
Introduction to COM Page 1

Introduction to COM

CSE775 - Distributed Objects, Spring 2012

Jim Fawcett

Spring 2012

Introduction to COM Page 2

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 3

What’s the Problem?

 Building large systems depends on decomposing the logical
structure of the system into a hierarchy of components using:

– class inheritance and aggregation

– static modular structure

 While establishing an effective hierarchy is essential, it is not
enough. The physical packaging of the logical design must:

– minimize duplication of code

– minimize compile, link, and load-time dependencies

– avoid rebuilding large parts of the system when a small change is
made to fix a latent error or add new functionality

Introduction to COM Page 4

Duplication of Code

 Using conventional technology we build monolithic programs.
Each program that reuses a library or module duplicates that
code in its execution image.

– The code occupies disk space for every replicated copy.

– Two running applications that share source code do not share the
corresponding machine code. They each have their own copies
that occupy memory in RAM.

– Since broad reuse of code is an important goal for large systems
the duplication of machine code can be a major user of system
resources, e.g., memory and load and initialization time.

Introduction to COM Page 5

Compile, Link, and Load-Time
Dependencies

 Compile and link time dependencies have been cited as the prime
culprit in failures of some very large system implementations, e.g.
LargeScale C++ Software Development, John Lakos, Addison-
Wesley

– Dependencies make testing software components in isolation difficult
or impossible.

– Small changes in a single component result in massive recompilation
and linking if dependencies are spread out across the system.

– In large systems parts of a system may be spread over many
directories. Then changes to the directory structure cause breakage
in compile, link, and load processes.

Introduction to COM Page 6

Compile-Time Dependencies

Error Module

Application

module #1

Application

module #4

Application

module #2

Application

module #3

Application

module #5

Introduction to COM Page 7

Rebuilding Components

 Each build requires many files and compile and link options:

– it is often difficult to ensure that the right versions of source code
are included in a build

– we may not even know all the components required to successfully
rebuild a system.

• Build may take hundreds of files and scores of build scripts and make
files.

– knowing how to set all the options and environments can require
detailed knowledge of the design, which for a large system may be
very hard to find.

 Sometimes it can be very difficult to find source code of the
correct version (supporting the correct platform with all
appropriate bug fixes).

Introduction to COM Page 8

What’s the Solution?

 Several competing technologies have been invented to package
and manage a large system’s physical structure:

– Common Object Request Broker Architecture (CORBA) was
specified by the Object Management Group (OMG), a consortium of
software vendors. Mostly used in UNIX environments for Enter-
prise Computing Systems.

– Component Object Model (COM) was developed by Microsoft Corp.
and is supported by their development technologies, e.g., Visual
Studio with C++, Visual Basic, and Java on windows systems.

– Java Beans, developed by Sun, Inc. is a modular technology but
doesn’t fully support physical packaging.

 We will focus on COM because it is available on all current
Windows platforms and is being widely used by MS and others.

Introduction to COM Page 9

Part #1 of the Solution:
Code Reuse by Using DLLs

 Use dynamic link libraries (DLLs).

– DLLs are loaded at run time from a single file into any running
program that needs them, saving disk space for one copy of the
object code for each executable that uses the library.

– DLLs used by several concurrently running executables have only
one copy of their code in memory, although each executable
maintains local storage for the DLL code. This saves RAM space
that would otherwise be required for each running program using
the DLL.

Introduction to COM Page 10

Dynamic Link Library References

 Windows via C/C++, Fifth Edition, Richter and Nasarre, Microsoft
Press, 2008

 Windows System Programming, Third Edition, Johnson Hart,
Addison-Wesley, 2005

 Win32 Programming, Rector and Newcomer, Addison-Wesley,
1997

 Also, checkout the ProgrammingToInterface Demo in class code
directory. It illustrates:

– How you create and use a dynamic link library

– How to break compile dependencies

Introduction to COM Page 11

Duplication of Library Code with
Static Linking

Application #2

Machine Code

Application#1

Machine Code

Application #3

Machine Code

Library

Machine Code

copy #1

Library

Machine Code

copy #2

Library

Machine Code

copy #3

Application #1

source code

Application #2

source code

Application #3

source code

LIbrary

source Code

Introduction to COM Page 12

Sharing of DLL Code

Application #2

Machine Code

Application#1

Machine Code

Application #3

Machine Code

DLL

local data

DLL

local data

DLL

local data

Application #1

source code

Application #2

source code

Application #3

source code

DLL

source code

DLL

shared code

Introduction to COM Page 13

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 14

Part #2 of the Solution:
Break Compile-Time Dependencies

 Use component interfaces that carry no implementation detail.
You do that by defining interfaces with abstract base classes.

– Clients see the public member functions but no data members.

– Components derive from the abstract base class to provide the
implementation.

struct IInterfaceName {

virtual void m_fun1(int x)=0;

virtual char* m_fun2(double y)=0;

}

class implementationName : public IInterfaceName { … }

Introduction to COM Page 15

Part #2 of the Solution:
Break Link-Time Dependencies

 This comes for free if we use the Part #1 solution. DLLs load at
run-time so when a component is recompiled, to fix a latent
error perhaps, the client and its other components do not need
to be rebuilt, provided there are no compile-time dependencies.

 This helps to make the development process incremental. We
can work on each piece, represented by a DLL, in isolation.
Then simply run the client to make sure the application works
as a whole.

 When a component is revised, we simply copy the new DLL into
the directory where the original was stored, overwriting the
original. Now when the application is run the new DLL is loaded
and we get new functionality without rebuilding other parts of
the application.

Introduction to COM Page 16

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 17

Part #3 of the Solution:
System Management of Lifetime

 There is one problem with the Part #2 solution.

– Clients can not instantiate the derived class, which does all the real
work of the component, without its header file.

– But if we give the client the derived class header, we no longer
break compile-time dependencies.

 The solution:

– we could endow the abstract base class with a static creational
function which builds the derived object.

– COM uses an alternate solution: the component supplies a class
factory responsible for building any classes derived from the com-
ponent’s interfaces.

– The COM library provides a function, CoCreateInstance that clients
use to build derived classes using the class factory.

Introduction to COM Page 18

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 19

Part #4 of the Solution:
Registration of Components

 In order to break load-time dependencies, COM provides access
to all components through a single point - the windows registry.

 Each component is assigned a Globally Unique IDentifer (GUID)
which serves as a key in the windows registry database. Part of
the value associated with the GUID key is the directory path to
the component.

 Using GUIDs and the registry, clients that need to load a com-
ponent do not have to know where it is stored.

– They simply ask COM to load the component for them by calling
CoCreateInstance(…) using the component’s GUID.

Introduction to COM Page 20

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 21

Part #5 of the Solution:
Interprocess Communication

 Using DLLs work well as long as an instance of a component is
used by only one client at a time. However, sometimes it may be
important for multiple clients to access the same instance of a
component. Perhaps the component is managing information
that can be modified by any one of a number of clients, all
running at the same time.

 To support this client/server architecture -- one server for
multiple clients -- COM provides server “wrappers” for a
component that allow it to operate as a stand-alone EXE,
communicating with stand-alone clients.

 COM provides a standard method of interprocess communication
between client and server called Remote Procedure Calls.

Introduction to COM Page 22

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 23

Part #6 of the Solution:
Automation Interfaces

 Automation is a process where scripting languages like visual
basic and other languages that do not support C/C++ interfaces
can still use COM components.

 It is intended to support, for example, the use of Visual Basic
for Applications (VBA) to control COM servers like the Microsoft
Office products, e.g., word, excel, access, etc.

 Automation interfaces are provided by the Microsoft Office
products and others like Viso. This allows COM designers to use
sophisticated processing like viewing complex documents
provided by those programs without building the functionality
themselves.

Introduction to COM Page 24

Roadmap

 What’s the problem?

– tight coupling between many components in large systems makes
debugging, integration, and maintenance very difficult

– builds are complex activities depending on many different pieces of
source code and many option settings.

 Solution #1 - Dynamic Link Libraries

 Solution #2 - Standard Interfaces

 Solution #3 - System management of component lifetime

 Solution #4 - Registration

 Solution #5 - Interprocess Communication

 Solution #6 - Automation

 Final solution: local and remote plug compatible components.

Introduction to COM Page 25

End of COM Roadmap

