mailing List”.
http://all.net/dtk/dtk.html, 1998.

[19] Common Criteria Project Sponsoring Organisations. Common Criteria for Information
Technology Security Evaluation Version 2.1. http://www.commoncriteria.org/cc/cc.html,
August 1999.

[20] Cooper, R. “IIS Security: 10 Steps to Better IIS Security”. Information Security
Magazine,
http://www.infosecuritymag.com/articles/september01/features_IIS_security.shtml, August
2001.

[21] Cunningham, C. “Session Management and Authentication with PHPLIB”.
http://www.phpbuilder.com/columns/chad19990414.php3?page=2, April 1999.

[22] Desal, G., J. Fenner, J. Patel, and M. Schenecker. “Web Application Servers are Here To
Stay”. http://www.informationweek.com/726/app.htm, March 1999.

[23] Dominy, R. “Focus on JavaScript: Email Field Validation”.
http://javascript.about.com/library/scripts/blemailvalidate.htm, 2002.

[24] Dyck, T. “Four scripting languages speed development”.
http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2646052,00.html, November
2000.

[25] Fernandez, E. “Metadata and Authorization Patterns”. Technical report TR-CSE-00-16,
Computer Science and Engineering Department, Florida Atlantic University, 2000.

[26] Fernandez, E. and R. Pan. “A Pattern Language for Security Models”. Pattern Languages
of Programs 2001, Monticello, IL, 2001.

[27] Gabriel, R. Patterns of Software: Tales from the Software Community. Oxford University
Press, 1997.

[28] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

Security Patterns Repository v1.0

- 162 -

[29] Galvin, P. “The Unix Secure Programming FAQ”.
http://www.petergalvin.org/solsecprogfaq.html, September 1998.

[30] Garfinkel, S. and G. Spafford. Practical UNIX and Internet Security. O’Reilly &
Associates, 1996.

[31] Gates, B. “Trustworthy Computing”. Internal Microsoft memo (available at
http://www.informationweek.com/story/IWK20020118S0093), January 2002.

[32] Ghosh, A. E-commerce Security: Weak Links, Best Defenses. Addison-Wesley, 1998.

[33] Gillespie, G. “Saving face: Get Tripwire for Web Pages to protect your site against
vandalism”. http://www.computeruser.com/articles/daily/7,3,1,0620,01.html, June 2001.

[34] Gong, L. Inside Java 2 Platform Security. Addison-Wesley, 1999.

[35] INT Media Group. “Email Address Validation”.
http://javascript.internet.com/forms/check-email.html, 2002.

[36] Jaquith, A. “Learning from Wall Street: Risk Management for Applications”.
http://www.sbq.com/sbq/app_security/, Q2-2002.

[37] Hays, V., M. Loutrel, and E. Fernandez. “The Object Filter and Access Control
Framework”. Pattern Languages of Programs 2000, Monticello, IL, 2000.

[38] Hillside Group. “Writing Patterns and Pattern Languages”.
http://www.hillside.net/patterns/writing/writingpatterns.htm, 2001.

[39] Kamath, M. “Choosing a scripting language for ASP”.
http://www.kamath.com/columns/my3cents/mtc002_scripting.asp, October 1999.

[40] Kärkkäinen, S. “Session Management”. Unix Web Application Architectures.
http://webapparch.sourceforge.net/#23, October 2000.

[41] Kienzle, D., M. Elder, D. Tyree, and J. Edwards-Hewitt. “Security Patterns Template and
Tutorial”. http://www.securitypatterns.com, February 2002.

[42] King, C. “Best Practices How-Tos: Building a Secure Site”.
http://dcb.sun.com/practices/howtos/securesite.jsp, March 2001.

[43] Landrum, D. “Web Application and Databases Security”.
http://rr.sans.org/securitybasics/web_app.php, April 2001.

[44] Larson, E. “Best Practices How-Tos: How to Secure Services by Running in a Chrooted
Environment”. http://dcb.sun.com/practices/howtos/chrooted.jsp, November 2001.

[45] McGraw, G. and J. Viega. “Securing Software: Practice Safe Software Coding”.
Information Security Magazine,

Security Patterns Repository v1.0

- 163 -

http://www.infosecuritymag.com/articles/september01/features_securing.shtml, August
2001.

[46] Mendelsohn, J. “Building a Web Site: A Developer’s Guide”. Sun Microsystems, 2001.

[47] Microsoft Consulting Services. “Manage Security of Your Windows IIS Web Services”.
http://www.microsoft.com/technet/security/bestprac/MCSWebBP.asp, 2002.

[48] Mutch, A. “Mozilla Security Goals”,
http://tln.lib.mi.us/~amutch/pro/mozilla/secgoals.htm, April 2002.

[49] Naidu, K. “Web Application Checklist”. SANS Institute SCORE (Security Consensus
Operational Readiness Evaluation),
http://www.sans.org/SCORE/checklists/WebApplicationChecklist.doc, 2001.

[50] NACHA Internet Council. Understanding Internet-Initiated ACH Debits.
http://internetcouncil.nacha.org, 2002.

[51] National Computer Security Center. DoD 5200.28-STD, Trusted Computer System
Evaluation Criteria. December 1985.

[52] National Institute of Standards and Technology (NIST) Computer Security Resource
Center (CSRC). “Frequently Asked Questions (FAQ) on Information Technology Security
Issues, Federal Agency Security Practices”. http://csrc.nist.gov/fasp/FAQ.html, October
2001.

[53] National Institute of Standards and Technology (NIST) Information Technology Library
(ITL). “Federal Information Processing Standards Publication 112: Password Usage”.
http://www.itl.nist.gov/fipspubs/fip112.htm, May 1985.

[54] Naval Information Systems Security Office. Secure Windows NT Installation and
Configuration Guide. Windows NT for Navy IT-21 Version 1.5, December 2000.

[55] Nelson, R. “The qmail home page”. http://www.qmail.org/top.html, June 2002.

[56] Oaks, S. Java Security 2nd Edition. O’Reilly & Associates, 2001.

[57] O’Dell, M. “Application Security Reporting”. http://www.sbq.com/sbq/app_security/, Q2-
2002.

[58] Open Web Application Security Project (OWASP). “A Guide to Building Secure Web
Applications and Web Services – Draft 0.2”. http://www.owasp.org, May 2002.

[59] Open Web Application Security Project (OWASP). “Input Filters”.
http://www.owasp.org/filters/index.shtml, May 2002.

Security Patterns Repository v1.0

- 164 -

[60] Perrine, T. “NPACI/SDSC Security Activities”,
http://www.edcenter.sdsu.edu/training/workshop99/june29_ppt/tep1999/sld008.htm, July
1999.

[61] Peteanu, R. “Best Practices for Secure Development – v4.03”,
http://members.rogers.com/razvan.peteanu/best_prac_for_sec_dev4.pdf, October 2001.

[62] Peteanu, R. “Best Practices for Secure Web Development”,
http://softwaredev.earthweb.com/security/print/0,,10527_640861,00.html, February 2001.

[63] Peteanu, R. “Best Practices for Secure Web Development: Technical Details”,
http://softwaredev.earthweb.com/security/print/0,,10527_640891,00.html, February 2001.

[64] Peteanu, R. “Design Patterns in Security”.
http://members.rogers.com/razvan.peteanu/designpatterns20010611.html, June 2001.

[65] Peterson, S. and D. Fisher. “The next security threat: Web applications”.
http://zdnet.com.com/2100-11-503341.html?legacy=zdnn, January 2001.

[66] Pountain, D. and J. Montgomery. “Web Components: Components and the Web are a
match made in developer heaven”. http://www.byte.com/art/9708/sec5/art1.htm, August
1997.

[67] Pressman, R. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1992.

[68] Ranum, M. “Intrusion Detection and Network Forensics”. USENIX '99, Monterey, CA,
June 1999.

[69] Rodriguez, C. “Electronic Bill Presentment and Payment (EBPP) and Open Financial
Exchange (OFX) Security”, http://cs1.cs.nyu.edu/rodr7076/ebpp/sld013.htm, December
1998.

[70] Romanosky, S. “Security Design Patterns”. http://online.securityfocus.com/guest/9793,
January 2002.

[71] Romanosky, S. “Security Design Patterns Part 1 – v1.4”.
http://www.romanosky.net/papers/securityDesignPatterns.html, November 2001.

[72] Rosato, R. “Best Practices for Applying Service Packs, Hotfixes and Security Patches”,
http://www.microsoft.com/technet/security/bestprac/bpsp.asp, 2002.

[73] Rubin, A. White-Hat Security Arsenal: Tackling the Threats. Addison-Wesley, 2001.

[74] Ryan, S. “A Scalable and Secure E-Commerce Hub for Electronics Recycling”,
http://www.ses.imse.iastate.edu/Presentation.htm, 2000.

Security Patterns Repository v1.0

- 165 -

[75] Salter, C., S. Saydjari, B. Schneier, and J. Wallner. “Toward a Secure System Engineering
Methodology”. New Security Paradigms Workshop 1998, Charlottesville, VA, September
1998.

[76] Sandia National Laboratories. “Information Design Assurance Red Team (IDART) Home
Page.” http://www.sandia.gov/idart, August 2000.

[77] SANS Institute. “Mistakes People Make that Lead to Security Breaches”.
http://www.sans.org/mistakes.htm, October 2001.

[78] SANS Institute. “The Twenty Most Critical Internet Security Vulnerabilities – Version
2.504”. http://www.sans.org/top20.htm, May 2002.

[79] Scambray, J. “Ask Us About...Security, August 2000”.
http://www.microsoft.com/technet/columns/security/askus/au072400.asp, August 2000.

[80] Schneier, B. “Attack Trees”. Dr. Dobb's Journal, December 1999.

[81] Schumacher, M. and U. Roedig. “Security Engineering with Patterns”. Pattern Languages
of Programs 2001, Monticello, IL, 2001.

[82] Security Focus SECPROG Mailing List. “Secure Programming – v1.00”.
http://online.securityfocus.com/popups/forums/secprog/secure-programming.shtml, 2002.

[83] Solomon, D. Inside Windows NT Second Edition. Microsoft Press, 1998.

[84] Stein, L. Web Security: A Step-by-Step Reference Guide. Addison-Wesley, 1998.

[85] Stein, L. and J. Stewart. “The World Wide Web Security FAQ – Version 3.1.2”.
http://www.w3.org/Security/Faq, February 2002.

[86] Strom, D. “More on ActiveX Versus Java Security: Are you safe?”
http://www.webdeveloper.com/security/security_java_activex.html, 1999.

[87] Sun Microsystems. “Security Code Guidelines”.
http://java.sun.com/security/seccodeguide.html, February 2000.

[88] Sun Microsystems. “Secure Computing with Java: Now and the Future”.
http://java.sun.com/marketing/collateral/security.html, 1998.

[89] Tanenbaum, A. Operating Systems: Design and Implementation. Prentice-Hall, 1987.

[90] University of Michigan-Dearborn Information Technology Services. “Network Security
Policies and Standards”. http://www.its.umd.umich.edu/policies/security.html, 2000.

[91] U.S. Department of Energy Computer Incident Advisory Capability (CIAC). “J-042: Web
Security”. http://ciac.llnl.gov/ciac/bulletins/j-042.shtml, May 1999.

[92] van der Linden, P. Just Java 2 – Fourth Edition. Prentice Hall, 1999.

Security Patterns Repository v1.0

- 166 -

[93] Venners, B. “Java’s security architecture: An overview of the JVM's security model and a
look at its built-in safety features”. http://www.javaworld.com/javaworld/jw-08-1997/jw-
08-hood.html, August 1997.

[94] Viega, J. and G. McGraw. Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, 2001.

[95] Vlissides, J. Pattern Hatching: Design Patterns Applied. Addison-Wesley, 1998.

[96] Walsh, L. “Case Study: Standard Expectations”. Information Security Magazine,
http://www.infosecuritymag.com/2002/mar/standardexpectations.shtml, March 2002.

[97] Walsh, L. “Security Standards: Standard Practice”. Information Security Magazine,
http://www.infosecuritymag.com/2002/mar/iso17799.shtml, March 2002.

[98] Wheeler, D. “Secure Programming for Linux and Unix HOWTO – v2.965”.
http://www.dwheeler.com/secure-programs/Secure-Programs-HOWTO.html, May 2002.

[99] Wolter, J. “Grex Staff Notes: Security Goals”.
http://www.cyberspace.org/staffnote/goals.html, March 1998.

[100] Yoder, J. and J. Barcalow. “Architectural Patterns for Enabling Application Security”.
Pattern Languages of Programs 1997, Monticello, IL, 1998.

[101] Zwicky, E., S. Cooper, and D. Chapman. Building Internet Firewalls 2nd Edition. O’Reilly
& Associates, 2000.

