
Overthreading

Klaus Marquardt
Dorothea-Erxleben-Straße 78
23562 Lübeck
Germany

Email: pattern@kmarquardt.de

The classic school of software development suggests splitting the system
into functional blocks. The blocks get a defined set of responsibilities, and
their boundaries become clearly described. Afterwards, each function is
assigned to be implemented in happy separation.

Both in embedded systems and in a world of service orientation, a system of
many not-so-independent functional blocks is easily expressed as a system
of many independent execution contexts (aka threads or tasks) that
exchange signals. An increasing number of threads, signals, and functional
blocks introduce a complexity to the system that needs to be managed.

A note to the workshop participants
Primarily I seek feedback on the completeness of the therapies, and on the
precision in defining the diagnosis.

Several therapies, DEPLOYMENT ARBITRATION, PHYSICAL CONTEXT AT INTEGRATION,
and IN-PROCESS UNIT TESTS are only provided as patlets here. Depending on
your feedback, they may evolve into full patterns for the proceedings
version.

An explanation of the pattern format this paper uses is appended for your
information.

G2 - 1

Introduction
While most of the following describes the development of embedded
systems (or service oriented architectures), stay tuned in case you are
building service oriented architectures (or embedded systems) – there will
be more similarities than you might have expected.

The greatest similarity is that both are typically architected along physical
boundaries and components. The common mindset is that this should be the
first-order decomposition.

Separation into different physical components has many advantages. First of
all, it resembles engineering along the lines of tangible things, servers or
processors, physical components that can be shown to the outside world.
Developers perceive their functional block as a complete entity: that it can
be executed shows completion of implementation. Testing on development
level can be done without much harness or code intrusion, just by running
the functional block and checking whether it reacts to external events.

Taking a look at UML and the standard volumes of object oriented
development, they focus on logical components of a fine granularity. This
approach to system development is not invalid, but it neglects levels of
abstraction and granularities that arise with complex systems. This gap
could be filled with logical components of a larger granularity, e.g.
components or subsystems. It may also be filled, as is the case here, with
larger components that are physical and comprise both software and
hardware, respectively executable programs. UML is not even very clear
itself in this distinction.

Actually the mindset to combine physical and logical worlds has proven
successful in many projects. Many systems require this as their central
quality. However, all systems need to integrate functionality across these
physical – and thus logical – boundaries. The effort to link different
processes logically is significant, especially when this link was considered
an afterthought.

Aside, embedded systems suffer from an additional verbal and mental twist,
the two meanings of “task”. When some developer is assigned the “task” to
implement some functionality, the immediate reaction is to spawn a new
“task”.

This paper explores the consequences of a system design that cuts logical
lines where the physical lines are. It shows how to compensate for the
potential drawbacks and gain the best of different views on the system.

Overthreading G2 - 2

Diagnosis: Overthreading

Systems that are decomposed for seemingly independent components, that
mistake the absence of immediate physical coupling for independence, that
develop an accidental complexity where finally no individual component
could be removed or changed without breaking the system.

The fictitious project’s software development starts out fairly simple. The
entire functionality is decomposed into functional blocks with inputs and
outputs, each block is assigned to a developer or a small team –
implementation is their task.

The architecture supports decoupling of functional development. Such a
task will be implemented as a distinct physical component – in SOP this will
be a service, in embedded systems a thread or task. This way the
component’s development is decoupled from other components. Each team
can finish their portion independently in the fashion they prefer, and any
outside circumstances like delay, lack of resources etc will not influence
other components’ completion. Even mediocre quality of some component
will not directly influence the system, as it could be replaced some time late
in the project.

The functional blocks can be tested within a test harness providing messages
with incoming data, and checking for the expected output reaction. System
integration finally puts all the components together and starts the runtime
system.

To everybody’s surprise, things become tough – not exactly at the first
integration of only a few components, but as the project progresses. It starts
out with the difficulties of real projects: the integration tests are delayed due
to late deliveries of individual components. Some chains of functionality
can not be completed, so the partial integration becomes meaningless: it
does not provide more information than the individual tests. But then, when
finally all components come together, it takes significantly higher effort
than expected to get the system up and running. Especially the start-up

Overthreading G2 - 3

some great figure to be added.

scenarios have not been explored in advance in full detail. Many effects
depends on the order of initialization, some seem arbitrary. Designers of
many involved functional blocks need to discuss details of the internal
behavior in order to get the startup right. When it comes to testing system
behavior, some work flow routines work fine while others are dysfunctional,
for no immediately apparent reason.

Following the execution paths of the missing functionalities, two key effects
become apparent. The first one is that the system is hard to start or deploy.
The blocks are not invoked in the exact order, or at the time they should be
started. After some tuning, and many turns on the screws of thread
priorities, the functions come life one by one. The responsiveness is still not
what was expected, and in embedded systems you will also observe a high
load.

The second effect is what always happens: the initial understanding of the
system was insufficient, and the decomposition has some flaws that need to
be corrected. Some of the components need revision, additional components
are created, and additional signals and messages are defined.

Integrating the revised blocks turns out to be troublesome, as the integrated
system is already tuned and changes to the runtime system cause portions of
the fragile equilibrium to break. The expected messages do not come in
time, so some tasks wait longer than expected and quit proper operation.

Such a system based on run time tuning is hard to debug: the messages and
task invocations can not be observed without disturbing the system itself. To
enable debugging, the code becomes instrumented with trace and logging
facilities, so that the control flow can be retrieved in retrospect.

The integration takes longer with the increase of functionality. Late in the
project, the last functional blocks take the most time. The overall
performance degrades, but worse it is hard to predict due to the cross effects
from physical execution of many components. The system does not scale
with the need for task switching and the amount of messages between tasks.

When finally all functions are available, the system is susceptible to error
conditions and typically needs a full restart in any faulty situation.
Furthermore, the team is resistant to do any changes: “Never change a
running system”. In terms of physics, the system has reached a state of an
instable equilibrium, where minimal changes have large impact.

Overthreading G2 - 4

Typical symptoms:

• The system architecture separates logical functions into distinct
physical components with distinct execution contexts or services.

• Physical decoupling is considered the key element to the system
architecture.

• Messages are used for logical functions crossing physically
decoupled components.

• Tasks for developers are mapped into blocks for independent
execution.

• The initial system decomposition is considered complete prior to
start of implementation.

• Testing of logical function includes the physical execution context

• The team is afraid of late changes.

Occasional symptoms:

• Integration starts late in the project.

• The responsibilities for development and integration are separated.

The pathogen is a combination of believe in the ability to design the entire
system up-front, and missing mental separation of a logical component’s
responsibility and its physical execution.

The first belief is an expression of naivete, the human tendency to solve a
problem with the mental tools learned from previous experience. This is a
good thing unless the new problem turns out significantly more complex, in
which situation the tools do not suffice to manage that complexity. More so,
the complexity often cannot be identified by the project participants.

Overthreading (or Over-Servicing) exists when this mental misconception
combines with a technical approach that makes it hard to react and change
the strategy.

Overthreading G2 - 5

Box: situations when this separation is useful and
strongly indicated

Therapy Overview
Ideally, development teams build the right thing the right way.
Overthreaded system implement an architecture that is insufficient in the
long turn. The therapies go into three different directions: avoiding the
conceptional shortcomings in systems thinking and improving the
architecture, helping a good architecture emerging by process, and soothing
some of the pain related to mediocre technical choices.

VISIBLE QUALITIES help to become self-aware which qualities are essential for
the system in the current state of development. The missing quality is best
expressed in the design principle SEPARATE APPLICATION FROM INFRASTRUCTURE
which assists refactoring, and in this case eases the change of focus of the
architecture. A dedicated DEPLOYMENT TEAM or DISTRIBUTION TEAM can help to
establish this separation, especially when they enforce DEPLOYMENT
ARBITRATION.

INTEGRATION-DRIVEN ARCHITECTURE avoids that much time is spent in
individual components without an early proof of concept. Based on this, the
deployment team can practice PHYSICAL CONTEXT AT INTEGRATION which
prevents artificial or accidental OVERTHREADING , while still maintaining the
option for strong physical separation when needed. A more pragmatic
approach is to change the mindset of the development with a TRANSPOSED
ORGANIZATION, in long lasting projects even more than once.

A different approach to testing can also help to SEPARATE APPLICATION FROM
INFRASTRUCTURE. TEST-FIRST DESIGN helps to prevent structures that exclude
themselves from testing, and thus integration. It is best established with IN-
PROCESS UNIT TESTS that are in sync with the DEPLOYMENT ARBITRATION.

Overthreading G2 - 6

Visible Qualities

Applies to projects whose team focuses all work and thoughts on a few essential
ideas, but ignores any other issues that might also be or become important to the
project’s success.

In a development team that focuses on a particular quality of the product,
you need to address further important system qualities that are essential to
adequately manage the system architecture.

Neglecting internal qualities can
cause a large system to break under
its own weight, …but the value they add to the

software is hidden and becomes
visible only in the long term.

Internal qualities can be crafted
intentionally into the software, …but they are hardly visible from a

bird’s eyes perspective.

Therefore, make your system’s internal qualities visible. Similar to sound
risk management practice, maintain a list of your top five qualities. Define
measures to achieve them, and determine frequently to what extend you
have reached your goal.

The key issue is to raise awareness for the existence of these qualities and
their relative importance in the team and in management. Especially when
the internal system qualities are unbalanced, ask the team come for a list of
possible qualities and discuss their value and advantages. The team should
order them according to their priority. Do not mind if your favorites are not
the topmost – you will go through the list every week or two and re-
evaluate.

Do the same process with the management, and make both lists visible.
While it is often not possible to resolve any conflict and come to consensus,
the fact that all qualities are there and considered important leads to
awareness, a more careful balancing and to an architecture and design that
addresses different qualities explicitly.

You need to maintain the lists, find criteria how to evaluate whether a
specific quality has been achieved, and define appropriate actions [Wein92].
This could become a part of a periodically scheduled team meeting.
Especially the evaluation criteria would be a tough job, as most qualities
show only indirect effect. Try to define goals that appear reasonable to the
project. If you or the team fails to define criteria, leave that quality at the
end of the list for the time being.

Overthreading G2 - 7

For motivation of the team and management, the testability quality often is a
good starter. Its benefits towards risk reduction and customer satisfaction
are obvious, and it can be verified with concrete actions, namely
implementing the tests. For testability, the achievement criterion could be
“all classes are accompanied by at least one unit test” or, if you introduce
unit tests late in the project, “every fixed defect has to be accompanied by at
least one new test case”. If for some reason the unit testability is hard to
achieve, this is a potential hint for a design fault. To get away with a rule
violation, a developer should need to convince the architect. There are
situations e.g. in GUI development that are hard to become unit tested, but
improvement suggestions may enable to test at least parts of the
functionality, e.g. after a class has been split in distinct parts.

It is not important to maintain the list for a long time. If you introduce it,
and hold it up often enough so that the developers know that you are serious
about it, you might neglect the list and only check it at the start of a new
iteration or release period. The check to what degree you have reached the
internal qualities never becomes obsolete, but can be reduced to one check
with each iteration or release.

Some qualities are hard to measure by numbers. For the measurement of
few qualities commercial tools are available. As an example, the software
tomograph [Lipp04] supports a quantitative evaluation of the internal
software structure.

“The team was new to object-oriented design, so we discussed a
lot about the promised qualities it should deliver. We started to
do JOINT DESIGN at the white board, and I showed on some
examples how a high extensibility could be reached, how
testability could be increased, and what amount of decoupling
required what effort. When the team size increased, DESIGN
REVIEWS became an essential part of the project. Initially I
participated in most, and we established an ordered catalogue of
criteria to check. With this catalogue, the process was accepted
and carried by the team. Closer to the end of the project, the
team decided to focus on other issues and reduce the formality of
the design reviews. By that time, the project lasted for more than
two years; all team members had significant expertise and
shared a common sense.”

VISIBLE QUALITIES is effective through creating attention and a
positive attitude. The attention achieved by the top-five list causes
second thoughts, awareness, and potentially actions, while the

Overthreading G2 - 8

measurable achievement fosters a positive attitude that in itself
already could improve the quality of work.

The work and initial costs are with the architect, but VISIBLE
QUALITIES requires involvement of the entire team. In the mid term,
the effort required is comparable to mentoring or coaching, while in
the long term it pays off through improved development practices.

There are no real counter indications to VISIBLE QUALITIES, but if your
team is resilient to learning other therapies might be more cost
effective for your project at hand. You might experience negative
side effects if you fail to explain the importance of different
qualities, and a continuous neglection of specific qualities might
finally break a large system. Prevent this by establishing a veto right
on certain priorities. An overdose could be injected if the team does
not get the idea at all, or is disgusted by the somewhat formal
process. Use the drive for discussion to come to an adequate dosage.

If you look for less formal approaches, look out for a MENTOR or
apply ARCHITECT ALSO COACHES. VISIBLE QUALITIES are successfully
accompanied by ARCHITECT ALSO IMPLEMENTS and REVEALED
SUPERSTITION.

OVERTHREADING : Apply VISIBLE QUALITIES at any time during the
project; early is better. They can help to learn which are the intrinsic
qualities needed, and which are introduced by superstition.

 The project spends less time on ill-perceived priorities.

 Priorities and qualities do not automagically change when
still the same people define them.

Overthreading G2 - 9

Separate Application from Infrastructure

Applies to projects that are not trivial in scope and team size.

Projects that define an architecture along technological lines run the risk that
they bind themselves tightly to the infrastructure and become legacy code
prior to their first release.

The technical infrastructure makes
for a quick description and
classification of a project, …but the application domain and the

infrastructure domain have different
and independent life cycles.

Completing an assignment both
from the domain and the technology
aspects is compelling, …but coupling them tightly prevents

exchange or independent refactoring
of these aspects.

Therefore, clearly separate application knowledge from technical
knowledge, both in code and design. Application domain classes shall not
depend on infrastructure such as operating system, database, service
invocation, threads or event queues. Vice versa, infrastructure code and
middleware shall not depend on application knowledge and domain classes.

Consider all functional blocks as logical components only, and exclude all
considerations of physical deployment and invocation.

Organic software development would not invest effort in software
infrastructure without a clear need on the business and application side.
However, keeping the logical blocks separated has both mid term and long
term benefits. In the mid term, the application development can proceed
using test stubs that reduce the effort for functional tests. Both can be
developed in parallel, and the necessary expertise serves as a natural team
structuring element. There is less of a learning curve required, and less
quality compromises necessary that arise from incomplete understanding. In
the long term, the technology could be replaced, and the application updated
without a need for synchronization.

However, keeping the separation in place requires effort that does not pay
off in small teams and in projects that only last a few months. With every
increment and mile stone, both aspects need to integrate and proof
achievements that do not come automagically. Even in large projects there
will be little effort reduction, the separation pays off because of the

Overthreading G2 - 10

circumvented learning curve and the independent evolution of infrastructure
and application.

SEPARATE APPLICATION FROM INFRASTRUCTURE is effective through the
related engineering and management discipline.

The work and initial costs are with the architect who needs to
minimize the dependencies between both aspects and possibly
teams. It requires full management support. In the mid term, before
the project is close to shipment, the effort required is comparable to
the effort that would be needed for education and more expensive
testing. In the long term it pays off through decoupled evolution of
independent packages.

Counter indications to SEPARATE APPLICATION FROM INFRASTRUCTURE are
a small team (~ six developers or less) and a short expected project
duration (several weeks or months). In these the initial costs to
establish the necessary interfaces and enforce a technical boundary –
which is not even immediately useful to project or customer – are
higher than an attitude to early delivery would be, even if the costs
of refactoring due to the chosen complexity are considered. Use the
drive for discussion to come to an adequate dosage.

To compensate for the risks associated of strict separation, combine
SEPARATE APPLICATION FROM INFRASTRUCTURE with an INTEGRATION
DRIVEN ARCHITECTURE. Projects with a strict separation of concerns
will also benefit from a TRANSPOSED ORGANIZATION to shift the focus to
immediate customer needs.

OVERTHREADING : Apply SEPARATE APPLICATION FROM INFRASTRUCTURE at
the very beginning to establish a counterpart to the deployment
driven mindset.

Overthreading G2 - 11

Deployment Team
also known as: Distribution Team

Applies to projects that need to consider the software deployment.

Deployment and distribution are non-trivial arts of software engineering. It
needs to be adapted several times during the project, and potentially with
each customer specific installation.

It is convenient to place some
deployment decisions into each
developers hands, …but the accidental complexity likely

prevents effective changes or
adaptions.

Project subteams are typically
formed around technical expertise or
workflow scenarios, ... but the technical workflows

necessary after completion of the
software development need special
attention.

Therefore, define an explicit responsibility for deployment and distribution,
and place it in the hands of a distinct team.

Let this team work in parallel to application driven teams, not to teams
tailored along the technical layers. The DEPLOYMENT TEAM is the foremost
team to take care of the application workflows that need to be addressed
during production, installation, service, and maintenance.

Indicate the need for such a team early in the project, an establish its leader,
possibly the software architect. Allow the team to take care that all
application functionality can actually be deployed at their command.

As a variant, have the members of the deployment team rotate (similar to 
ROTATE INTEGRATOR ROLE). This increases the understanding of all team
members for the difficulties and relevance of deployment.

The main mechanism of the DEPLOYMENT TEAM is the awareness that
is shifted to the late phases of software development. In
combination, deployment is removed from the early phases and from
accidental attention.

Deployment Team requires management action, typically initiated
by the architect. There are no extra costs related, though some of the

Overthreading G2 - 12

true software costs might become more visible to the organization,
or shifted to a different department.

There are no known counter indications. An overdose is unlikely to
occur, given that deployment is actually relevant to the project.

The Deployment Team may want to apply DEPLOYMENT ARBITRATION
to foster the code’s ability to adapt to different deployment solutions.

Overthreading G2 - 13

Deployment Arbitration

DEPLOYMENT ARBITRATION is the practice to arbitrarily change the deployment
or distribution in unforeseen ways. This shall ensure that all code is ready to
be executed anywhere, i.e. that it fulfills the criteria of “location
transparency”.

Physical Context at Integration

PHYSICAL CONTEXT AT INTEGRATION is the practice to provide the context for
execution or deployment, so that individual developers do not need to take
care of this. In embedded systems this could imply that a small set of
predefined tasks with different priorities and time schedules is prepared, and
that each piece of code indicates into which of these tasks it should be
integrated.

In-Process Unit Test

IN-PROCESS UNIT TEST is the common practice of embedding the code under
test into the environment provided by a unit test harness.

The less satisfactory alternative is to implement a test specifically build for
some component, which likely will presume some execution model or
deployment assumption that we would like to defer.

Overthreading G2 - 14

Integration-Driven Architecture1

Consider a project that comprises a large number of deliverables, potentially
contributed from different groups or suppliers.

You are responsible that the entire system works in the end. You need to be
able to tell whether concepts can be make working, and whether
contributions are valuable.

You need to rely on agreed
intermediate results, …but intermediate results have limited

relevance for the final integration.
Each group or sub-team needs to be
able to work independent of other
teams, …but the results need to operate

together smoothly to make sense.
Late changes are expensive in large,
dispersed projects, …but uncorrected errors would be

even more expensive.

Therefore, do not consider anything done until it is integrated, and do not
consider anything plausible or conceptually solved until you know how to
integrate it.

Start all activities with the end in mind. Identify what you need to have to
ship a working system, and work back from this end to determine what you
need to have when, in order to reach your goal. Schedule the integration so
that each group contributes frequently every few weeks. This integration
milestone plan needs to be accompanied by a detailed integration procedure
that shares the responsibilities between the different teams.

The integration steps should comprise a mixture of user valuable functions
and the necessary infrastructure. Resist the temptation to focus on common
technology first; only employ the exact technical portions that are needed
for the application progress.

When portions of the software are contracted out, it is valuable to make the
architecture an explicit part of the legal contract. The binding architecture
should not stop at the level of “EJB”, “Oracle”, or “3-tier”. Surprises during
integration are by far less likely when important concepts are agreed up
front, like error handling strategies or data exchange sequences. In case you
are unable to specify all concepts in advance, establish cooperative contracts

1 Early version published as INTEGRATION FIRST ARCHITECTURE in [Marquardt2005]

Overthreading G2 - 15

that enable you to define them as you go. Most likely this will not be
possible with a fixed price, fixed scope contract.

When different teams work towards a common and unified product, it can
be helpful to introduce a steady rhythm and synchronize the integration
schedules of all associated sub-projects. Every few weeks each team from
the entire project delegates one or two developers to the “integration days”
where the entire functionality is being set together.

The main mechanism of INTEGRATION-DRIVEN ARCHITECTURE is a
limitation of the overall risk, through the ability to detect conceptual
clashes and implementation insufficiencies as early as possible.

All roles in a project would be involved. The effort depends on the
overall team size and development process, but typically pays off
quickly due to risk reduction. As a rule of thumb, in large projects
you can expect the integration effort to exceed the effort spent on
initial development of individual contributions.

No counter indications are known: INTEGRATION-DRIVEN ARCHITECTURE
works even for small teams provided you have a simple enough
process.

The efficiency can be improved when combined with process related
therapies such as TIME-BOXED RELEASES and APPLICATION DRIVES
PROJECT.

OVERTHREADING : Apply INTEGRATION-DRIVEN ARCHITECTURE at the
beginning of the project. Applied on an organizational scale, it
ensures that the components under development are integrateable,
but it does not change the priorities of the architecture.

 The project spends little time without visible progress.

 The process allows for explicit warning signals.

 Early success cannot be extrapolated into a reliable schedule.

 Different subprojects are coupled tighter than they expect –
but not tighter than they actually were without INTEGRATION-
DRIVEN ARCHITECTURE, however implicit.

Overthreading G2 - 16

Transposed Organization

Apply to projects that last for a year or longer, and that are implemented by a team
of more than a dozen developers.

A software project team that is structured into several sub-teams, the
distribution of team responsibilities can only follow one possible view on
the system decomposition. Each project must satisfy a number of different
aspects and cover a multi dimensional decomposition.

The organization into sub-teams
enables a focused work, …but each project needs to have

different foci, and priorities change
over time.

Different foci could be supported by
having a multi dimensional team
structure, …but reporting to different leads

obtains more overhead than even
most large projects can afford.

Changes cause friction in
reestablishing working teams, …but important goals need to be

reflected in the organization to get
significant attention.

Therefore, change your project organization occasionally during the
projects course so that it reflects the highest risk.

Dividing the project team into sub-teams according to functional
components or layers is a very natural thing for architects to suggest, and
can be highly effective in technical domains. Dividing the project team
according to user visible function and workflow enables the team to deliver
quickly what the user expects. All significant systems need to cover both
views, but the organization cannot reflect both at the same time (Conways
Law [CoHa04]).

A deliberate change in the organization forces all project participants to
think in multiple dimensions, and the implementation and architecture
follows the organization with a delay, a phase shift in time. The expectation
of repeated reversion gets the participants used to multilateral thinking.

Such a deliberate violation of Conway’s Law is always temporary as the
structure of the architecture will follow after some time. You will make
mid-term progress in the area of the highest risk which can easily trade off
the restructuring costs.

Overthreading G2 - 17

The main mechanism is change, resulting in reactions and further
changes. Different aspects are addressed in the most effective way,
by changing the organization.

TRANSPOSED ORGANIZATION requires management decision and can
only be suggested by an architect. Its costs are similar to other costs
caused by change and should be seen as an insurance fee as in 
EXPLICIT RISKS.

TRANSPOSED ORGANIZATION has a number of side effects including
communication changes, irritation, and tighter integration. If the
risks associated are higher than the chances it is counter indicated.
Overdose effects, when you change too often, are hidden
communication due to fear, ineffectiveness due to uncertainty, and
an increase in staff turnover.

EXPLICIT RISKS can help to determine the feasibility of TRANSPOSED
ORGANIZATION. An alternative team structure would be TEAM PER
TASK that avoids a breakup into sub-teams and forms teams for each
small task. The tasks may both be technical or application bound.

OVERTHREADING : Apply TRANSPOSED ORGANIZATION when other therapies
have failed to change the mindset of the team. Maximum dosage is
twice during the project’s course. Do not apply it in the first quarter
of the estimated project time.

 Drastic change prevents participants from maintaining any
prevalent mindset.

 The change gives opportunity for determined corrections and
risk mitigation measures.

 Change induces further change that cannot be foreseen.

 None of the negative impacts of OVERTHREADING is directly
addressed.

 The friction from the change will consume project time.

The initial prototype phase ended with a team of five that did not
need further substructure. When more developers joined the
project team, the tasks and later the teams were split into
different areas: database, GUI, network, etc. When field tests
began, the workflows slightly beyond the trivial standards failed
or were unstable. To overcome this deficiency, the team focus
was shifted towards making the workflow operable, and the team
structure was reorganized. The workflow teams were composed
to include technical competence each.

Overthreading G2 - 18

Acknowledgements
Many thanks to Andy Longshaw for his insightful shepherding of this paper
for EuroPLoP 2007, and to the EuroPLoP 2007 chairs, Lise and Till, for
making this submission possible.

References
...

Marquardt2004 Klaus Marquardt: Platonic Schizophrenia. In: Proceedings of
EuroPLoP 2004

Marquardt2005 Klaus Marquardt: Indecisive Generality. In: Proceedings of
EuroPLoP 2005

...

Appendix: About this Paper
This paper aims at helping architects and other project participants to find
out what is going wrong in their project and why, and what they can do
about it.

For this purpose, the problem is described in a form appropriate for a
medical disease, as a diagnosis. Known resolutions or measures are
introduced as therapies. Similar to the medical world, a complex problem
might have more than one solution, and a solution might help to solve more
than one particular problem. Diagnoses and therapies do not stand on their
own but are cross-linked back and forth.

Following this medical metaphor brings some unique features. A wealth of
vocabulary becomes accessible. The metaphor also shows the limitations we
face: none of the presented solutions might actually cure a particular system.
Some therapies are only effective when applied preventively, others are
merely palliative or might at best lead to a remission.

In this paper, diagnosis names are written in UNDERLINED SMALL CAPITALS and
therapy names in SMALL CAPITALS. Names used but not listed herein are
marked () and can be found in the references. Both diagnoses and
therapies follow their own pattern formats including sections that contribute
to the medical metaphor.

• The description of a diagnosis starts with a small summary and a
picture. Symptoms and examination are discussed and concluded by
a checklist. A description of possible pathogens and the etiology
closes the diagnosis.

Overthreading G2 - 19

Each diagnosis comes with a brief explanation of applicable
therapies. This includes possible therapy combinations and the kind
of effect: curative, palliative or preventive. Where available,
treatment schemes are described that combine several therapies.
These are suggested starting points for a successful treatment of the
actual situation.

• Therapies are measures, processes or other medications applicable to
one or several diagnoses. Their description includes problem, forces,
solution, implementation hints and an example or project report.
Their initial context is kept rather broad. For each applicable
diagnosis, applicability and particular consequences are evaluated.

In addition to the common pattern elements, therapeutic measures
contain additional sections containing the medical information.
These are introduced by symbols and show the mechanisms of a
therapy and how it works (), the involved roles and related costs
(), counter indications, side and overdose effects (), and
cross effects when combined with other therapies (). For the
diseases it can be applied to, usage sections are added ().

Overthreading G2 - 20

		Overthreading

