
COM Types

Jim Fawcett

CSE775 - Distributed Objects

Spring 2007

IDL Base Types

 Boolean A data item that can have the value TRUE or FALSE.
Byte An 8-bit data item guaranteed to be transmitted without any change.
Char An 8-bit unsigned character data item.
Double A 64-bit floating-point number.
Float A 32-bit floating-point number.
handle_t A primitive handle that can be used for RPC binding or data serializing.
Hyper A 64-bit integer that can be declared as either signed or unsigned

Can also be referred to as _int64.
int A 32-bit integer that can be declared as either signed or unsigned.
__int3264 A keyword that specifies an integral type that has either 32-bit or 64-bit

properties.
Long A modifier for int that indicates a 32-bit integer. Can be declared as

either signed or unsigned.
Short A 16-bit integer that can be declared as either signed or unsigned.
Small A modifier for int that indicates an 8-bit integer. Can be declared as

either signed or unsigned.
wchar_t Wide-character type that is supported as a Microsoft® extension to

IDL. Therefore, this type is not available if you compile using the /osf
switch.

http://msdn2.microsoft.com/en-us/library/aa366740.aspx
http://msdn2.microsoft.com/en-us/library/aa366743.aspx
http://msdn2.microsoft.com/en-us/library/aa366749.aspx
http://msdn2.microsoft.com/en-us/library/aa366806.aspx
http://msdn2.microsoft.com/en-us/library/aa366833.aspx
http://msdn2.microsoft.com/en-us/library/aa366849.aspx
http://msdn2.microsoft.com/en-us/library/aa367039.aspx
http://msdn2.microsoft.com/en-us/library/aa367162.aspx
http://msdn2.microsoft.com/en-us/library/aa367295.aspx
http://msdn2.microsoft.com/en-us/library/aa367053.aspx
http://msdn2.microsoft.com/en-us/library/aa367390.aspx
http://msdn2.microsoft.com/en-us/library/aa367072.aspx
http://msdn2.microsoft.com/en-us/library/aa367161.aspx
http://msdn2.microsoft.com/en-us/library/aa367165.aspx
http://msdn2.microsoft.com/en-us/library/aa367308.aspx
http://msdn2.microsoft.com/en-us/library/aa367357.aspx

Automation Types

BSTRs - Basic Strings

Variants - Basic Data

SafeArrays - Basic Arrays

BSTRs

 The BSTR type is a derived type used in Visual Basic and Microsoft
Java (and presumably C#). BSTRs are recognized by the standard
marshalers and used frequently by COM developers.

 BSTRs are length-prefixed, null terminated strings of OLECHARs.

4 0 0 0 'H' 0 'i' 0 0 0

BSTR

Length in Bytes Character Data NULL

BSTR Memory Allocation

 COM expects BSTRs to use a COM memory allocator, and provides
several API functions for handling BSTRs, declared in oleauto.h:

// allocate and initialize
– BSTR SysAllocString(const OLECHAR *pOC);

– BSTR SysAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// reallocate and initialize
– INT SysReAllocString(BSTR *pBSTR, const OLECHAR *pOC);

– INT SysReAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT
count);

// free a BSTR
– void SysFreeString(BSTR bstr);

// peek at length count as OLECHAR count or byte count
– UINT SysStringLen(BSTR bstr);

– UINT SysStringByteLen(BSTR bstr)

BSTR Memory Management

 When passing BSTRs as [in] parameters, the caller invokes
SysAllocString prior to calling the method and SysFreeString after
the method has completed.

 When passing strings from a method as an [out] parameter, it is
the responsibility of the method to call SysAllocString before
passing back the string. The caller releases the memory by calling
SysFreeString.

 When passing BSTRs as [in, out] parameters, you treat them like
[in] parameters.

 Reference: If you are going to use BSTRs in your project code,
make sure you look carefully at “Strings the OLE Way”, Bruce
McKinney, in MSDN online or in help.

 CComBSTR class provides a lot of help handling BSTRs. Check it
out in MSDN.

BSTRS

 WCHAR = OLECHAR = wchar_t

 BSTR = wchar_t * = LPWSTR

 C language string = char *s = LPSTR

 BSTR is a pointer to the beginning of a sequence of wchar_t’s

 HOWEVER, a BSTR always has four-byte length in front of the
memory pointed to.

 You must always manage a BSTR’s memory with the functions:

– SysAllocString, SysFreeString, SysReallocString, ...

BSTR Rules

 Ref: “Strings the OLE Way”, Bruce McKinney

– Allocate, destroy, and measure BSTRs only through the SysXXX
functions

– do what ever you like with the chars of strings you own, as long as
you don’t write past the string buffer, measured by len

– you may change the pointers to strings you own only through
SysReAllocString or SysReAllocStringLen

– you do not own any BSTR passed to you by value

– you own any BSTR passed to you by reference as an in/out
parameter

– you must create any BSTR passed to you by reference as an out
string, e.g., you are supplying a BSTR out parameter

– you must create a BSTR in order to return it

– a null pointer is an empty string, not just a pointer

Variant

 The variant type was developed for pre .Net Visual Basic, where
it represented a data type that can hold, and convert between:

– Strings, integers, floating point numbers, and objects of unspecified
type.

 Programmatically, the variant is a discriminated union

 Variants are passed as arguments to Dispatch Interfaces. That
is one of the few places you will see them used in this course.

 Another place is representing .Net objects on the COM side of a
Runtime Callable Wrapper (RCW). The RCW is esentially a .Net
object that is a COM client on the inside, and wraps some server
the client has instantiated.

Variant Structure

 Variant is a discriminated union:

struct tagVARIANT {

VARTYPE vt;

WORD wReserved1; WORD wReserved2; WORD wReserved3;

union {

long lVal; // VT_I4

unsigned char bVal; // VT_UI1

short iVal; // VT_I2

float fltVal; // VT_R4

double dblVal; // VT_R8

VARIANT_BOOL boolVal; // VT_BOOL

SCODE scode; // VT_ERROR

CY cyVal; // VT_CY (currency)

DATE date; // VT_DATE

BSTR bstrVal; // VT_BSTR

IUnknown *punkVal; // VT_UNKNOWN

IDispatch *pdispVal; // VT_DISPATCH

SAFEARRAY *parray; // VT_ARRAY|*

// other types that are windows specific

VARIANT *pvarVal; // VT_BYREF|VT_VARIANT

void *byref; // Generic ByRef

};

};

Safe Arrays

 Safe Arrays also originated with Visual Basic. All pre .Net Visual
Basic code represented arrays of data with Safe Arrays.

 A Safe Array is a structure:

struct SAFEARRAY {

WORD cDims; // number of dimensions

WORD fFeatures; // bit field describing attributes

DWORD cbElements; // size of array elements

DWORD cLocks; // lock reference count

void * pvData; // pointer to data on heap

SAFEARRAYBOUND rgsabound[1];

};

 Rgsabound[1] is an array of boundary structures, that starts

out life with one element, but may be expanded by safe array
function calls.

References for VB Types

 Bruce McKinney’s articles:

– Strings.htm

– Variants.htm

– SafeArrays.htm

../presentations/BruceMcKinneyPapers/COMstrings.htm
../presentations/BruceMcKinneyPapers/variants.htm
../presentations/BruceMcKinneyPapers/safeArrays.htm

ATL Support

CComQIPtr

CComBSTR

CComSafeArray

CComVariant

