Patterns for Agile Development Practice

Part 2

Joseph Bergin
Pace University
jbergin@pace.edu
(Version 5)

This set of ten patterns is intended to complement the standard wisdom that can be gleaned
from the Agile Development literature such as Kent Beck's Extreme Programming
Explained. 1t is directed primarily at those who are starting out with Extreme Programming
or another agile methodology and might miss some subtle ideas. Once a team gains
experience these patterns will become obvious, but initially some of them are counter
intuitive. While this study began in Extreme Programming practice, most of the advice
applies to agile development in general. The ten patterns here extend the work of 2004-
2005 on the same topic.

We consider XP to be a pattern language in which the practices are the basis of the
patterns. They have the characteristics of a true Pattern Language in that they are
synergistic and generative. The dozen or so practices detailed in Beck and elsewhere, such
as "Do the simplest thing that could possibly work" and "Yesterday's Weather", form a
subset of this language.

As this "language" is in its early stages of development, there is no significance to the
current ordering of the patterns here. This paper presents ten of the fifty or so patterns
developed so far. The full set of patterns is listed briefly in the Thumbnail section at the
end.

The pattern form used here is as follows

Name

Context Sentence: Who the pattern is addressed to and when in the cycle it can be applied.
Problem paragraph. The key sentence is in italics.

Forces paragraphs. What do you need to consider in order to apply this pattern? In this
version we will put the forces in bulleted lists.

Therefore, solution. Key (usually first) sentence is in italics.

Commentary and consequences paragraphs

These are written in the "you" form as if the author is speaking to the person named in the
pattern's context sentence. "You" could be a customer, a developer, or even a manager,
depending on the pattern.

Thumbnails and acronyms appear at the end of the paper.

Copyright 2006 Joseph Bergin. All rights reserved. Permission is granted to

EuroPLoP and to Hillside Europe to make copies of this work for purposes of the
EuroPLoP 2006 conference.

MT1.1

An Agile Development Story (a.k.a. Fairy Tale):

A team has been formed by a Sheltering Manager, consisting of an Onsite Customer,
seven developers, and a tech gofer with knowledge of infrastructure and tools issues that
are customary in the organization. The Whole Team has found a workspace and set it up,
both physically with tables for the workstations and virtually with the development
platform. The latter includes testing, code repository, and integration tools. The Whole
Team along with the Sheltering Manager has gotten together for 3 days to Train
Everyone under the direction of the Effective Coach. The Onsite Customer and the
developers have gone through the initial development of the Guiding Metaphor and
started on the Planning Game. The metaphor gives them an initial vocabulary to ease the
communication between the customer and the developers.

The manager agrees to Be Human, and the Whole Team commits to the practices. While
they know this will be difficult, they also trust the Manager to maintain a Sustainable
Pace for the development. They have had some fun in the training sessions and those
exercises have also helped go gel the team.

A day is spent with the Whole Team beginning the just-in-time requirements gathering.
Thirty stories have been written, covering an End To End first cut at the desired
functionality and these stories have been estimated by the team. The team has (Flexibly)
set its initial Velocity quite low as they are new to this project. A few of the stories were
larger than can be accomplished in a single two-week iteration by an individual, so these
have been broken into tasks and the Implementer Estimates these Tasks.

The customer chooses a few of the most important stories, looking at their value and their
cost as reflected in the estimates. Development begins on just these stories, using Test
First development with Executable Tests. Many questions are asked of the Onsite
Customer and the answers to the Questions Generate Acceptance Tests. One of the
developers works with the Onsite Customer to begin to develop an Acceptance Test suite
for the application. Meanwhile, the developers Program Promiscuously, frequently
changing partners so all are familiar with the code being developed. As each task is
completed it is (Continuously) Integrated into the build, so that all unit tests pass. Of
course all programmers DTSTTCPW in all coding and design, thereby Delivering Value
to the customer. The Onsite Customer Checks Off the Tasks when they are done,
reviewing unit tests as appropriate and noting the changes in the Acceptance Tests written
and passing. Halts are called when Acceptance Tests that were passing suddenly fail. This
is obvious since we use only Executable Tests and the suite is executed frequently;
especially at each integration: several times each day.

The team holds daily Standup Meetings to flag difficulties and assure that each person
knows what progress they will make that day. The Coach and Social Tracker keep the
meeting going using advice from the Coach (SerumMaster) on process, and the Tracker
on progress. They hold the Schedule Sacred and will end the iteration at noon on Friday.
The afternoon is used for Retrospectives, games, and the Planning Game for the next
iteration.

The Coach works with the Onsite Customer to make sure that the first release (after one

month) is both End to End and delivers High Value First. The Customer works with her
own business groups to determine value and current required direction. She then uses this

MT1.9

knowledge to guide the team via the Planning Game for each iteration. She continues to
write stories and feeds them in to the process at iteration points to keep the direction
consistent with her needs.

It takes the team a while to learn how to estimate effectively, and this becomes an issue at
the Retrospective held at the end of each iteration. The Coach helps with suggestions and
training games to make estimation more effective. The notion of personal Velocity is
initially foreign, but the Coach and Tracker get the developers to record their work to give
a baseline for their personal practice. After a couple of months the Coach makes only
periodic visits to the team, but is on site for Retrospectives and is available to be called
whenever the tracker or manager thinks it would be helpful.

The developers Spike when they must to learn how to estimate and build things. They
Refactor the code whenever new stories can be built more easily by changing the existing
code (improving its design). This is made easier as they own the code collectively and
have been pairing promiscuously throughout. Thus they take Collective Responsibility for
the project and its code. The Executable Tests give them the confidence that they don't
break anything when they refactor.

They give Full Communication to the customer on opportunities, costs, and options
available. As time permits they Re-Estimate a few of the older stories to keep the
Planning Game short and sweet. They learn to give Best Effort at all times and to Ask
For More when they complete tasks early. Conversely, the customer doesn't beat them up
when they must beg to drop work from an iteration when difficulties occur or
unfortunately low estimates are occasionally made. The Customer learns that Easy Does It
is a better policy than pushing (too) hard, though everyone demonstrates commitment and
the nature of the work room makes everyone's effort obvious to all.

The Coach and Tracker keep Everything Visible in the development so that all
stakeholders can see the current direction and measure the rate of progress toward the (ever
changing) goal. Cards and Whiteboards are in evidence in the team space containing
most of this information.

Alas, user level documentation was neglected for the early iterations, so a documentation
specialist joins the (Whole) Team and starts to build the documentation structure that is
henceforth kept up with the software development. Thereafter, Documentation becomes
Just Another Task.

After several iterations and a few releases, the customer realizes that she now anticipates
more work than the team can produce in the desired time available. She works with her
business partners to choose between (a) later delivery of greater functionality, (b) earlier
delivery of a smaller application, or (c) higher cost per week by growing the team
methodically. She chooses the last option (after cost-benefit analysis) and the team decides
to add two developers each iteration for the next two iterations. Pairing gives them the
confidence that this won't slow them down by much and that the newbies will meld
quickly into the team.

The project completes at the desired date. Some functionality that was thought desirable

was not built, but the customer gives this low value. The overall cost is about 80% of the
back-of-the-envelop estimate initially given for the project by executive management. The

MT1.R

customer gets a promotion from her team. The developers hold a party to celebrate their
raises, swearing fealty to the manager. They all live happily ever after.

MT1.4

Implementer Estimates Task

You are a developer on an agile team and are in the Planning Game phase. Stories have
been received from the customer for the iteration and have estimates. You are tasking out
the stories and estimating the individual tasks.

Individuals take responsibility for individual tasks. Tasks are carried out by a pair (Pair
Programming), but one person has responsibility. Commitment to the task is required for
successful completion. You need commitment by the team's individuals to the work so that
they are excited about what they do. More important, The team needs accurate estimates of
the time needed to perform the task.

* People are individuals. Some are optimistic estimators, some pessimistic, though
not everyone understands her own abilities.

* On the other hand, if someone is interested in a task it is likely that she knows
something about it and is therefore the best person to provide an estimate, both
because she knows the work and because she knows herself.

* Fine-grained estimation like this can seem chaotic. You want a Social Tracker.

* [t will be hard to gain appropriate commitment if task estimates are assigned by
others. That practice can also lead to the hardest tasks not finding any takers.

Therefore, when you pick up a task card to implement it, re-estimate the task. If it doesn't
agree with any existing estimate, inform the Tracker.

* Straightforward tasks are estimated quickly and accurately. More difficult
situations take time and effort. Sometimes you must Spike to learn or split stories
into tasks.

* But note that estimates are just that: estimates. They aren't perfect. They aren't
perfectly accurate. Don't spend time estimating that you could use to Deliver
Customer Value.

* The story estimate done earlier for the Planning Game might be rather different
from the aggregate of its task estimates. This is because the story was estimated by
the team and is something of a compromise. When a task is about to be performed,
the person who will do it is in a position to give the best estimate of the required
effort. If the total task estimate is less than the total story estimate the team can ask
for more work then or later. However, if the sum of task estimates is higher than
that for stories you must go back to the customer and have some stories dropped
from the iteration. Not doing this is asking for trouble. On the other hand, if things
go well you can always Ask for More.

Stories, unlike tasks, are estimated by the team as a whole, and so the team owns those
estimates. If the granularity of the estimates is small the stories may not need to be further
broken into tasks. Often, however, this is not the case and the team "tasks out" the stories.
The resulting tasks are then estimated by the individuals who chose to perform them. As a
rule of thumb, if an iteration is 10 days, then a story estimate of more than 3 ideal (person)
days may be too big. Sometimes the customer can break this story into parts, which will
aid her in scheduling (as the parts may not have equal value). If the customer cannot do
this, then the team should task it out so that as much parallel effort as possible is achieved.
In general, a story whose estimate is a significant fraction of the average individual
velocity is at risk of not actually fitting into the iteration. The "rule of three" stated above

MT1.8

is a bit conservative, but you would rather be safe. Experience will give you a better
number at which you start to worry.

MT1.A

(Set Aside) Enough Time

You are a developer in the Planning Game of an agile project. You are estimating a story
or task So, you are the Implementer who Estimates the Task.

When you build something, to do it successfully, you must test it properly. You must
understand it properly and document it. In agile development, all this is critical due to the
highly iterative nature of the process and the changing requirements. But talking to the
customer, testing, and infrastructure work take time.

* Many tasks have necessary prerequisites that haven't been explicitly stated in any
story. If they must be done, they must be estimated and the customer involved.

* Testing, for example, will take you a significant fraction of the time it takes to build
a task. You may write more code for the tests than is needed for the task itself.

* Testing in XP is not an extra task. It is part of every task.

* Documentation is also Just Another Task that must be done for every story.

* You need to talk to the customer to refine the few sentences on the story card into a
real understanding of the underlying requirement. This takes time.

* You may need to Spike to understand the requirement.

* Refactoring to improve the code and make a story easier to build takes time.

* However, you will be tempted to estimate only the obvious things in the press of
time.

* Slight overestimates are easier to live with in time-boxed development than
underestimates.

* And you want to plan so that keeping the Sacred Schedule will be possible.

Therefore, include in your estimates of stories and tasks the time needed to for all the work
that supports the story. This includes, for example, time to test the feature and document
it.

* Some things, like testing, recur in every story. Some things are unique.

* It can be hard to think of everything, of course. When you err, you may need to re-
estimate. This may cause you to go back to the customer to drop work from an
iteration. Customers don't like it when this occurs.

* Ifyou find your team underestimating stories, be sure to address this specifically in
the Retrospectives.

Testing stories may require you to write some test fixtures for a tool like FIT or FitNesse
so that the customer can write the actual tests. Unit testing in JUnit requires writing the
actual tests. Include all of this in your estimates. Keep records on how effective you are at
this estimation by keeping a record of velocity in your Project Diary. These records can
help you improve if you refer to them when you next have to make an estimate. Flexible
Velocity sometimes works as a stopgap when you fail to set aside Enough Time.

The estimate includes the time that will be required for any activity that must be completed
to successfully build the story. This might include time to set up some required
infrastructure, though it might be best to separate that out as a separate story. Certainly
time required to refactor existing code to aid implementation of a new story must be
included in that story's estimate. Note, however, this implies that the story estimate must
change over time, and that estimates done long ago have less certainty than they did when

MT1.7

made. For this reason we Re-estimate Periodically.

Testing tools: http://fitnesse.org, http://junit.org, http://fit.c2.com

MT1.8

Team Owns Individual Velocities

You are a member of an agile team in the development phase, or you are a manager
overseeing an agile team. Your Implementers Estimate Tasks, and you set aside Enough
Time for the tasks.

When a developer takes responsibility for a task she estimates the (ideal) time to complete
the task. Enough tasks are taken and estimated to equal the developer's individual velocity
for the iteration. People estimate differently.

* Unless a task is very small and well defined, estimates will be inaccurate.

* Managers like to manage. They think of that as their job. They also like to use
available numbers to help them. Some numbers, however, may mislead.

* Estimates affect velocity and velocity affects estimates. Both are largely
independent of how much actual work can be accomplished. Individual velocity is
just a measure of how much work a person can do in their own personal point scale.

* The tracker needs to know the individual velocities to project the likelihood of
successful completion of the iteration and to plan the next.

* An optimistic estimator will set low estimates, ignoring that things can go wrong
because they usually don't. A pessimistic estimator will be aware of everything that
could possibly go wrong and will give long estimates. Both will likely be wrong.
This inaccuracy is corrected for in the velocities. The optimistic estimator won't get
as much done as she thinks. The pessimistic one will get more done than his worst-
case scenario. So the optimistic estimator will tend to have lower velocities than a
pessimistic one even though they may do the same work.

Therefore, let the team own the individual velocities. As manager, you must ignore
individual velocities as they don't measure quantity or quality of work done. Individuals
keep their own velocity in their personal project book. These are shared with the tracker to
plan an iteration.

To emphasize this consider the situation in which there is a task card on the table that
could be done by either John or Sue. John picks it up and estimates 3, and his velocity is 3.
If he gets the task done this cycle all is well. Suppose, instead, that Sue picks up the card
and estimates 7. If her velocity is 7 and she does the work in the iteration we are equally
pleased. But John's velocity in the next cycle is still 3 and Sue's is still 7, though they do
equal work.

* Note that keeping individual velocity is a difficult practice to maintain, as it
requires discipline. The individual velocities are needed, however, so that each
developer knows how much work they can reasonably commit to in an iteration.
(record of velocity in the Project Diary)

* Like the team velocity, the individual uses Yesterday's Weather to determine their
velocity for the next iteration.

* Ifan individual picks up too much work, it leaves the team at risk of not
completing the iteration.

* From the individual's perspective, knowing your personal velocity and being able
to accurately and consistently estimate how long it will take you to perform tasks is
a skill that will pay you dividends. It is difficult for someone to coerce you into an
impossible schedule if you have a reputation for accurate estimation.

MT1.9

* The team's velocity on the other hand is worth tracking. It is an important planning
and projection tool.

MT1.10

Spike

You are a developer on an agile team, perhaps the Implementer who Estimates Tasks.
During the Planning Game you don't understand how to estimate a story or task or you
don't know how to implement it.

You will often get a story or task that you don't know how to build or even how to estimate
accurately. Often the best solution here is to have the customer break the story into smaller
parts since it is easier to estimate small things than large. But you can also take a few
minutes to a few hours to do exploratory development to see what the problems are. Wild
guessing can be dangerous.

* Before you can estimate something you have to know how to do it. You need to
estimate Enough Time for this story.

* Usually you can learn something by building a simple prototype or by drawing out
a design or playing with CRC cards or the like.

* Sometimes you need to choose between somewhat nonequivalent alternatives. The
tradeoffs between them may be critical to success.

* Experimentation takes time and effort.

* Building the wrong thing is expensive.

* Experimental programming is fun. You can waste a lot of time doing it. But you
want to DTSTTCPW and Deliver Value.

Therefore, when you don't know how to do something build some throwaway code or
create a throwaway design to investigate the issue. This is called a "spike." You can also
spike to help choose between alternatives. Sometimes the customer gets involved in
choosing the solution as it affects cost and quality. Sometimes what you learn in a spike
can give the customer ideas that will cause her to re-steer the project, in fact.

* Spikes are thrown away at the end and not incorporated into the build. For this
reason it is sometimes appropriate for individuals (rather than pairs) to spike. It is
also sometimes acceptable for a larger group to spike.

* Spikes are small and fast and probably dirty. They are not prototypes.

* Ifyou have two or more approximately equal possible solutions, don't waste a spike
on choosing one. Just pick one and get on with it. You aren't optimizing here.

* Build just enough in the spike to learn the needed lesson. Don't try to build a
complete thing. That would be wasting resources.

* Time to spike is included in the estimates, though to some extent, it is also included
in the difference between ideal time and real time (the velocity). But when you
recognize a spike is needed, include it in the estimate.

* Spikes cost you time and money, of course, but the team needs to learn somehow.

* The daily Stand Up Meeting can often be used to send someone off on a spike.
Make sure you bring the knowledge back to the team.

MT1.11

Promiscuous Programming

You are a developer on an agile team. You have responsibility for one or more tasks in this
iteration. You are about to begin a task or subtask and are looking for a partner for Pair
Programming.

The practices of XP are synergistic. They cover the goals of any development project, but
often in a different way. Common code ownership is an important practice. It helps you
avoid a lot of documentation, as the team generally knows everything about the code base.
No one person should become a knowledge bottleneck with respect to any aspect of the
project or its artifacts. This implies that what one person knows, others know as well.

* Sometimes you feel more comfortable with some team members than others and
you tend to choose those you favor when you pair up.

- Some team members may be considered “newbies” or “outsiders” for some reason
and might not be chosen as often or might be left to pair with each other. This can
cause an “us” vs. “them schism within the team.

- Sometimes a guru is the one every team members wants to work with to ensure that
deadlines are met. Or you are overawed by the guru and avoid him/her.

* You want to build trust and knowledge in the team.

* You want to be effective and have the team also be effective.

* You don't want to be left behind. But others have skills you don't.

* You want to improve your own skill and you want those with less to get up to
speed.

* You don't want to be bored.

* The work environment can improve if it has some social aspects that don't interfere
with the work.

Therefore, switch partners for every task at least. Spread the knowledge of the code and of
the programmers throughout the team. Pair with everyone repeatedly, even if it takes High
Discipline. Track who you pair with in your Project Diary. Note the times as well.

¢ Knowledge will spread through the team.

* You become a generalist, rather than a specialist. This is a trade-off, of course, but
agility depends on it.

* Often not everyone is especially compatible with everyone else. Work to overcome
this. If management encourages everyone to Be Human it can help.

* Ifyour team tends to form permanent cliques, then XP may not be your best
methodology.

* You want to encourage practices by which the least skilled among you can increase
their skills rapidly and become more productive. Pairing with experts aids in this.
Pairing with a wide variety of people with different skills aids in this.

* Oddly enough there is some evidence that pairing with people unlike yourself (life
history, race, sex, etc) will teach you things you couldn't easily otherwise learn.
The work of diverse teams has been shown to be higher quality than that of
homogeneous teams. See Surowiecki [13].

* There is some evidence that switching every hour is beneficial to the project. See
Belshee [3]

MT1.19

Cards and Whiteboards

You are any member of an agile team that needs to create some artifact other than code.
Perhaps this is a planning or tracking artifact. You need to keep track of where you are
now and where you are going in the short term.

Agile projects are very fluid. Things change all the time. People need to see what has
changed.

* Sophisticated planning tools can produce nice reports and can be good for
archiving information. But you need to learn them and agree on their use.

* Ifyou use sophisticated tools to keep track of things you will see two unfortunate
things occur. First it is natural to be reluctant to throw away things that you have
committed effort to creating, but this creational effort is required by sophisticated
tracking tools. Second it is harder to get a team around a screen than to get them
around a table picking up and rearranging cards.

* Your planning horizon is the iteration and the release. Things will change between
iterations and so the current view of the release will change as you approach its
completion.

* You want to encourage gesturing with the planning artifacts to make a point,
scribbling quick notes on them, etc.

* Ifyou don't keep Everything Visible, you wont know if you are on track without
expending additional efforts needlessly.

Therefore, make the main planning and tracking tools simple, tactile, visible, and non-
technological. Paper is good. Stories are written on small cards, not put into some tool.
You want to be able to throw away mistakes without guilt. Cards are tacked to the wall.
Whiteboards are equally good, as they can be made to easily change as the situation
changes. Make the workspace itself informative [1] so that anyone in the room can
immediately see progress and problems. Make sure that housekeeping knows not to erase
your whiteboards, of course.

* Ifyour team is distributed then it may be necessary to use electronic means, but
you will pay a cost for this. Keep such electronic documents in a common
electronic workspace and make sure everyone can edit these: common ownership
of all artifacts.

* The customer owns the story cards, by the way. They must be tracked; by name or
number.

* Story cards and other important artifacts should not leave the workspace.

* Yes, things can get lost. This is a risk. You may want a backup electronic copy.
Make sure it is clear which is the original and which is just backup.

* Note that Scrum tends to use spreadsheets, but is careful to make them visible,
accessible, and modifiable.

* As your team grows, this will be harder to do. Do what you must, but keep
Everything Visible. The technological solution will cost you something, however,
so make sure you watch for entropy in the Retrospectives.

The author was recently coaching a team in which a very helpful tracking tool was a hand-

drawn thermometer on a whiteboard. It measured the "temperature of the build" and
represented the probability that the iteration wouldn't finish successfully. This also kept

MT1.1

Everything Visible.

MT1.14

Documentation is Just Another Task

You are a member of an agile team. You recognize that internal or external documentation
is required. You also recognize that most traditional documentation isn't needed here. You
will need documentation, both user level and system level. You have not gathered all the
requirements up front, but you need to document requirements as well as decisions made.

Some people believe that documentation isn't done on agile projects. This is not true, but
the documentation is different. You must do user-level documentation, of course, on any
project. It may be necessary to have a separate view of the project readable by non-coders.
In agile development these are not prepared in advance, as the project direction will
change. They are not prepared after the fact as people forget what was done. You must
prepare all necessary documentation and you must keep it in sync with the evolving project
even as it changes.

* The project requirements are changing constantly.

* Ifyou leave documentation to the end, it won't get done, or will get done poorly.

* [If documentation is not consistent with what you have built it is worse than
worthless.

* Your build unit is the story. Your horizon is the iteration.

* Youneed Enough Time to build the story completely. Otherwise documentation
will become the orphan child of the project.

* Agile teams themselves need less documentation than other teams.

Therefore, treat documentation creation and updating as just another task. Estimate it and
refactor it as you would a programming task. A small project can keep most of its
documentation on cards and on the whiteboards. A large project can use documentation
specialists on the team who work with other developers (pairing) in the usual way. A
smaller team can treat documentation as a role, just like testing is. The documentation
tasks may follow slightly in time the other development tasks, but not by more than a few
days. User level documentation must be brought to sync at the release points.

* When a project changes direction, the documentation, like the code, must change or
be discarded. This means you spent money that you might not have had to spend if
you knew better earlier. It is a sunk cost, however. Move on in the best direction
you can with the knowledge you now have.

* Your project isn't driven by the documentation prepared in advance. You have the
customer to steer and the code to tell you what you have done.

* There is implied coordination here, and that requires communication. Those writing
documentation work with the customer, as does anyone on the team.

* Code is still the best documentation for the team, assuming it is clean and well-
factored. Others need a different and/or higher level view.

In an agile project the code itself is considered to be the key piece of documentation. Make
sure it fits that role by always writing the code in the clearest possible way. While this is
important in any project, it is essential in an agile project.

In general, remember that the team must include a// necessary skills to build a quality

product. This includes documentation skills. Note that acceptance tests are a form of
executable documentation.

MT1.18

For more on Agile Documentation, see Rueping [11].

MT1.1A

Question Implies Acceptance Test

You are customer on an agile team. Someone has just asked you a question about the
meaning of a story. You want your answer to be faithfully captured by the development
process.

If the answers to questions aren't captured reliably and accurately, the answer could get
lost or misinterpreted. But the target is moving and the project is continuously re-aimed
via customer steering.

* Developers ask questions of the customer continuously throughout the development
process. There are a lot of questions and answers.

* Answers to some questions invalidate answers to questions previously asked.

* But it takes time and effort to capture everything. Sometimes the simplest things
require the most discipline, though more complicated things require the most effort.

¢ Ifrequirements become inconsistent you need the inconsistencies to show up
dramatically and early.

* The project may never develop sufficient traditional requirements documentation to
drive a traditional black box test.

Therefore, whenever you, the customer, answer a question on a story or task, immediately
write an acceptance test that will verify that the answer is codified in the resulting
application. The best way is to make this an Executable Test, but in some cases the
customer will need to resort to a special card, a Test Card. Then a programmer can
generate a test from the card. The Test Card should stay with the story that generated the
question.

An absolute requirement for successful agile development is an adequate set of acceptance
tests so that both customers and developers can agree on the target and when it is reached.

If your organization has a Quality Assurance department they can be helpful in showing
the customer how to build the acceptance tests as you go. A testing expert on the team is a
real asset.

* Note that answers to questions can also be captured in unit tests in many cases. But
unit tests get refactored along with the code and are owned by the developers, not
the customer. There is some danger of losing an answer if they are only captured in
unit tests.

* This practices takes time and discipline. It may require that someone make an
Executable Test to capture this answer. If your acceptance testing framework is
really solid, the customer may be able to do it himself.

Acceptance tests are under the control of the customer or product owner. She may or may
not be comfortable writing the tests directly and may need constant assistance of a team
member to formulate these in an executable way. Tools such as FIT and FitNesse can help
if the team can work out a way to express the tests in tabular form. Most people with
business skills are comfortable thinking in spreadsheets and such tools can then be used to
directly capture the test requirements.

For more on acceptance testing see Mugridge and Cunningham [10].

MT1.17

Re-Estimate Periodically

You are a developer on an agile team. You have a bit of time available in the development
phase.

Normally you estimate stories long before they are built. But you do so making certain
assumptions. These assumptions change and so estimates become obsolete as the
application gets built and the code base changes.

* What you originally thought to be easy may now be hard to integrate into the code
base.

* What you originally thought to be hard may now be easy as you have support for it
already in the code.

* You may know more than you did when you first estimated the story. It may have a
different meaning now than it did earlier.

* The customer needs good estimates of stories to balance the cost against the current
value. These are used for both long (project) and short (iteration, release) term
planning.

* Asalways, you need Enough Time, but this changes as you Refactor.

Therefore, in every iteration, take some time to re-estimate a few of the stories that the
customer believes to be high value. Do this only for stories with estimates that may be
somewhat dated. It will be easier to know that you need to do this if you keep Everything
Visible.

* Sometimes people have a bit of time because their forward progress is stopped
while waiting for another task to complete, of they have finished their tasks and
there are none left that will fit in the remaining time. This time can be productively
spent spiking and re-estimating.

* The estimates, combined with the team velocity, are the basis for long-term
projection for project management. The average story estimate is an important
projection tool as long as it is reasonably accurate.

* Failing to have estimates that accurately reflect the current understanding of the
project will greatly complicate the Planning Game and make planning a long and
arduous task, rather than the half-day or so per month that it should be. Do just
enough of this to smooth the next Planning Game. The customer can guide you
here, by indicating the likely stories in the near future.

* But don't agonize over the estimates. If you aren't sure, you can Spike now or later
and you can always make a consciously high estimate to cover uncertainty. Another
strategy when estimation is hard is to split stories.

* Ifyou find you seldom do this and the Planning Game often bogs down for
poor/outdated estimates, you need to deal with the issue in the next Retrospective
and set a Flexible Velocity.

For more on agile estimation, see Cohn [4].

MT1.1R

Flexible Velocity

You are a Social Tracker for an agile team. The team recognizes that there is work to do
that is not covered by the stories. You are in the Planning Game working on the next
iteration.

Sometimes the stories to be included in an iteration have implications that are not obvious
to the customer. They may require Refactoring or infrastructure development. Work may
need to be done that is not covered in any of the stories.

* Setting an appropriate velocity for the iteration is the key to success. If it is too
high, the developers will have to drop work in the iteration, making everyone
unhappy.

* We want everything stated in the stories. All necessary work is estimated in ideal
developer days ("sunny days").

* In practice this won't always happen. You aren't perfect.

* Youneed to do some things to support current stories (not future possibilities).
These extra tasks were not captured in the estimates, though they should have been.

* The velocity needs to accurately estimate what the team can reasonably do in the
iteration.

* Asalways, it is easier and more satisfying to go back to the customer for more
work than to have to go and ask what should be dropped because not all can be
completed.

Therefore, adjust the velocity downwards for an iteration in which you know that there is
work to be done that isn't included in any of the stories.

This extra work can be refactoring the existing code since the stories might have been
estimated at an earlier time and the current state of the code base implies refactoring.
Alternatively (preferably) the story estimate can be updated to include this refactoring.

Some teams use developer stories to cover this situation. They are estimated and scheduled
in the normal way, but they are inserted into the mix just in time by the developers to
support a customer story. Don't use them to speculate what might be coming in the future
and build code speculatively. DTSTTCPW, of course. But there will likely be arguments
between the customer and the developers over the priority, and even the need for,
developer stories as they aren't well understood by most customers.

* Note that in XP we do the simplest thing that could possibly work. This does not
mean we hack. It does mean that we do not build the most general solution to every
problem when we first encounter it. It is the second or third occurrence of a
problem that pays for the general solution. Since you don’t know the order in which
the stories will be built when you first estimate them, it is hard to write estimates
that include this time to refactor. This is one reason why velocity stays at a fraction
of available time, of course, but it also sometimes requires adjustments to the
velocity of an iteration.

* Ifyou set aside Enough Time for each story then the need for this should not
occur. This is a temporary stopgap. Discuss the problem in your next
Retrospective.

* Be aware that the customer won't like it when this happens. The long-term solution

MT1.1Q

is to try to get more complete estimates for the stories and their implications.

* Management will need to merge infrastructure requirements smoothly into the
development. Make sure the required equipment does arrive in time and that you
know who will set it up and check it out.

This extra work can include necessary infrastructure work needed to support a story. On a
recent project, the velocity stayed at about one-third of available time (the organization has
frequent required meetings), but hardware infrastructure was poorly planned and didn't get
accounted for in story estimates. Velocity had to be reduced to get the machines up and
running.

MT1.20

Clusters of Patterns of Agile Practice

In any pattern language there are clusters of patterns that work together and reinforce one
another. In particular, no single pattern is likely to completely resolve all of its forces.
Therefore, other, smaller scale, patterns are applied to help resolve the remaining forces.

We have identified a number of clusters that may help explain the synergy between the
practices. Here is one that contains many of the patterns in this collection and is centered

on a key pattern.

Enough Time Cluster (Figure 1)

Project Diary

Yesterday's Weather |« ™ (Record of Velocity)
Documentation is
Just Another Task
| | J \ 4 | / Ask For More
mplementer
Estimates Tasks - <
Enough Time
L [L
DTSTTCPW Retrospective
L‘ \ 4 \ 4 L/ ;
YAGNI @Z‘riséii?:l‘lt; Flexible Velocity

The central pattern in this group both reinforces and is reinforced by the other patterns
here. For example, we need Enough Time for Documentation. On the other hand, the
Implementer Estimates Tasks precisely to give us Enough Time. Likewise, in finding
Enough Time to do rich and complex things we need to DTSTTCPW to achieve it or we
will not be able to end the iteration successfully. Retrospectives help us retarget our
practices when we find difficulties generally, and especially with time. And when we have
set aside too much time, we can and do Ask for More.

Note that there are some complex interconnections here, and also note that the patterns

seemingly at the periphery are themselves richly connected to other patterns in this
language.

MT191

Acknowledgement.

Linda Rising was the most able shepherdess of these patterns for EuroPLoP 2006.
As always her advice is helpful, drawing as it does on her deep knowledge of both patterns
and topic. I thank her profusely.

MT1.99

Thumbnails and Acronyms: This section includes short descriptions of all the
patterns we have identified to date, including the ones detailed in this paper. .

Acceptance Tests. Create a suite of Executable Tests that will be sufficient for the
customer to accept the work. They are under control of the customer.

Ask for More. When you know you will have extra time within an iteration, ask the
customer for more work.

Be Human. Provide a humane workspace to maximize productivity.

Best Effort. The contract is not for features delivered on a given date. You want best effort
and full communication.

Bug Generates Test. When a bug appears in code, write a set of tests that will only pass
when it is corrected.

Cards and Whiteboards. Things change too frequently to depend on elaborate
documentation mechanisms.

Coding Standards. Everyone shares the same coding look and feel.
Collective Responsibility. The team shares responsibility and rewards for all tasks.

Collective Ownership. The team as a whole owns all of the created artifacts, especially
the code.

Constant Refactoring. The structure of the code is continuously improved to take account
of all stories built to date.

Continuous Integration. Every task is integrated at completion and all unit tests are made
to pass.

Customer Checks-Off Tasks. Only the customer knows when something is done.

Customer Obtains Consensus. The customer role is responsible for obtaining consensus
among the stakeholders.

Deliver (Customer) Value. Building things may be fun or not, but don't lose track of the
real reason we are doing this.

Documentation is Just Another Task. Every story requires some kind of documentation.
If it must be extensive, include it in estimates.

DTSTTCPW. Do the Simplest Thing that Could Possibly Work. Build the code to
implement the story and nothing more. Pay for generality only when you know you need it.

Easy Does It. As a customer, don't push too hard. It frustrates everyone. If you push too
hard and "win," you lose if the iteration doesn’t complete successfully.

MT1.9

Effective Coach. A novice team depends fundamentally on a coach (ScrumMaster) to
keep you to the discipline and help you see opportunities and problems.

End To End. The first release is an end to end version of the product.

Enough Time. Estimates must include everything necessary for a story.

Everything Visible. Whiteboards, note boards, etc., in the team space need to have enough
graphically displayed information that anyone can immediately see the progress of the
current iteration as well as any bottlenecks. When you get in trouble the Retrospective
needs to see what happened and why.

Executable Tests. Tests are run so frequently they must be executable.

Flexible Velocity. Use velocity to allow for needed work that is not in the stories. But
learn to get it into the stories.

Full Communication. The developers keep the customer apprised always of
opportunities, costs, difficulties, etc. The customer keeps the developers in the loop on the
business needs and thinking that may affect future directions.

Grow Up. Start with a small team and grow it to the required size by adding a few
developers at iteration points. The other practices enable this: Promiscuous

Programming...

Guiding Metaphor (Topos). Develop a guiding metaphor or story for the project that
guides people as to the general direction.

High Discipline. No methodology will succeed if you don't actually do its practices
faithfully. On the other hand, make sure they are the right practices or deal with the issue
in a Retrospective.

High Value First. Customer selects highest value features at every point.

Implementer Estimates Tasks. Tasks are best estimated by the person who will do the
work.

Individual Customer Budgets. When customer representatives can't come to a common
understanding of priorities, they may need individual budgets of team resources.

Infrastructure. Before the project begins make sure the basic build, test, integrate, deploy
infrastructure is in place.

Once and Only Once. [2] Refactor code so that everything is said only once. But pay for
generality only when you must.

Onsite Customer. The customer works in the team's room along with the rest of the
Whole Team. Communication distance is very expensive.

Our Space. The Whole Team works together in an open workspace to optimize

MT1.24

communication.
Pair Programming. No code is committed to the code base unless it is written by a pair.

Promiscuous Programming. Spread the knowledge of the project amongst the team
members.

Planning Game. Once each iteration (every two weeks, say) the team spends time
planning the iteration, including what stories will be immediately built. See the literature as
this is a highly disciplined planning exercise.

Project Diary. Each developer keeps a bound book for the project. It is private to the
individual and contains things like estimates vs. actuals on stories built, who you paired

with, ideas for the next Retrospective, etc.

Question Implies Acceptance Test. When the customer answers a question from the
developers, she captures the answer in an acceptance test.

Re-estimate Periodically. Things change and estimates become obsolete.
Retrospective. Periodically hold a retrospective [8] of the team's practices.

Sacred Schedule. Time never slips in agile development. Features are the dependent
variable.

Sheltering Manager. A new team will depend on some shelter from those in the
organization who don't readily accept change.

Simple Design. Design only for the current stories. Simple logic, minimal generality, pass
the tests.

Small Releases. Software is released on short cycles, say monthly.
Social Tracker. The tracker must know how everyone is doing.
Spike. Do quick prototypes to learn how to build or estimate something.

Stand Up Meeting. (Daily Scrum) Fifteen minutes every day, to keep everyone on the
same page.

Sustainable Pace (40 hour week). Pace the team for the long haul, not a sprint. You want
everyone working in top form all the time.

Team Continuity. Management commits to keeping the team together throughout the
project. Team members make a similar commitment.

Team Owns Individual Velocities. Individual estimates are too variable to be a
management tool.

Test First. [1] No code without a failing test.

MT1.98

Test Card. If the customer cannot write executable tests herself, then she creates Test
Cards in answer to each question. The card specifies an acceptance test that will then be
written by the implementer of the story.

Train Everyone. Initial training includes everyone, including customers and management.

Whole Team. The team includes everyone with an essential skill. In particular, it includes
the customer as a full team member.

YAGNI. You Ain't Gonna Need it. Don't anticipate what might not occur. Don’t scaffold
speculatively.

Yesterday's Weather. The velocity of the next iteration is exactly the work successfully
completed in the previous one. Of course this assumes that the time and personnel are
fixed.

MT1.2A

References

[1] Beck, Extreme Programming Explained: 2ed, Addison-Wesley, 2004

[2] Beck, Smalltalk Best Practice Patterns, Prentice Hall, 1996

[3] Belshee, Promiscuous Pairing and Beginner’s Mind: Embrace Inexperience,
http://www.agile2005.org/XR4.pdf

[4] Mike Cohn, Agile Estimating and Planning (Robert C. Martin Series) Prentice Hall,
2005

[5] Coplien, Harrison, Patterns for Agile Software Development, Prentice Hall, 2004

[6] Jackson, Michael A. Principles of Program Design. Academic Press, London and New
York, 1975

[7] Jeffries, Anderson, Hendrickson, Extreme Programming Installed, Addison-Wesley,
2001

[8] Kerth, Norm, Project Retrospectives: A Handbook for Team Reviews, Dorset House,
2001

[9] Manns, Rising, Fearless Change, Addison-Wesley, 2004

[10] Mugridge and Cunningham, Fit for Developing Software : Framework for Integrated
Tests, Prentice Hall, 2005

[11] Rueping, Agile Documentation : A Pattern Guide to Producing Lightweight
Documents for Software Projects, Wiley, 2003

[12] Schwaber, Beedle, Agile Software Development with Scrum, Prentice Hall, 2002
[13] Surowiecki, The Wisdom of Crowds, Anchor, 2005

MT1.97

