COM Types

Jim Fawcett
CSE775 - Distributed Objects
Spring 2007




IDL Base Types

A data item that can have the value TRUE or FALSE.

An 8-bit data item guaranteed to be transmitted without any change.
An 8-bit unsigned character data item.

A 64-bit floating-point number.

A 32-bit floating-point number.

A primitive handle that can be used for RPC binding or data serializing.
A 64-bit integer that can be declared as either signed or unsigned
Can also be referred to as _int64.

A 32-bit integer that can be declared as either signed or unsigned.
A keyword that specifies an integral type that has either 32-bit or 64-bit
properties.

A modifier for int that indicates a 32-bit integer. Can be declared as
either signed or unsigned.

A 16-bit integer that can be declared as either signed or unsigned.
A modifier for int that indicates an 8-bit integer. Can be declared as
either signed or unsigned.

Wide-character type that is supported as a Microsoft® extension to
IDL. Therefore, this type is not available if you compile using the /osf
switch.


http://msdn2.microsoft.com/en-us/library/aa366740.aspx
http://msdn2.microsoft.com/en-us/library/aa366743.aspx
http://msdn2.microsoft.com/en-us/library/aa366749.aspx
http://msdn2.microsoft.com/en-us/library/aa366806.aspx
http://msdn2.microsoft.com/en-us/library/aa366833.aspx
http://msdn2.microsoft.com/en-us/library/aa366849.aspx
http://msdn2.microsoft.com/en-us/library/aa367039.aspx
http://msdn2.microsoft.com/en-us/library/aa367162.aspx
http://msdn2.microsoft.com/en-us/library/aa367295.aspx
http://msdn2.microsoft.com/en-us/library/aa367053.aspx
http://msdn2.microsoft.com/en-us/library/aa367390.aspx
http://msdn2.microsoft.com/en-us/library/aa367072.aspx
http://msdn2.microsoft.com/en-us/library/aa367161.aspx
http://msdn2.microsoft.com/en-us/library/aa367165.aspx
http://msdn2.microsoft.com/en-us/library/aa367308.aspx
http://msdn2.microsoft.com/en-us/library/aa367357.aspx

Automation Types

«BSTRs - Basic Strings
.Variants - Basic Data
.SafeArrays - Basic Arrays




BSTRs

The BSTR type is a derived type used in Visual Basic and Microsoft
Java (and presumably C#). BSTRs are recognized by the standard
marshalers and used frequently by COM developers.

BSTRs are length-prefixed, null terminated strings of OLECHARS.

BSTR

<+——Length in Bytes—»<4——Character Data—»<4—NULL—»



BSTR Memory Allocation

COM expects BSTRs to use a COM memory allocator, and provides
several API functions for handling BSTRs, declared in oleauto.h:
// allocate and initialize

— BSTR SysAllocString(const OLECHAR *pQOC);

— BSTR SysAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT count);

// reallocate and initialize

— INT SysReAllocString(BSTR *pBSTR, const OLECHAR *pQOC);

— INT SysReAllocStringLen(BSTR *pBSTR, const OLECHAR *pOC, UINT
count);

// free a BSTR
— void SysFreeString(BSTR bstr);

// peek at length count as OLECHAR count or byte count
— UINT SysStringLen(BSTR bstr);
— UINT SysStringByteLen(BSTR bstr)



BSTR Memory Management

When passing BSTRs as [in] parameters, the caller invokes
SysAllocString prior to calling the method and SysFreeString after
the method has completed.

When passing strings from a method as an [out] parameter, it is
the responsibility of the method to call SysAllocString before
passing back the string. The caller releases the memory by calling
SysFreeString.

When passing BSTRs as [in, out] parameters, you treat them like
[in] parameters.

Reference: If you are going to use BSTRs in your project code,
make sure you look carefully at “Strings the OLE Way”, Bruce
McKinney, in MSDN online or in help.

CComBSTR class provides a lot of help handling BSTRs. Check it
out in MSDN.



BSTRS

WCHAR = OLECHAR = wchar_t
BSTR = wchar_t * = LPWSTR
C language string = char *s = LPSTR

BSTR is a pointer to the beginning of a sequence of wchar_t's

HOWEVER, a BSTR always has four-byte length in front of the
memory pointed to.

You must always manage a BSTR’s memory with the functions:
— SysAllocString, SysFreeString, SysReallocString, ...



BSTR Rules

« Ref: "Strings the OLE Way”, Bruce McKinney

Allocate, destroy, and measure BSTRs only through the SysXXX
functions

do what ever you like with the chars of strings you own, as long as
you don’t write past the string buffer, measured by len

you may change the pointers to strings you own only through
SysReAllocString or SysReAllocStringlLen

you do not own any BSTR passed to you by value

you own any BSTR passed to you by reference as an in/out
parameter

you must create any BSTR passed to you by reference as an out
string, e.g., you are supplying a BSTR out parameter

you must create a BSTR in order to return it
a null pointer is an empty string, not just a pointer




Variant

The variant type was developed for pre .Net Visual Basic, where
it represented a data type that can hold, and convert between:
— Strings, integers, floating point numbers, and objects of unspecified

type.
Programmatically, the variant is a discriminated union

Variants are passed as arguments to Dispatch Interfaces. That
is one of the few places you will see them used in this course.

Another place is representing .Net objects on the COM side of a
Runtime Callable Wrapper (RCW). The RCW is esentially a .Net
object that is a COM client on the inside, and wraps some server
the client has instantiated.



Variant Structure

Variant is a discriminated union:

struct tagVARIANT {
VARTYPE vt;
WORD wReservedl; WORD wReserved2; WORD wReserved3;
union {

long 1lval; // VT 14
unsigned char bval; // VT UIl
short 1ival; // VT I2
float fltval; // VT R4
double dblval; // VT R8
VARIANT BOOL boolval; // VT BOOL
SCODE scode; // VT ERROR
CY cyVal; // VT CY (currency)
DATE date; // VT DATE
BSTR bstrVval; // VT BSTR
IUnknown *punkVval; // VT UNKNOWN
IDispatch *pdispval; // VT DISPATCH
SAFEARRAY *parray; // VT ARRAY|*
// other types that are windows specific
VARIANT *pvarVal; // VT BYREF|VT VARIANT

void *byref; // Generic ByRef




Safe Arrays

Safe Arrays also originated with Visual Basic. All pre .Net Visual
Basic code represented arrays of data with Safe Arrays.

A Safe Array is a structure:

struct SAFEARRAY {

WORD cDims; // number of dimensions

WORD fFeatures; // bit field describing attributes
DWORD cbElements; // size of array elements

DWORD cLocks; // lock reference count

void * pvData; // pointer to data on heap

SAFEARRAYBOUND rgsabound[1];
) &

Rgsabound[1] is an array of boundary structures, that starts

out life with one element, but may be expanded by safe array
function calls.



References for VB Types

Bruce McKinney’s articles:
— Strings.htm

— Variants.htm

— SafeArrays.htm



../presentations/BruceMcKinneyPapers/COMstrings.htm
../presentations/BruceMcKinneyPapers/variants.htm
../presentations/BruceMcKinneyPapers/safeArrays.htm

ATL Support

«CComQIPtr
«CComBSTR
-CComSafeArray
«CComVariant




