
File Management

Mario Tayah and Jim Fawcett
CSE775 – Distributed Objects

Spring 2007, Revised Spring 2012

Introduction

 A file is a set of data which has been organized, stored and
named.

 Files are used for:
• Long term storage of data and programs.
• Form of program to program communication.

 A file system is a system for organizing directories and
files, generally in terms of how it is implemented in the disk
operating system.

 A file system usually holds an interface to allow the user to:
• Add
• Edit
• Remove
Any file or directory.

 Some of the common file systems are:
• FAT and NTFS on Windows Systems
• UFS and JFS on Unix Systems.

Window File System

 Windows has four main file systems:

• NTFS file system, most recent window’s file system
includes security, long names…

note that this system is not supported on diskettes as
well as all windows 9X OS.

• FAT and FAT32 no support for windows security
supported on diskettes as well as windows 9X OS.

• CDFS used to access information stored on CD.

• UDF support for DVD reading.

• Other file systems include: NFS, SAN, CIFS

• Throughout this presentation we will be focusing on the
NTFS file system.

File Management Operations

 The file system supports functions that allow you
to perform functionality in four major categories:

• Creating, Deleting, and Maintaining Files

• Reading From and Writing to Files

• Obtaining and Setting File Information

• Reading and setting Security and Access Rights

• File and Directory Linking

• File Compression and Decompression

• File Encryption

• Sparse Files

Creating, Deleting, Maintaining Files

 Win32 Functionality:

• Naming a File

• Creating and Opening Files

• Creating and Using a Temporary File

• Moving and Replacing Files

• Closing Files

• Deleting Files

• Defragmenting Files

File naming

 Filespecification in windows:
• A file path starts either with a disc drive name(c:, d:…)

or with (\\) indicating the global root on the machine.
• The path seperator character is the “\”although in some

APIs it is the /.
• Directory and file names cannot contain any of the

ASCII characters that fall in the range 1-31, including
mainly: < > : “ | ? * \ /

• Directory as well as file names can have spaces but, in
accessing them you should inclose the space seperated
name with “”.

• Can be as long as 255 characters
• “.” Usually separates the extension from the filename

but, a filename can hold many “.”
• Moreover, in the path, a “.” indicates the current

directory while a “..” the upper/parent directory.

Creating

& Opening Files

 You use the
“CreateFile”
function to open an
already existing file
or creating a new
one.

 To the right are
two examples:
• Upper one, open a

file for writing.

• Lower one, create a
new file for reading.

Creating and Using

Temporary Files
 The windows file system

interface provides
functions to allow
Applications to use
temporary files by the
following functions:
• GetTempFileName :

Creates a name for a
temporary file. If a unique
file name is generated, an
empty file is created and
the handle to it is
released; otherwise, only
a file name is generated.

• GetTempPath: retrieves
the path to the directory
where temporary files
should be created.

 Find to the right an
illustrative code fragment.

Moving &

Replacing Files
 To copy:

• Before a file can be copied, it must be closed or opened only for
reading. No thread can have the file opened for writing. To copy an
existing file to a new one, use the CopyFile or CopyFileEx function.
Applications can specify whether CopyFile and CopyFileEx fail if the
destination file already exists.

 To replace:
• The ReplaceFile function replaces one file with another file, with the

option of creating a backup copy of the original file.

 To move:
• A file must also be closed before an application can move it. The

MoveFile and MoveFileEx functions copy an existing file to a new
location and deletes the original.

• The MoveFileEx function also allows an application to specify how to
move the file. The function can replace an existing file, move a file
across volumes, and delay moving the file until the operating system
is restarted.

Closing & deleting

Files
 To close:

• To use operating system resources efficiently, an application should
close files when they are no longer needed by using the CloseHandle
function. If a file is open when an application terminates, the system
closes it automatically.

• The following codes closes the file named Myfile.txt, whose handle is
stored in the hFile variable:

CloseHandle(hFile);

• Note that closing a file does not delete the file from disk.

 To delete:
• The DeleteFile function can be used to delete a file on close. A file

cannot be deleted until all handles to it are closed. If a file cannot be
deleted, its name cannot be reused. To reuse a file name immediately,
rename the existing file.

• The following codes closes and deletes the file named Myfile.txt,
whose handle is stored in the hFile variable:

CloseHandle(hFile);
DeleteFile(TEXT("myfile.txt"));

Defragmenting Files

 When a file is written to a disk, the file cannot be written in contiguous
clusters. Noncontiguous clusters slow down the process of reading and
writing a file.

 To optimize files for fast access, a volume can be defragmented.
 The process of defragmentation simply moves fragments of the file to try

to make them as close to each other as possible if not contigous to each
other  allowing faster access

 The following are the steps to perform defragmentation of a file:
 Use the FSCTL_GET_VOLUME_BITMAP control code to find a place on the

volume that is large enough to accept an entire file.
 Note If necessary, move other files to make a place that is large enough. Ideally, there

is enough unallocated clusters after the first extent of the file that you can move
subsequent extents into the space after the first extent.

• Use the FSCTL_GET_RETRIEVAL_POINTERS control code to get a map of the
current layout of the file on the disk.

• Walk the RETRIEVAL_POINTERS_BUFFER structure returned by
FSCTL_GET_RETRIEVAL_POINTERS.

• Use the FSCTL_MOVE_FILE control code to move each cluster as you walk the
structure.

 So, as you can see from the steps indicated above, the process of
defragmenting constitutes finding the bits and pieces of the file and trying
to put them next to each other

Obtaining and Setting File

Information

 Win32 Functionality:

• Retrieving and Changing File Attributes

• Retrieving File Type Information

• Determining the Size of a File

• Testing for the End of a File

• Searching for One or More Files

• Setting and Getting the Timestamp of a File

• Determining the Current Character Set Code
Page

Retrieving and Changing

File Attributes

 To get the file attributes you can use:

• GetFileAttributes

• GetFileAttributesEx

 To set file attributes use:

• CreateFile

• SetFileAttributes

Note that applications cannot set all the file attributes.

Retrieving

File Type & size Information

 In order to get the file type information
use:

• GetFileType : which retrieves the type of a
file: disk, character (such as a console), pipe,
or unknown.

• GetBinaryType: which determines whether a
file is executable, and if so, the type of
executable file it is.

 In order to determine the size of a file
use:

• GetFileSize: which retrieves the size of a file
in bytes.

Testing for

“End of a File”
 The ReadFile function checks

for the end-of-file condition
(eof) differently for
synchronous and
asynchronous read operations
as follows:

• Synchronous: the
synchronous read operation
gets to the end of a file,
ReadFile returns TRUE, and
sets the variable pointed to
by lpNumberOfBytesRead to 0
(zero).

• Asynchronous: An
asynchronous read operation
can encounter the end of a
file during the initiating call to
ReadFile, or during
subsequent asynchronous
operation.

 The code fragment on the
right shows how to check for
the end of file

Searching for

One or More Files

 An application can search the current
directory for all file names that match a
given pattern by using the following:
• FindFirstFile

• FindFirstFileEx

• FindNextFile

• FindClose

Note that the pattern must be a valid file
name and can include wildcard characters.

Setting/Getting Timestamp &

Character Set Code
 Timestamp:

• Applications can retrieve and set the date and time a file
is created, last modified, or last accessed by using:
 GetFileTime

 SetFileTime

 Character Set Code:
• in order to access/set the character set code use:

 AreFileApisANSI which determines whether the file I/O
functions are using the ANSI or OEM character set code
page.

 SetFileApisToANSI which causes the functions to use the
ANSI code page.

 SetFileApisToOEM which causes the functions to use the
OEM code page.

Read/Write

To files
 The windows file system provides the following functions to

allow application to read and write to files:
• ReadFile
• ReadFileEx
• WriteFile
• WriteFileEx

 In order to read/write to a file, you need to hold a handle to
that file, a handle can be defined to provide reading
capability or/and writing capability.

 These functions read and write a specified number of bytes
at the location indicated by the file pointer.

 When the file pointer reaches the end of a file and the
application attempts to read from the file, no error occurs,
but no bytes are read.

Note that these functions do not provide any formatting.

File Security

& Access Rights
 Windows has the notion of securable objects which are objects

that are secured by the operating system the operating system
through a module named “Access Control “ says weather a certain
application/user is eligible for accessing a certain resource.

 Files are one of the securable objects in NTFS access to them is
also secured through the “Access Control” module.

 The access control reads security descriptors defined on certain
resources, these security descriptors specify who is eligible to
access/use this resource and in what way.

 You can specify the security descriptor for a file through:
• CreateFile, CreateDirectory, or CreateDirectoryEx at creation time.

 If you specify NULL for the lpSecurityAttributes parameter, the file
or directory gets a default security descriptor  inherits its parent
security descriptor.

 To retrieve the security descriptor of a file or directory object,
use:
• GetNamedSecurityInfo or GetSecurityInfo

 To change the security descriptor of a file or directory object use:
• SetNamedSecurityInfo or SetSecurityInfofunction.

File Encryption

 NTFS provides an additional layer of
file protection which is the Encrypted
File System, or EFS.

 EFS provides cryptographic
protection of individual files on NTFS
file system volumes using a public-
key system.

File Compression and

Decompression
 The NTFS file system volumes support file compression on

an individual file basis.
 NTFS file system uses the “Lempel-Ziv compression” which

is lossless no data is loss in the compression process.
 On the NTFS file system, compression is performed

transparently. This means it can be used without requiring
changes to existing applications. The compressed bytes of
the file are not accessible to applications the application
does not deal with compressed files, it only deals with the
uncompressed files.

 The NTFS file system provides functions to provide the
following main compression/decompression processes:

• Decompressing multiple files
• Decompressing multiple files
• Reading from compressed files

Decompressing

a Single File

 An application can decompress a single
compressed file by performing the
following tasks :

• Open the source file by calling the LZOpenFile
function.

• Open the destination file by calling LZOpenFile.

• Copy the source file to the destination file by
calling the LZCopy function and passing the
handles returned by LZOpenFile.

• Close the files by calling the LZClose function.

Decompressing

multiple files

 An application can decompress multiple
files by performing the following tasks :

• Open the source files by calling the LZOpenFile
function.

• Open the destination files by calling
LZOpenFile.

• Copy the source files to the destination files by
calling the LZCopy function.

• Close the files by calling the LZClose function.

Reading from

Compressed Files
 More complex operation for the compressed file

manipulation is available :

• an application can decompress a compressed file a portion at a
time by using the LZSeek and LZRead functions.
this is useful when it is necessary to extract parts of large
files. For example, a font manufacturer may have compressed
files containing font metrics in addition to character data.

• To use the information in these files, an application would
need to decompress the file; however, most applications would
use only part of the file at any particular time.

• To get information about font metrics, the application would
extract data from the header.

• To get information from the text, the application would
reposition the file pointer by calling LZSeek and extract
character data by calling LZRead.

Sparse Files
 Definition:

• A file in which much of the data is zeros is said to contain a sparse
data set

 How does it work:
• Support for sparse files is introduced in the NTFS file system as a way

to make the disk space usage more efficient.
• When the sparse file functionality is enabled, the system does not

allocate hard drive space to a file except in regions where it contains
nonzero (useful) data.

• When a write operation is attempted where a large amount of the data
in the buffer is zeros, the zeros are not written to the file. Instead, the
file system creates an internal list containing the locations of the zeros
in the file, and this list is consulted during all read operations.

• When a read operation is performed in areas of the file where zeros
were located, the file system returns the appropriate number of zeros
in the buffer allocated for the read operation. In this way,
maintenance of the sparse file is transparent to all processes that
access it.

• You can see, that this process, increases the save and read
operations.

• Note that the default data value of a sparse file is zero; however, it
can be set to other values.

File and Directory Linking

 Definition : create a system representation of a
file or directory in a location in the directory
structure that is different from the file or
directory object that is being linked to (similar to
virtual directory).

 There are two types of links supported in the
NTFS file system:
• hard links

• junctions.

 The NTFS file system also provides the
distributed link tracking service, which
automatically tracks links as they are moved so
the link won’t get broken.

File Management

References

 File Management Functions
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_functions.asp

 File Management Control Codes
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_control_codes.asp

 File Management Structures
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_structures.asp

 File Management Enumerations
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_enumerations.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_functions.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_control_codes.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_structures.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/file_management_enumerations.asp

End of Presentation

